ContentslistsavailableatScienceDirect
Journal
of
Virological
Methods
jou rn al h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / j v i r o m e t
Short
communication
Next-generation
sequencing
(NGS)
in
the
identification
of
encephalitis-causing
viruses:
Unexpected
detection
of
human
herpesvirus
1
while
searching
for
RNA
pathogens
Karol
Perlejewski
a,
Marta
Popiel
a,b,
Tomasz
Laskus
a,
Shota
Nakamura
c,
Daisuke
Motooka
c,
Tomasz
Stokowy
d,
Dariusz
Lipowski
e,
Agnieszka
Pollak
f,
Urszula
Lechowicz
f,
Kamila
Caraballo
Cortés
a,
Adam
St ˛epie ´n
g,
Marek
Radkowski
a,
Iwona
Bukowska-O´sko
a,∗aDepartmentofImmunopathologyofInfectiousandParasiticDiseases,WarsawMedicalUniversity,3CPawinskiegoStreet,02-106Warsaw,Poland bPostgraduateSchoolofMolecularMedicine,61 ˙ZwirkiiWiguryStreet,02-091Warsaw,Poland
cDepartmentofInfectionMetagenomics,GenomeInformationResearchCenter,ResearchInstituteforMicrobialDiseases,OsakaUniversity3-1Yamadaoka, Suita-City,Osaka,Japan
dDepartmentofClinicalScience,UniversityofBergen,5021Bergen,Norway eMunicipalHospitalforInfectiousDiseases,37WolskaStreet,01-201Warsaw,Poland
fDepartmentofGenetics,InstituteofPhysiologyandPathologyofHearing,Mochnackiego10,02-042Warsaw,Poland gDepartmentofNeurology,MilitaryInstituteofMedicine,128SzaserówStreet,04-141Warsaw,Poland
Articlehistory:
Received18May2015 Receivedinrevisedform 24September2015 Accepted24September2015 Availableonline28September2015
Keywords:
Encephalitis
Next-generationsequencing Unknownetiology
a
b
s
t
r
a
c
t
Background:Encephalitisisasevereneurologicalsyndromeusuallycausedbyviruses.Despitesignificant progressindiagnostictechniques,thecausativeagentremainsunidentifiedinthemajorityofcases.The aimofthepresentstudywastotestanalternativeapproachforthedetectionofputativepathogensin encephalitisusingnext-generationsequencing(NGS).
Methods:RNAwas extractedfrom cerebrospinalfluid(CSF)from a60-year-oldmale patient with encephalitisandsubjectedtoisothermallinearnucleicacidamplification(Ribo-SPIA,NuGen)followed bynext-generationsequencingusingMiSeq(Illumina)systemandmetagenomicsdataanalysis. Results:Thesequencingrunyielded1,578,856readsoveralland2579readsmatchedhumanherpesvirus I(HHV-1)genome;thepresenceofthispathogeninCSFwasconfirmedbyspecificPCR.Insubsequent experimentswe foundthattheDNAseI treatment,whileloweringthebackgroundofhost-derived sequences,loweredthenumberofdetectableHHV-1sequencesbyafactorof4.Furthermore,wefound thattheroutineextractionoftotalRNAbytheChomczynskimethodcouldbeusedforidentificationof bothDNAandRNApathogensintypicalclinicalsettings,asitresultsinretentionofasignificantamount ofDNA.
Conclusion:Insummary,itseemsthatNGSprecededbynucleicacidamplificationcouldsupplement currentlyuseddiagnosticmethodsinencephalitis.
©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Abbreviations:NGS,next-generationsequencing;CSF,cerebrospinalfluid; HHV-1,humanherpesvirus1.
∗Correspondingauthor.
E-mailaddresses:[email protected]
(K.Perlejewski),[email protected](M.Popiel),[email protected]
(T.Laskus),[email protected](S.Nakamura),
[email protected](D.Motooka),[email protected]
(T.Stokowy),[email protected](D.Lipowski),
[email protected](A.Pollak),[email protected]
(U.Lechowicz),[email protected](K.CaraballoCortés),[email protected]
(A.St ˛epie ´n),[email protected](M.Radkowski),
[email protected](I.Bukowska-O´sko).
