• No results found

Next-generation sequencing (NGS) in the identification of encephalitis-causing viruses: Unexpected detection of human herpesvirus 1 while searching for RNA pathogens

N/A
N/A
Protected

Academic year: 2021

Share "Next-generation sequencing (NGS) in the identification of encephalitis-causing viruses: Unexpected detection of human herpesvirus 1 while searching for RNA pathogens"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Journal

of

Virological

Methods

jou rn al h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / j v i r o m e t

Short

communication

Next-generation

sequencing

(NGS)

in

the

identification

of

encephalitis-causing

viruses:

Unexpected

detection

of

human

herpesvirus

1

while

searching

for

RNA

pathogens

Karol

Perlejewski

a

,

Marta

Popiel

a,b

,

Tomasz

Laskus

a

,

Shota

Nakamura

c

,

Daisuke

Motooka

c

,

Tomasz

Stokowy

d

,

Dariusz

Lipowski

e

,

Agnieszka

Pollak

f

,

Urszula

Lechowicz

f

,

Kamila

Caraballo

Cortés

a

,

Adam

St ˛epie ´n

g

,

Marek

Radkowski

a

,

Iwona

Bukowska-O´sko

a,∗

aDepartmentofImmunopathologyofInfectiousandParasiticDiseases,WarsawMedicalUniversity,3CPawinskiegoStreet,02-106Warsaw,Poland bPostgraduateSchoolofMolecularMedicine,61 ˙ZwirkiiWiguryStreet,02-091Warsaw,Poland

cDepartmentofInfectionMetagenomics,GenomeInformationResearchCenter,ResearchInstituteforMicrobialDiseases,OsakaUniversity3-1Yamadaoka, Suita-City,Osaka,Japan

dDepartmentofClinicalScience,UniversityofBergen,5021Bergen,Norway eMunicipalHospitalforInfectiousDiseases,37WolskaStreet,01-201Warsaw,Poland

fDepartmentofGenetics,InstituteofPhysiologyandPathologyofHearing,Mochnackiego10,02-042Warsaw,Poland gDepartmentofNeurology,MilitaryInstituteofMedicine,128SzaserówStreet,04-141Warsaw,Poland

Articlehistory:

Received18May2015 Receivedinrevisedform 24September2015 Accepted24September2015 Availableonline28September2015

Keywords:

Encephalitis

Next-generationsequencing Unknownetiology

a

b

s

t

r

a

c

t

Background:Encephalitisisasevereneurologicalsyndromeusuallycausedbyviruses.Despitesignificant progressindiagnostictechniques,thecausativeagentremainsunidentifiedinthemajorityofcases.The aimofthepresentstudywastotestanalternativeapproachforthedetectionofputativepathogensin encephalitisusingnext-generationsequencing(NGS).

Methods:RNAwas extractedfrom cerebrospinalfluid(CSF)from a60-year-oldmale patient with encephalitisandsubjectedtoisothermallinearnucleicacidamplification(Ribo-SPIA,NuGen)followed bynext-generationsequencingusingMiSeq(Illumina)systemandmetagenomicsdataanalysis. Results:Thesequencingrunyielded1,578,856readsoveralland2579readsmatchedhumanherpesvirus I(HHV-1)genome;thepresenceofthispathogeninCSFwasconfirmedbyspecificPCR.Insubsequent experimentswe foundthattheDNAseI treatment,whileloweringthebackgroundofhost-derived sequences,loweredthenumberofdetectableHHV-1sequencesbyafactorof4.Furthermore,wefound thattheroutineextractionoftotalRNAbytheChomczynskimethodcouldbeusedforidentificationof bothDNAandRNApathogensintypicalclinicalsettings,asitresultsinretentionofasignificantamount ofDNA.

Conclusion:Insummary,itseemsthatNGSprecededbynucleicacidamplificationcouldsupplement currentlyuseddiagnosticmethodsinencephalitis.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations:NGS,next-generationsequencing;CSF,cerebrospinalfluid; HHV-1,humanherpesvirus1.