Encephalitisisasevereneurologicalsyndrome,whichmaybe causedbyvirusesaswellasbacteria,fungiandparasites(Chaudhuri and Kennedy, 2002; Glaser et al., 2006; Solomon et al., 2007). Diagnosticproceduresincludeserologicaltestingforspecific anti-bodiesinbloodandcerebrospinalfluid(CSF),detectionofcausative pathogensbymolecularmethodsinCSFandblood,andoccasionally evenpathogenculture(Solomonetal.,2007).Correctdiagnosisis facilitatedbyepidemiologicaldataandclinicalsymptoms,routine CSFanalysisandneuroimagingstudies(ChaudhuriandKennedy, 2002; Solomon etal., 2007).Surprisingly, ina largeproportion http://dx.doi.org/10.1016/j.jviromet.2015.09.010
0166-0934/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4. 0/).
ofcasestheexactetiologyofencephalitisremainsunknown.For example,TheCalifornianEncephalitisProject,whichincluded1570 patients,failedtoidentifycauseofencephalitisin63%ofpatients (Glaser et al., 2006), while in a French study the etiology of encephalitis remainedunknownin 80% of cases (Mailles et al., 2007).However,identificationofcausativeagentsiscrucialforthe correctdiagnosisandmaybenecessaryforthetimelyintroduction ofspecifictreatment(Studahletal.,2013).
Thehighrateof caseswithunclearetiology ispartly dueto thelimitedsensitivityandspecificityofcurrentlyused diagnos-ticassays,butalsotothesuboptimaltimeofsamplecollection, sinceviralpathogensmaybedetectableonlytransiently(Glaser et al., 2006; Studahl et al., 2013). Moreover, a large and still expandingnumberofpathogensreportedtobecapableofcausing encephalitismakesspecificdiagnosischallengingduetothesheer scopeofrequiredtesting(Kennedy,2005).Arecentlydeveloped next-generation sequencing (NGS) technique offers a potential breakthroughinthediagnosticprocessofencephalitisby eliminat-ingtheneedfortestingofindividualpathogens.High-throughput sequencinghasalreadyestablishedafirmfootholdintheareaof microbiologyasithasbeensuccessfullyemployedforpathogen detection(including novelmicroorganisms), analysisof genetic evolutionanddiversity,aswellasforthedeterminationofdrug resistance(Radfordetal.,2012).Theaimofthepresentstudywasto determinethevalueofNGSindetectingputativecausativeagent(s) inCSFinencephalitis.
For this purposeCSF from60-year-old male withsuspected encephalitis,admitted tothehospital witha 1-weekhistory of fever,drowsinessandsevereheadacheswasused.Thesesymptoms wereprecededbyamildcold.Atthetimeofadmissionthepatient wascomatosewithpositivemenigealsignsandhistemperature was38.5◦C. Analysisof CSF revealed480leukocytes/mm3 (90%
lymphocytes),proteinlevelof3.21g/l(normalvalue:0.12–0.60g/l), andglucosevalueof2.32mmol/l(normalvalue:2.20–4.40mmol/l). Theperipheralbloodleukocytecountwas6900/mm3with66.7%
neutrophilsand22.2%lymphocytes.SerumandCSFsamples col-lectedatadmissionwere negativefor thepresenceof IgM and IgGantibodiestohumanherpesvirus(NovaLisaHSV1/HSV2/HSV 1+2IgG/IgMELISA;NovaTecImmundiagnosticaGmBH, Dietzen-bach,Germany).However,bothanti-HHV-1IgMandanti-HHV-1 IgGweredetectedinsubsequentCSFsamplescollectedat1.5,3and 5months.Magneticresonanceimaging(MRI)atadmissionshowed hyperintensityintherighttemporallobe.Patientwastreatedwith Acyclovir(ZoviraxIV)for15daysandfullyrecoveredwithno resid-ualneurologicalsequelae.PCRforHSV-1/2wasnotperformedat admission,asitwasnotapartofroutinediagnosticsinPolandat thattime,andouranalysiswasdoneretrospectively.
TotalRNAwasisolatedfrom1mlof CSFcollectedat admis-sionusingthemodifiedChomczynskimethod(TRIZOLLSReagent; LifeTechnologies,Carlsbad,USA)andsplitintotwoaliquots,one ofwhich (sampleSDNase)wastreated withDNaseI (DNA-free DNA Removal Kit; Invitrogen, Waltham, USA) at a concentra-tionof2U/lfor20minin 37◦C ina finalvolumeof100lto reducetheamountofDNApresent.Theotheraliquotremained DNaseuntreated(sampleS1).Controlsamplesincluded HCV-RNA-positiveserum sampleadjusted tocontain100viralcopies per reaction(sampleC-HCV)andthreeHHV-1-negativeCSFsamples (samplesC1–C3;Table1).
ThequantityofRNA extractedfromCSF wassmall andwas belowthesensitivitylimitsofDeNovixDS-11Spectrophotometer (DeNovix,Wilmington,USA;sensitivity≥2ng/l)andQubit Fluo-rimeter(ThermoScientific,Waltham,USA;sensitivity≥250pg/l). Both CSF samples (S1 and SDNAse) and all control sam-plesunderwent reversetranscription followedby single-primer isothermalamplification(Ribo-SPIA),usingcommerciallyavailable kit(OvationRNA-SeqV2 system(NuGEN,SanCarlos, USA).The
protocolcloselyfollowedmanufacturer’srecommendations.The resultingamplifieddscDNAwaspurifiedusingAgencourtAMPure XPbeads(BeckmanCoulter,Pasadena,USA).
Librariesfor NGSwerepreparedfrom1ngofdscDNAusing NexteraXTKit(Illumina,SanDiego,USA)followingmanufacturer’s protocol. First, cDNA was fragmented using transposon-based method followed by addition of indexes by PCR. The resulting PCRproductswerepurifiedwith1.8volumesofAMPureXPbeads (BeckmanCoulter,Pasadena,USA).Thequalityandaveragelength ofsequencelibraryforeachsamplewasassessedusingBioanalyzer (AgilentTechnologies,SantaClara,USA)andeithertheDNA1000or DNAHSkit,dependingonsampleconcentration.Theindexed sam-pleswerepooledequimolarilyandsequencedonIlluminaMiSeq (150nt,paired-endreads)incaseofsamplesS1,SDNase,C-HCVand onIlluminaHiSeq(101nt,paired-endreads);incaseofsamples C1–C3.
Raw reads were trimmed by the following procedures: (i) removingadaptorsequencesusingcutadapt-1.2.1(Martin,2011), (ii)removingartifactsequencesusingfastxartifactsfilter(http:// hannonlab.cshl.edu/fastxtoolkit/index.html,2015),and(iii) trim-ming bases with quality below Q20 (phred quality score) from 3 end of each read and removing reads shorter than 50bp using fastqqualitytrimmer (http://hannonlab.cshl.edu/ fastxtoolkit/index.html, 2015). Trimmed sequences were then mappedontothehumanreferencesequence(hg19)withthe map-pingsoftwareStampy(LunterandGoodson,2011).Theunmapped sequencesweresubjectedtosimilaritysearchusingtheprogram blastn(Altschuletal.,1990)againstthewholeunfilteredNCBI-nt databasewithe-valuecutoffof1e−5.Thetaxonomicinformationof eachsequencewasassignedandtherelativeabundanceofdetected organismswassummarizedbytextminingofblastnoutputfiles usingBioRuby(Gotoetal.,2010)scripts.
TheinitialsequencingrunincludedsamplesS1,SDNase,C-HCV andyielded4,529,322readsaltogether.Aftertrimming,therewere 1,190,455readsforsampleS1(noDNasetreatment)and1,030,284 readsfor sampleSDNase (treatedwithDNaseI). Sequencingof HepatitisCVirus(HCV)positivecontrol(sampleC-HCV)provided 1,184,251reads(Table1).Humansequenceswerethemost abun-dant(43.913–99.506%ofallsequences;Table1).Viralsequences represented0.07–0.246%ofreadsandthemostfrequentamong themcorrespondedtoHHV-1(99.8%ofallviralsequencesinsample S1and86.6%insampleSDNase).InthecontrolHCVRNA-positive sample99.8%ofviralreadswerepositivelyalignedtoHCVgenome (Table2).Fig.1showsthecoverageplotofdetectedHHV-1and HCVsequenceswithrespecttoreferencegenomes.Importantly,the DNaseItreatment,whileloweringthebackgroundofhost-derived sequencesfrom98.2%to43.9%,atthesametimeloweredthe num-berofdetectableHHV-1sequencesbyafactorof4(from2579to 629sequences).
ControlCSFsamplesC1–C3wereanalyzedin aseparaterun yieldingatotalof107,219,264reads.Aftertrimming,therewere 37,516,857readsforsampleC1,35,638,335readsforsampleC2 and34,064,072readsforsampleC3.Themetagenomicapproach didnotdetectanyHSV-1sequencesinanyofthesethreesamples. TheresultsofNGSsequencingandthemostfrequentlyidentified species/familiesarepresentedinTables1and2.