Correspondingauthor.

E-mailaddresses:[email protected]

(K.Perlejewski),[email protected](M.Popiel),[email protected]

(T.Laskus),[email protected](S.Nakamura),

[email protected](D.Motooka),[email protected]

(T.Stokowy),[email protected](D.Lipowski),

[email protected](A.Pollak),[email protected]

(U.Lechowicz),[email protected](K.CaraballoCortés),[email protected]

(A.St ˛epie ´n),[email protected](M.Radkowski),

[email protected](I.Bukowska-O´sko).

Encephalitisisasevereneurologicalsyndrome,whichmaybe causedbyvirusesaswellasbacteria,fungiandparasites(Chaudhuri and Kennedy, 2002; Glaser et al., 2006; Solomon et al., 2007). Diagnosticproceduresincludeserologicaltestingforspecific anti-bodiesinbloodandcerebrospinalfluid(CSF),detectionofcausative pathogensbymolecularmethodsinCSFandblood,andoccasionally evenpathogenculture(Solomonetal.,2007).Correctdiagnosisis facilitatedbyepidemiologicaldataandclinicalsymptoms,routine CSFanalysisandneuroimagingstudies(ChaudhuriandKennedy, 2002; Solomon etal., 2007).Surprisingly, ina largeproportion http://dx.doi.org/10.1016/j.jviromet.2015.09.010

0166-0934/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4. 0/).

(2)

ofcasestheexactetiologyofencephalitisremainsunknown.For example,TheCalifornianEncephalitisProject,whichincluded1570 patients,failedtoidentifycauseofencephalitisin63%ofpatients (Glaser et al., 2006), while in a French study the etiology of encephalitis remainedunknownin 80% of cases (Mailles et al., 2007).However,identificationofcausativeagentsiscrucialforthe correctdiagnosisandmaybenecessaryforthetimelyintroduction ofspecifictreatment(Studahletal.,2013).

Thehighrateof caseswithunclearetiology ispartly dueto thelimitedsensitivityandspecificityofcurrentlyused diagnos-ticassays,butalsotothesuboptimaltimeofsamplecollection, sinceviralpathogensmaybedetectableonlytransiently(Glaser et al., 2006; Studahl et al., 2013). Moreover, a large and still expandingnumberofpathogensreportedtobecapableofcausing encephalitismakesspecificdiagnosischallengingduetothesheer scopeofrequiredtesting(Kennedy,2005).Arecentlydeveloped next-generation sequencing (NGS) technique offers a potential breakthroughinthediagnosticprocessofencephalitisby eliminat-ingtheneedfortestingofindividualpathogens.High-throughput sequencinghasalreadyestablishedafirmfootholdintheareaof microbiologyasithasbeensuccessfullyemployedforpathogen detection(including novelmicroorganisms), analysisof genetic evolutionanddiversity,aswellasforthedeterminationofdrug resistance(Radfordetal.,2012).Theaimofthepresentstudywasto determinethevalueofNGSindetectingputativecausativeagent(s) inCSFinencephalitis.

For this purposeCSF from60-year-old male withsuspected encephalitis,admitted tothehospital witha 1-weekhistory of fever,drowsinessandsevereheadacheswasused.Thesesymptoms wereprecededbyamildcold.Atthetimeofadmissionthepatient wascomatosewithpositivemenigealsignsandhistemperature was38.5◦C. Analysisof CSF revealed480leukocytes/mm3 (90%

lymphocytes),proteinlevelof3.21g/l(normalvalue:0.12–0.60g/l), andglucosevalueof2.32mmol/l(normalvalue:2.20–4.40mmol/l). Theperipheralbloodleukocytecountwas6900/mm3with66.7%