The presence of HHV-1 in CSF of the analyzed patient was confirmed by specific PCR (Fig. 2) performed as follows. Human herpesvirus 1 (HHV-1) DNA was isolated from cere-brospinal fluid (200l) using QIAamp DNA Mini Kit (Qiagen, Venlo,Netherlands),thenelutedin5lofwater(Water Molec-ular Biology Reagen; Sigma–Aldrich,Saint Louis, USA) and the HHV specific PCR was performed using primers specific for bothHHV-1andHHV-2(5-TTGAAGCGGTCGGCGGCGTA-3and5 -GCATCGTCGAGGAGGTGGA-3) resulting in 148bp amplification product(54836nt–54983nt;[GenBank:NC001806.1]). Extracted
Table1
Next-generationsequencing(NGS)ofCSFfrompatientwithHHV-1encephalitisandfromHHV-1-negativecontrols.SequenceswerecomparedtotheNCBI-ntdatabase.
Age/gender 60/male 56/female 20/female 43/female
Diagnosis HHV-1encephalitis Encephalitisof
unknown etiology Encephalitisof unknown etiology Multiple sclerosis Sample S1 SDNase C1 C2 C3 C-HCV Totalreads 1,578,856 1,427,356 37,516,857 35,638,335 34,064,072 1,523,110
Readsaftertrimming 1,190,455 1,030,284 375,168,57 35,638,335 34,064,072 1,184,251
Human 1,169,244(98.218%) 452,428(43.913%) 36,061,952 (96.122%) 35,374,962 (99.261%) 32,616,258 (95.750%) 1,178,397(99.506%) Viral 2583(0.217%) 726(0.070%) 52,226 (0.139%) 71,493 (0.201%) 140,890 (0.414%) 2916(0.246%) Bacterial 5112(0.429%) 242,633(23.550%) 830,811 (2.215%) 120,107 (0.337%) 668,362 (1.962%) 1142(0.096%) Fungal 251(0.021%) 2591(0.251%) 45,550 (0.121%) 3190(0.009%) 78,112 (0.229%) 32(0.003%) Protozoan 22(0.002%) 795(0.077%) 6386(0.017%) 1100(0.003%) 16,298 (0.048%) 13(0.001%) Othera 12,018(1.010%) 315,615(30.634%) 428,866 (1.143%) 36,106 (0.104%) 468,183 (1.374%) 1015(0.086%) Nomatch 1225(0.103%) 15,496(1.504%) 91,066 (0.243%) 31,377 (0.088%) 75,969 (0.223%) 736(0.062%)
S1,noDNaseItreatment;SDNase,treatedwithDNaseI;C,HCV-RNApositiveserum. SamplesC1–C3werenegativeforHHV-1byPCR.
aSequencesrelatedtoplants,plantviruses,syntheticconstructs.
Table2
Themostfrequentlyidentifiedspecies/familiesincerebrospinalfluidfromapatientwithHHV-1encephalitisandcontrols.
Viruses Bacteriaa Fungia Protozoa
S1 Human herpesvirus1 (2579) InfluenzaC virus(3) HepatitisC virus(1) Moraxellaceae(871) Micrococcaceae(554) Corynebacteriaceae(321) Propionibacteriaceae(204) Gordoniaceae(206) Pyrenophorateres(151) Pyrenophoratritici-repentis(29) Malasseziasympodialis(14) Malasseziaglobosa(10) Debaryomyceshansenii(7) – SDNase Human herpesvirus1 (629) InfluenzaC virus(55) HepatitisC virus(39) Moraxellaceae(37,130) Staphylococcaceae(35,753) Micrococcaceae(48,011) Corynebacteriaceae(19,993) Neisseriaceae(8240) Unculturedfungus(519) UnculturedCryptococcus(206) UnculturedRhodotorula(180) Malasseziasympodialis(142) Malasseziaglobosa(147) Albugolaibachii(441) Besnoitiabesnoiti(89) Trypanoplasmaborreli(83) Ichthyophthiriusmultifiliis (75) C1 – Corynebacteriaceae(2,75,825) Staphylococcaceae(93,611) Micrococcaceae(73,191) Moraxellaceae(51,378) Sphingobacteriaceae(29,855) Unculturedfungus(10,062) Pseudogymnoascusdestructans (1199) Melampsoralarici-populina (995) Leucosporidiumsp.AY30(787) Unculturedsoilfungus(786)
Nannochloropsisoceanica (1549) Albugolaibachii(401) Amphifilidaesp.H-1(373) Babesiadivergens(371) Exocolpodaaugustini(324) C2 – Burkholderiaceae(40,597) Sphingobacteriaceae(30,089) Streptococcaceae(5702) Bradyrhizobiaceae(4649) Enterobacteriaceae(4546) Unculturedfungus(551) Geotrichumklebahnii(250) Malasseziaglobosa(225) Dipodascustetrasporeus(132) Mortierellaalpina(82) Nannochloropsisoceanica (3204) Plasmodiumovale(1201) Albugolaibachii(964) Babesiadivergens(549) Plasmodiuminui(312) C3 – Moraxellaceae(94,524) Enterobacteriaceae(67,339) Corynebacteriaceae(59,747) Micrococcaceae(48,846) Bradyrhizobiaceae(47,559) Unculturedfungus(12,841) Triposporiumcycadicola(4346) Mollisinauncinata(3997) Pseudogymnoascusdestructans (2790) Melampsoralarici-populina (2465) Nannochloropsisoceanica (2468) Albugolaibachii(2274) Plasmodiuminui(2075) Eunotiasp.ECR-2014 (1780) Plasmodiumvinckei(588) C-HCV HepatitisC virus(2905) InfluenzaC virus(3) Moraxellaceae(197) Micrococcaceae(166) Propionibacteriaceae(67) Streptococcaceae(66) Comamonadaceae(62) Debaryomyceshansenii(19) Staninwardiasuttonii(2) Malasseziasympodialis(2) Leptosphaeriamaculans(2) Entylomacalendulae(2) –
S1,noDNaseItreatment;SDNase,treatedwithDNaseI;C-HCV,HCV-RNApositiveserum;C1andC2,CSFofpatientswithencephalitisofunknownetiology;C3,CSFofpatient withmultiplesclerosis.
SamplesC1–C3werenegativeforHHV-1byPCR.
Thenumbersofsequencesrepresentingeachspecies/familyareshowninbrackets.
Fig.1.CoverageplotofHHV-1andHCVgenomes.SequencingreadsfromsamplesS1andSDNaseweremappedtothereferencegenomeofHHV-1(GenBankaccession numberAB618031)andcontrolsampleC-HCVwasmappedtoHCVgenome(GenBankaccessionnumberEF407475).
Fig.2.PCRdetectionofhumanherpesvirustype1(HHV-1).Lane:1,CSFsample drawnatadmission;2,positivecontrol(400targetcopiesofHHV-1DNAfrom HHV-1infectedVerocells3,negativecontrolconsistingofwater;M,GeneRuler50bpDNA Ladder(Feremntas,ThermoScientific,Waltham,USA;50bp).Expectedproductsize was148bp.
DNA(38l)wasmixedwith5lof10×buffer(LifeTechnologies, Carlsbad,USA), 2lof PCR primers(10M),2lof 50×dNTP (10mM),5lof25mMMgCl2(LifeTechnologies,Carlsbad,USA)
and2.5UofTaqPolymerase(LifeTechnologies,Carlsbad,USA)in
finalvolumeof50l.Aftertheinitial5mindenaturationin94◦C,50 cyclesof94◦Cfor30sand68◦Cfor30swererunusing thermocy-cler9700AppliedBiosystem(AppliedBiosystem,LifeTechnologies, Carlsbad,USA).PCRproductswereanalyzedbyelectrophoresisin 2%agarose.DetectionlimitofourPCRwas≥44viralcopiesper reac-tion.PCRsensitivitywasdeterminedusingserialdilutionsofDNA extractedfromHHV-1infectedVerocellculture(VirusIsolationand ReferenceServiceLaboratory,NewYorkStateHealthDepartment). InthepresentstudyweunexpectedlydetectedHHV-1,whichis aDNAvirus,whileanalyzingCSFsamplesubjectedtoRNA extrac-tionbythemostwidelyusedChmoczynskimethodfollowedby RNAamplification.Thisfindingcouldhavebeentheresultofviral mRNAdetection,oralternatively,a substantialquantityofDNA couldhavebeenretainedafterRNAextraction,thusallowingfor thedetectionofbothRNAandDNAsequences.Toverifythelatter possibility,serial10-folddilutionsofplasmidtemplate (pCR2.1-TOPO,Invitrogen, Waltham, USA) werespikedinto CSF sample fromanuninfectedpatientandsubjectedtoparallelRNAandDNA extractions(TRIZOLLSReagent,LifeTechnologiesandQIAampDNA MiniKit,Qiagen,Venlo,Netherlands).Geneticmaterialextracted fromeachsamplewassubjectedtoreal-timePCR(10min dena-turationin95◦Cfollowedby55cyclesof95◦Cfor10sand50◦C for 15s) using LightCycler FastStart DNA Master SYBR Green I (RocheMolecularDiagnostics,Basel,Switzerland)andprimers(5 -GTAAAACGACGGCCAG-3;5-CAGGAAACAGCTATGAC-3)resulting in 202bp amplificationproduct. As seenin Fig. 3, RNA extrac-tionretainedasignificantamountofDNAwhichwassufficientfor
Fig.3.Real-timePCRdetectionofserial10-folddilutionsofplasmidtemplate(pCR2.1-TOPO;Invitrogen,Waltham,USA)spikedintoCSFfromanuninfectedpatient.Samples wereeitherextractedforDNA(D),orRNA(R).Samples1,2,3,4contained103,104,105and106plasmidcopiesperreaction,respectively.