neutrophilsand22.2%lymphocytes.SerumandCSFsamples col-lectedatadmissionwere negativefor thepresenceof IgM and IgGantibodiestohumanherpesvirus(NovaLisaHSV1/HSV2/HSV 1+2IgG/IgMELISA;NovaTecImmundiagnosticaGmBH, Dietzen-bach,Germany).However,bothanti-HHV-1IgMandanti-HHV-1 IgGweredetectedinsubsequentCSFsamplescollectedat1.5,3and 5months.Magneticresonanceimaging(MRI)atadmissionshowed hyperintensityintherighttemporallobe.Patientwastreatedwith Acyclovir(ZoviraxIV)for15daysandfullyrecoveredwithno resid-ualneurologicalsequelae.PCRforHSV-1/2wasnotperformedat admission,asitwasnotapartofroutinediagnosticsinPolandat thattime,andouranalysiswasdoneretrospectively.

TotalRNAwasisolatedfrom1mlof CSFcollectedat admis-sionusingthemodifiedChomczynskimethod(TRIZOLLSReagent; LifeTechnologies,Carlsbad,USA)andsplitintotwoaliquots,one ofwhich (sampleSDNase)wastreated withDNaseI (DNA-free DNA Removal Kit; Invitrogen, Waltham, USA) at a concentra-tionof2U/␮lfor20minin 37◦C ina finalvolumeof100␮lto reducetheamountofDNApresent.Theotheraliquotremained DNaseuntreated(sampleS1).Controlsamplesincluded HCV-RNA-positiveserum sampleadjusted tocontain100viralcopies per reaction(sampleC-HCV)andthreeHHV-1-negativeCSFsamples (samplesC1–C3;Table1).

ThequantityofRNA extractedfromCSF wassmall andwas belowthesensitivitylimitsofDeNovixDS-11Spectrophotometer (DeNovix,Wilmington,USA;sensitivity≥2ng/␮l)andQubit Fluo-rimeter(ThermoScientific,Waltham,USA;sensitivity≥250pg/␮l). Both CSF samples (S1 and SDNAse) and all control sam-plesunderwent reversetranscription followedby single-primer isothermalamplification(Ribo-SPIA),usingcommerciallyavailable kit(OvationRNA-SeqV2 system(NuGEN,SanCarlos, USA).The

protocolcloselyfollowedmanufacturer’srecommendations.The resultingamplifieddscDNAwaspurifiedusingAgencourtAMPure XPbeads(BeckmanCoulter,Pasadena,USA).

Librariesfor NGSwerepreparedfrom1ngofdscDNAusing NexteraXTKit(Illumina,SanDiego,USA)followingmanufacturer’s protocol. First, cDNA was fragmented using transposon-based method followed by addition of indexes by PCR. The resulting PCRproductswerepurifiedwith1.8volumesofAMPureXPbeads (BeckmanCoulter,Pasadena,USA).Thequalityandaveragelength ofsequencelibraryforeachsamplewasassessedusingBioanalyzer (AgilentTechnologies,SantaClara,USA)andeithertheDNA1000or DNAHSkit,dependingonsampleconcentration.Theindexed sam-pleswerepooledequimolarilyandsequencedonIlluminaMiSeq (150nt,paired-endreads)incaseofsamplesS1,SDNase,C-HCVand onIlluminaHiSeq(101nt,paired-endreads);incaseofsamples C1–C3.

Raw reads were trimmed by the following procedures: (i) removingadaptorsequencesusingcutadapt-1.2.1(Martin,2011), (ii)removingartifactsequencesusingfastxartifactsfilter(http:// hannonlab.cshl.edu/fastxtoolkit/index.html,2015),and(iii) trim-ming bases with quality below Q20 (phred quality score) from 3 end of each read and removing reads shorter than 50bp using fastqqualitytrimmer (http://hannonlab.cshl.edu/ fastxtoolkit/index.html, 2015). Trimmed sequences were then mappedontothehumanreferencesequence(hg19)withthe map-pingsoftwareStampy(LunterandGoodson,2011).Theunmapped sequencesweresubjectedtosimilaritysearchusingtheprogram blastn(Altschuletal.,1990)againstthewholeunfilteredNCBI-nt databasewithe-valuecutoffof1e−5.Thetaxonomicinformationof eachsequencewasassignedandtherelativeabundanceofdetected organismswassummarizedbytextminingofblastnoutputfiles usingBioRuby(Gotoetal.,2010)scripts.