real-timePCRdetectionof≥103plasmidcopies.Surprisingly,for
awiderangeofplasmidconcentrationstested(103,104,105and
106perreaction)theRNAextractionresultedinonly1.6–3.1fold
sensitivitydecreasewhencomparedtoDNAextraction.
Determiningtheetiologyofencephalitisremainschallenging inclinicalpractice,partlydue tothesheer numberofpotential pathogens.Sofarover100viruseswerereportedtobecapable ofcausingencephalitis,andthisnumberisstillgrowing(Debiasi andTyler,2004).Theresultsofsomerecentstudiesindicatethat high-throughputsequencingcouldbesuccessfullyusedtoidentify causativepathogensinpatientswithcentralnervoussystem infec-tions.Forexample,Chanetal.(2014)identifiedmeaslesvirusand HHV-1infrozenbraintissuesamplesusingIlluminaHiSeq2000, whereasTanleetal.(2013)usedFLXgenomesequencer(454Life Science,Roche)andWilsonetal.(2014)usedIlluminaMiSeqto detectCyclovirusand LeptospirasanatarosainCSF,respectively. Moreover,NGSbasedapproachesenableidentificationofallagents inasinglerun,regardlesswhethertheirsequenceisknown,ornot (Bigetal.,2009;Dupuisetal.,2011;Glaseretal.,2006;Quanetal., 2010).
Ourapproach,whichemployedNuGenRibo-SPIAfollowedby NGSandmetagenomicdataanalysis,ledtotheidentificationof HHV-1inCSFfromapatientwithacuteencephalitisatatimewhen specificantibodiescouldnot yetbedetected.Subsequently,the etiologyofencephalitiswasconfirmedbyspecificPCRaswellas HHV-1seroconversioninthefollowupCSFsamples.
Host-derived geneticmaterial is commonlypresent in clini-calsamplesandpresentsamajorchallengeforNGSanalysis(Lim etal.,2013).Acommonlyusedmethodtoreducehumangenetic backgroundisDNaseItreatmentofthesamples(Allanderetal., 2001).Whilewefoundthatthisapproachwouldresultinmore thantwofolddecreaseinthenumberofhost-derivedsequences,it significantly(30–50fold)increasedthenumberofbacterialand “other” sequences probably becauseof diminishedcompetition fromhumanDNA.Notunexpectedly,theuseofDNaseIresulted alsointhereductionofHHV-1sequences.
Interestingly,samplesprovidedasignificantnumberofbacterial readsandsequencesclassifiedasother(plants,plantviruses).This problemwaspreviouslyreportedforotherNGSstudies(Bzhalava etal.,2012;Salteretal.,2014).Bacterialcontaminationisoften foundinexistinghuman-derivedRNAsequencedatasetsandwill remainanimportantissueforfutureNGSdiagnosticapplication (Laurenceetal.,2014;Strongetal.,2014).ThepresenceofHCV
sequencesinanalyzedCSFsampleswasmostlikelytheresultof indexmis-assigninIlluminasequencing(Kircheretal.,2012)and thesecondindependentrunwiththreeHHV-1negativecontrolCSF samplesrevealedneitherHCVnorHHV-1sequences.Intriguing, samplesfromthefirstruncontainedasmallnumberofinfluenzaC sequences,whichraisesthequestionoftheirorigin.However,the analysiswasconductedonthepeakoffluseason(endofFebruary) anditiscurrentlyalmostimpossibletocompletelyeliminate envi-ronmentalcontaminantsduringlibrarypreparation processand mis-assignedreadsfromothersamples.
Surprisingly,wedetectedHHV-1geneticmaterialinCSFwhich wasextractedforRNAandsimilaroccurrencehasbeenreported by Chan et al. (2014).Modified acid guanidinium thiocyanate-phenol-chloroformRNAextractionisknowntogenerategenomic DNAcontaminants(SiebertandChenchik,1993)andinourstudy significantDNApresenceafterRNAextractionwasconfirmedby quantitativeanalysisofplasmidtemplate.
Inconclusions,itseemsthatNGS,whennecessaryprecededby unspecificnucleicacidamplification,couldsupplementcurrently used diagnostic methods for the determination of encephalitis etiology.However,duetocommonindexmis-assignmentand con-taminationwithreagents-derivednucleicacids,thepresenceofany identifiedpathogenshouldbeverifiedbyPCRorculture.Wealso foundthatextractionoftotalRNAcouldbeusedforthe identifica-tionofbothDNAandRNApathogensinasinglerun.
Acknowledgment
ThisstudywassupportedbyFoundationforPolishScience,grant No.POMOST/2013-7/2andPolishNationalScienceCenter(NCN), grantNo.N/N401/646940.
References
Allander,T.,Emerson,S.U.,Engle,R.E.,Purcell,R.H.,Bukh,J.,2001.Avirusdiscovery methodincorporatingDNasetreatmentanditsapplicationtothe
identificationoftwobovineparvovirusspecies.Proc.Natl.Acad.Sci.U.S.A.98, 11609–11614.
Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W.,Lipman,D.J.,1990.Basiclocal alignmentsearchtool.J.Mol.Biol.215,403–410.
Big,C.,Reineck,L.A.,Aronoff,D.M.,2009.Viralinfectionsofthecentralnervous system:acase-basedreview.Clin.Med.Res.7,142–146.
Bzhalava,D.,Ekstrom,J.,Lysholm,F.,Hultin,E.,Faust,H.,Persson,B.,Lehtinen,M., deVilliers,E.M.,Dillner,J.,2012.PhylogeneticallydiverseTTvirusviremia amongpregnantwomen.Virology432,427–434.
Chan,B.K.,Wilson,T.,Fischer,K.F.,Kriesel,J.D.,2014.Deepsequencingtoidentify thecausesofviralencephalitis.PLOSONE9,e93993.
Chaudhuri,A.,Kennedy,P.G.,2002.Diagnosisandtreatmentofviralencephalitis. Postgrad.Med.J.78,575–583.
Debiasi,R.L.,Tyler,K.L.,2004.Molecularmethodsfordiagnosisofviral encephalitis.Clin.Microbiol.Rev.17,903–925,tableofcontents.
Dupuis,M.,Hull,R.,Wang,H.,Nattanmai,S.,Glasheen,B.,Fusco,H.,Dzigua,L., Markey,K.,Tavakoli,N.P.,2011.Moleculardetectionofviralcausesof encephalitisandmeningitisinNewYorkState.J.Med.Virol.83,2172–2181.
Glaser,C.A.,Honarmand,S.,Anderson,L.J.,Schnurr,D.P.,Forghani,B.,Cossen,C.K., Schuster,F.L.,Christie,L.J.,Tureen,J.H.,2006.Beyondviruses:clinicalprofiles andetiologiesassociatedwithencephalitis.Clin.Infect.Dis.43,1565– 1577.
Goto,N.,Prins,P.,Nakao,M.,Bonnal,R.,Aerts,J.,Katayama,T.,2010.BioRuby: bioinformaticssoftwarefortheRubyprogramminglanguage.Bioinformatics 26,2617–2619,http://hannonlab.cshl.edu/fastxtoolkit/index.html,2015, FASTX-Toolkit.
Kennedy,P.G.,2005.Viralencephalitis.J.Neurol.252,268–272.
Kircher,M.,Sawyer,S.,Meyer,M.,2012.Doubleindexingovercomesinaccuracies inmultiplexsequencingontheIlluminaplatform.NucleicAcidsRes.40,e3.
Laurence,M.,Hatzis,C.,Brash,D.E.,2014.Commoncontaminantsin next-generationsequencingthathinderdiscoveryoflow-abundance microbes.PLOSONE9,e97876.