TheinitialsequencingrunincludedsamplesS1,SDNase,C-HCV andyielded4,529,322readsaltogether.Aftertrimming,therewere 1,190,455readsforsampleS1(noDNasetreatment)and1,030,284 readsfor sampleSDNase (treatedwithDNaseI). Sequencingof HepatitisCVirus(HCV)positivecontrol(sampleC-HCV)provided 1,184,251reads(Table1).Humansequenceswerethemost abun-dant(43.913–99.506%ofallsequences;Table1).Viralsequences represented0.07–0.246%ofreadsandthemostfrequentamong themcorrespondedtoHHV-1(99.8%ofallviralsequencesinsample S1and86.6%insampleSDNase).InthecontrolHCVRNA-positive sample99.8%ofviralreadswerepositivelyalignedtoHCVgenome (Table2).Fig.1showsthecoverageplotofdetectedHHV-1and HCVsequenceswithrespecttoreferencegenomes.Importantly,the DNaseItreatment,whileloweringthebackgroundofhost-derived sequencesfrom98.2%to43.9%,atthesametimeloweredthe num-berofdetectableHHV-1sequencesbyafactorof4(from2579to 629sequences).

ControlCSFsamplesC1–C3wereanalyzedin aseparaterun yieldingatotalof107,219,264reads.Aftertrimming,therewere 37,516,857readsforsampleC1,35,638,335readsforsampleC2 and34,064,072readsforsampleC3.Themetagenomicapproach didnotdetectanyHSV-1sequencesinanyofthesethreesamples. TheresultsofNGSsequencingandthemostfrequentlyidentified species/familiesarepresentedinTables1and2.

The presence of HHV-1 in CSF of the analyzed patient was confirmed by specific PCR (Fig. 2) performed as follows. Human herpesvirus 1 (HHV-1) DNA was isolated from cere-brospinal fluid (200␮l) using QIAamp DNA Mini Kit (Qiagen, Venlo,Netherlands),thenelutedin5␮lofwater(Water Molec-ular Biology Reagen; Sigma–Aldrich,Saint Louis, USA) and the HHV specific PCR was performed using primers specific for bothHHV-1andHHV-2(5-TTGAAGCGGTCGGCGGCGTA-3and5 -GCATCGTCGAGGAGGTGGA-3) resulting in 148bp amplification product(54836nt–54983nt;[GenBank:NC001806.1]). Extracted

(3)

Table1

Next-generationsequencing(NGS)ofCSFfrompatientwithHHV-1encephalitisandfromHHV-1-negativecontrols.SequenceswerecomparedtotheNCBI-ntdatabase.

Age/gender 60/male 56/female 20/female 43/female

Diagnosis HHV-1encephalitis Encephalitisof

unknown etiology Encephalitisof unknown etiology Multiple sclerosis Sample S1 SDNase C1 C2 C3 C-HCV Totalreads 1,578,856 1,427,356 37,516,857 35,638,335 34,064,072 1,523,110

Readsaftertrimming 1,190,455 1,030,284 375,168,57 35,638,335 34,064,072 1,184,251

Human 1,169,244(98.218%) 452,428(43.913%) 36,061,952 (96.122%) 35,374,962 (99.261%) 32,616,258 (95.750%) 1,178,397(99.506%) Viral 2583(0.217%) 726(0.070%) 52,226 (0.139%) 71,493 (0.201%) 140,890 (0.414%) 2916(0.246%) Bacterial 5112(0.429%) 242,633(23.550%) 830,811 (2.215%) 120,107 (0.337%) 668,362 (1.962%) 1142(0.096%) Fungal 251(0.021%) 2591(0.251%) 45,550 (0.121%) 3190(0.009%) 78,112 (0.229%) 32(0.003%) Protozoan 22(0.002%) 795(0.077%) 6386(0.017%) 1100(0.003%) 16,298 (0.048%) 13(0.001%) Othera 12,018(1.010%) 315,615(30.634%) 428,866 (1.143%) 36,106 (0.104%) 468,183 (1.374%) 1015(0.086%) Nomatch 1225(0.103%) 15,496(1.504%) 91,066 (0.243%) 31,377 (0.088%) 75,969 (0.223%) 736(0.062%)

S1,noDNaseItreatment;SDNase,treatedwithDNaseI;C,HCV-RNApositiveserum. SamplesC1–C3werenegativeforHHV-1byPCR.

aSequencesrelatedtoplants,plantviruses,syntheticconstructs.

Table2

Themostfrequentlyidentifiedspecies/familiesincerebrospinalfluidfromapatientwithHHV-1encephalitisandcontrols.

Viruses Bacteriaa Fungia Protozoa

S1 Human herpesvirus1 (2579) InfluenzaC virus(3) HepatitisC virus(1) Moraxellaceae(871) Micrococcaceae(554) Corynebacteriaceae(321) Propionibacteriaceae(204) Gordoniaceae(206) Pyrenophorateres(151) Pyrenophoratritici-repentis(29) Malasseziasympodialis(14) Malasseziaglobosa(10) Debaryomyceshansenii(7) – SDNase Human herpesvirus1 (629) InfluenzaC virus(55) HepatitisC virus(39) Moraxellaceae(37,130) Staphylococcaceae(35,753) Micrococcaceae(48,011) Corynebacteriaceae(19,993) Neisseriaceae(8240) Unculturedfungus(519) UnculturedCryptococcus(206) UnculturedRhodotorula(180) Malasseziasympodialis(142) Malasseziaglobosa(147) Albugolaibachii(441) Besnoitiabesnoiti(89) Trypanoplasmaborreli(83) Ichthyophthiriusmultifiliis (75) C1 – Corynebacteriaceae(2,75,825) Staphylococcaceae(93,611) Micrococcaceae(73,191) Moraxellaceae(51,378) Sphingobacteriaceae(29,855) Unculturedfungus(10,062) Pseudogymnoascusdestructans (1199) Melampsoralarici-populina (995) Leucosporidiumsp.AY30(787) Unculturedsoilfungus(786)

Nannochloropsisoceanica (1549) Albugolaibachii(401) Amphifilidaesp.H-1(373) Babesiadivergens(371) Exocolpodaaugustini(324) C2 – Burkholderiaceae(40,597) Sphingobacteriaceae(30,089) Streptococcaceae(5702) Bradyrhizobiaceae(4649) Enterobacteriaceae(4546) Unculturedfungus(551) Geotrichumklebahnii(250) Malasseziaglobosa(225) Dipodascustetrasporeus(132) Mortierellaalpina(82) Nannochloropsisoceanica (3204) Plasmodiumovale(1201) Albugolaibachii(964) Babesiadivergens(549) Plasmodiuminui(312) C3 – Moraxellaceae(94,524) Enterobacteriaceae(67,339) Corynebacteriaceae(59,747) Micrococcaceae(48,846) Bradyrhizobiaceae(47,559) Unculturedfungus(12,841) Triposporiumcycadicola(4346) Mollisinauncinata(3997) Pseudogymnoascusdestructans (2790) Melampsoralarici-populina (2465) Nannochloropsisoceanica (2468) Albugolaibachii(2274) Plasmodiuminui(2075) Eunotiasp.ECR-2014 (1780) Plasmodiumvinckei(588) C-HCV HepatitisC virus(2905) InfluenzaC virus(3) Moraxellaceae(197) Micrococcaceae(166) Propionibacteriaceae(67) Streptococcaceae(66) Comamonadaceae(62) Debaryomyceshansenii(19) Staninwardiasuttonii(2) Malasseziasympodialis(2) Leptosphaeriamaculans(2) Entylomacalendulae(2) –

S1,noDNaseItreatment;SDNase,treatedwithDNaseI;C-HCV,HCV-RNApositiveserum;C1andC2,CSFofpatientswithencephalitisofunknownetiology;C3,CSFofpatient withmultiplesclerosis.