Lim,Y.W.,Schmieder,R.,Haynes,M.,Willner,D.,Furlan,M.,Youle,M.,Abbott,K., Edwards,R.,Evangelista,J.,Conrad,D.,Rohwer,F.,2013.Metagenomicsand metatranscriptomics:windowsonCF-associatedviralandmicrobial communities.J.Cyst.Fibros.12,154–164.
Lunter,G.,Goodson,M.,2011.Stampy:astatisticalalgorithmforsensitiveandfast mappingofIlluminasequencereads.GenomeRes.21,936–939.
Mailles,A.,Vaillant,V.,Stahl,J.P.,2007.InfectiousencephalitisinFrancefrom2000 to2002:thehospitaldatabaseisavaluablebutlimitedsourceofinformation forepidemiologicalstudies.Med.Mal.Infect.37,95–102.
Martin,M.,2011.Cutadaptremovesadaptersequencesfromhigh-throughput sequencingreads.EMBnetJ.(NorthAmerica),17.
Quan,P.L.,Wagner,T.A.,Briese,T.,Torgerson,T.R.,Hornig,M.,Tashmukhamedova, A.,Firth,C.,Palacios,G.,Baisre-De-Leon,A.,Paddock,C.D.,Hutchison,S.K.,
Egholm,M.,Zaki,S.R.,Goldman,J.E.,Ochs,H.D.,Lipkin,W.I.,2010.Astrovirus encephalitisinboywithX-linkedagammaglobulinemia.Emerg.Infect.Dis.16, 918–925.
Radford,A.D.,Chapman,D.,Dixon,L.,Chantrey,J.,Darby,A.C.,Hall,N.,2012.
Applicationofnext-generationsequencingtechnologiesinvirology.J.Gen. Virol.93,1853–1868.
Salter,S.J.,Cox,M.J.,Turek,E.M.,Calus,S.T.,Cookson,W.O.,Moffatt,M.F.,Turner,P., Parkhill,J.,Loman,N.J.,Walker,A.W.,2014.Reagentandlaboratory
contaminationcancriticallyimpactsequence-basedmicrobiomeanalyses. BMCBiol.12,87.
Siebert,P.D.,Chenchik,A.,1993.Modifiedacidguanidinium
thiocyanate-phenol-chloroformRNAextractionmethodwhichgreatlyreduces DNAcontamination.NucleicAcidsRes.21,2019–2020.
Solomon,T.,Hart,I.J.,Beeching,N.J.,2007.Viralencephalitis:aclinician’sguide. Pract.Neurol.7,288–305.
Strong,M.J.,Xu,G.,Morici,L.,SplinterBon-Durant,S.,Baddoo,M.,Lin,Z.,Fewell,C., Taylor,C.M.,Flemington,E.K.,2014.Microbialcontaminationinnext generationsequencing:implicationsforsequence-basedanalysisofclinical samples.PLoSPathog.10,e1004437.
Studahl,M.,Lindquist,L.,Eriksson,B.M.,Gunther,G.,Bengner,M.,Franzen-Rohl,E., Fohlman,J.,Bergstrom,T.,Aurelius,E.,2013.Acuteviralinfectionsofthe centralnervoussysteminimmunocompetentadults:diagnosisand management.Drugs73,131–158.
Tanle,V.,vanDoorn,H.R.,Nghia,H.D.,Chau,T.T.,Tule,T.P.,deVries,M.,Canuti,M., Deijs,M.,Jebbink,M.F.,Baker,S.,Bryant,J.E.,Tham,N.T.,Boni,N.T.B.K.M.F.,Loi, T.Q.,Phuongle,T.,Verhoeven,J.T.,Crusat,M.,Jeeninga,R.E.,Schultsz,C.,Chau, N.V.,Hien,T.T.,vanderHoek,L.,Farrar,J.,deJong,M.D.,2013.Identificationof anewcyclovirusincerebrospinalfluidofpatientswithacutecentralnervous systeminfections.mBio4,e00231–e313.
Wilson,M.R.,Naccache,S.N.,Samayoa,E.,Biagtan,M.,Bashir,H.,Yu,G.,Salamat, S.M.,Somasekar,S.,Federman,S.,Miller,S.,Sokolic,R.,Garabedian,E.,Candotti, F.,Buckley,R.H.,Reed,K.D.,Meyer,T.L.,Seroogy,C.M.,Galloway,R.,Henderson, S.L.,Gern,J.E.,DeRisi,J.L.,Chiu,C.Y.,2014.Actionablediagnosisof
neuroleptospirosisbynext-generationsequencing.N.Engl.J.Med.370, 2408–2417.