SamplesC1–C3werenegativeforHHV-1byPCR.

Thenumbersofsequencesrepresentingeachspecies/familyareshowninbrackets.

(4)

Fig.1.CoverageplotofHHV-1andHCVgenomes.SequencingreadsfromsamplesS1andSDNaseweremappedtothereferencegenomeofHHV-1(GenBankaccession numberAB618031)andcontrolsampleC-HCVwasmappedtoHCVgenome(GenBankaccessionnumberEF407475).

Fig.2.PCRdetectionofhumanherpesvirustype1(HHV-1).Lane:1,CSFsample drawnatadmission;2,positivecontrol(400targetcopiesofHHV-1DNAfrom HHV-1infectedVerocells3,negativecontrolconsistingofwater;M,GeneRuler50bpDNA Ladder(Feremntas,ThermoScientific,Waltham,USA;50bp).Expectedproductsize was148bp.

DNA(38␮l)wasmixedwith5␮lof10×buffer(LifeTechnologies, Carlsbad,USA), 2lof PCR primers(10M),2lof 50×dNTP (10mM),5␮lof25mMMgCl2(LifeTechnologies,Carlsbad,USA)

and2.5UofTaqPolymerase(LifeTechnologies,Carlsbad,USA)in

finalvolumeof50␮l.Aftertheinitial5mindenaturationin94◦C,50 cyclesof94◦Cfor30sand68◦Cfor30swererunusing thermocy-cler9700AppliedBiosystem(AppliedBiosystem,LifeTechnologies, Carlsbad,USA).PCRproductswereanalyzedbyelectrophoresisin 2%agarose.DetectionlimitofourPCRwas≥44viralcopiesper reac-tion.PCRsensitivitywasdeterminedusingserialdilutionsofDNA extractedfromHHV-1infectedVerocellculture(VirusIsolationand ReferenceServiceLaboratory,NewYorkStateHealthDepartment). InthepresentstudyweunexpectedlydetectedHHV-1,whichis aDNAvirus,whileanalyzingCSFsamplesubjectedtoRNA extrac-tionbythemostwidelyusedChmoczynskimethodfollowedby RNAamplification.Thisfindingcouldhavebeentheresultofviral mRNAdetection,oralternatively,a substantialquantityofDNA couldhavebeenretainedafterRNAextraction,thusallowingfor thedetectionofbothRNAandDNAsequences.Toverifythelatter possibility,serial10-folddilutionsofplasmidtemplate (pCR2.1-TOPO,Invitrogen, Waltham, USA) werespikedinto CSF sample fromanuninfectedpatientandsubjectedtoparallelRNAandDNA extractions(TRIZOLLSReagent,LifeTechnologiesandQIAampDNA MiniKit,Qiagen,Venlo,Netherlands).Geneticmaterialextracted fromeachsamplewassubjectedtoreal-timePCR(10min dena-turationin95◦Cfollowedby55cyclesof95◦Cfor10sand50◦C for 15s) using LightCycler FastStart DNA Master SYBR Green I (RocheMolecularDiagnostics,Basel,Switzerland)andprimers(5 -GTAAAACGACGGCCAG-3;5-CAGGAAACAGCTATGAC-3)resulting in 202bp amplificationproduct. As seenin Fig. 3, RNA extrac-tionretainedasignificantamountofDNAwhichwassufficientfor

(5)

Fig.3.Real-timePCRdetectionofserial10-folddilutionsofplasmidtemplate(pCR2.1-TOPO;Invitrogen,Waltham,USA)spikedintoCSFfromanuninfectedpatient.Samples wereeitherextractedforDNA(D),orRNA(R).Samples1,2,3,4contained103,104,105and106plasmidcopiesperreaction,respectively.

real-timePCRdetectionof≥103plasmidcopies.Surprisingly,for

awiderangeofplasmidconcentrationstested(103,104,105and

106perreaction)theRNAextractionresultedinonly1.6–3.1fold

sensitivitydecreasewhencomparedtoDNAextraction.

Determiningtheetiologyofencephalitisremainschallenging inclinicalpractice,partlydue tothesheer numberofpotential pathogens.Sofarover100viruseswerereportedtobecapable ofcausingencephalitis,andthisnumberisstillgrowing(Debiasi andTyler,2004).Theresultsofsomerecentstudiesindicatethat high-throughputsequencingcouldbesuccessfullyusedtoidentify causativepathogensinpatientswithcentralnervoussystem infec-tions.Forexample,Chanetal.(2014)identifiedmeaslesvirusand HHV-1infrozenbraintissuesamplesusingIlluminaHiSeq2000, whereasTanleetal.(2013)usedFLXgenomesequencer(454Life Science,Roche)andWilsonetal.(2014)usedIlluminaMiSeqto detectCyclovirusand LeptospirasanatarosainCSF,respectively. Moreover,NGSbasedapproachesenableidentificationofallagents inasinglerun,regardlesswhethertheirsequenceisknown,ornot (Bigetal.,2009;Dupuisetal.,2011;Glaseretal.,2006;Quanetal., 2010).

Ourapproach,whichemployedNuGenRibo-SPIAfollowedby NGSandmetagenomicdataanalysis,ledtotheidentificationof HHV-1inCSFfromapatientwithacuteencephalitisatatimewhen specificantibodiescouldnot yetbedetected.Subsequently,the etiologyofencephalitiswasconfirmedbyspecificPCRaswellas HHV-1seroconversioninthefollowupCSFsamples.

Host-derived geneticmaterial is commonlypresent in clini-calsamplesandpresentsamajorchallengeforNGSanalysis(Lim etal.,2013).Acommonlyusedmethodtoreducehumangenetic backgroundisDNaseItreatmentofthesamples(Allanderetal., 2001).Whilewefoundthatthisapproachwouldresultinmore thantwofolddecreaseinthenumberofhost-derivedsequences,it significantly(30–50fold)increasedthenumberofbacterialand “other” sequences probably becauseof diminishedcompetition fromhumanDNA.Notunexpectedly,theuseofDNaseIresulted alsointhereductionofHHV-1sequences.

Interestingly,samplesprovidedasignificantnumberofbacterial readsandsequencesclassifiedasother(plants,plantviruses).This problemwaspreviouslyreportedforotherNGSstudies(Bzhalava etal.,2012;Salteretal.,2014).Bacterialcontaminationisoften foundinexistinghuman-derivedRNAsequencedatasetsandwill remainanimportantissueforfutureNGSdiagnosticapplication (Laurenceetal.,2014;Strongetal.,2014).ThepresenceofHCV

sequencesinanalyzedCSFsampleswasmostlikelytheresultof indexmis-assigninIlluminasequencing(Kircheretal.,2012)and thesecondindependentrunwiththreeHHV-1negativecontrolCSF samplesrevealedneitherHCVnorHHV-1sequences.Intriguing, samplesfromthefirstruncontainedasmallnumberofinfluenzaC sequences,whichraisesthequestionoftheirorigin.However,the analysiswasconductedonthepeakoffluseason(endofFebruary) anditiscurrentlyalmostimpossibletocompletelyeliminate envi-ronmentalcontaminantsduringlibrarypreparation processand mis-assignedreadsfromothersamples.

Surprisingly,wedetectedHHV-1geneticmaterialinCSFwhich wasextractedforRNAandsimilaroccurrencehasbeenreported by Chan et al. (2014).Modified acid guanidinium thiocyanate-phenol-chloroformRNAextractionisknowntogenerategenomic DNAcontaminants(SiebertandChenchik,1993)andinourstudy significantDNApresenceafterRNAextractionwasconfirmedby quantitativeanalysisofplasmidtemplate.

Inconclusions,itseemsthatNGS,whennecessaryprecededby unspecificnucleicacidamplification,couldsupplementcurrently used diagnostic methods for the determination of encephalitis etiology.However,duetocommonindexmis-assignmentand con-taminationwithreagents-derivednucleicacids,thepresenceofany identifiedpathogenshouldbeverifiedbyPCRorculture.Wealso foundthatextractionoftotalRNAcouldbeusedforthe identifica-tionofbothDNAandRNApathogensinasinglerun.

Acknowledgment

ThisstudywassupportedbyFoundationforPolishScience,grant No.POMOST/2013-7/2andPolishNationalScienceCenter(NCN), grantNo.N/N401/646940.

References

Allander,T.,Emerson,S.U.,Engle,R.E.,Purcell,R.H.,Bukh,J.,2001.Avirusdiscovery methodincorporatingDNasetreatmentanditsapplicationtothe

identificationoftwobovineparvovirusspecies.Proc.Natl.Acad.Sci.U.S.A.98, 11609–11614.

Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W.,Lipman,D.J.,1990.Basiclocal alignmentsearchtool.J.Mol.Biol.215,403–410.

Big,C.,Reineck,L.A.,Aronoff,D.M.,2009.Viralinfectionsofthecentralnervous system:acase-basedreview.Clin.Med.Res.7,142–146.

Bzhalava,D.,Ekstrom,J.,Lysholm,F.,Hultin,E.,Faust,H.,Persson,B.,Lehtinen,M., deVilliers,E.M.,Dillner,J.,2012.PhylogeneticallydiverseTTvirusviremia amongpregnantwomen.Virology432,427–434.

(6)

Chan,B.K.,Wilson,T.,Fischer,K.F.,Kriesel,J.D.,2014.Deepsequencingtoidentify thecausesofviralencephalitis.PLOSONE9,e93993.

Chaudhuri,A.,Kennedy,P.G.,2002.Diagnosisandtreatmentofviralencephalitis. Postgrad.Med.J.78,575–583.

Debiasi,R.L.,Tyler,K.L.,2004.Molecularmethodsfordiagnosisofviral encephalitis.Clin.Microbiol.Rev.17,903–925,tableofcontents.

Dupuis,M.,Hull,R.,Wang,H.,Nattanmai,S.,Glasheen,B.,Fusco,H.,Dzigua,L., Markey,K.,Tavakoli,N.P.,2011.Moleculardetectionofviralcausesof encephalitisandmeningitisinNewYorkState.J.Med.Virol.83,2172–2181.

Glaser,C.A.,Honarmand,S.,Anderson,L.J.,Schnurr,D.P.,Forghani,B.,Cossen,C.K., Schuster,F.L.,Christie,L.J.,Tureen,J.H.,2006.Beyondviruses:clinicalprofiles andetiologiesassociatedwithencephalitis.Clin.Infect.Dis.43,1565– 1577.

Goto,N.,Prins,P.,Nakao,M.,Bonnal,R.,Aerts,J.,Katayama,T.,2010.BioRuby: bioinformaticssoftwarefortheRubyprogramminglanguage.Bioinformatics 26,2617–2619,http://hannonlab.cshl.edu/fastxtoolkit/index.html,2015, FASTX-Toolkit.

Kennedy,P.G.,2005.Viralencephalitis.J.Neurol.252,268–272.

Kircher,M.,Sawyer,S.,Meyer,M.,2012.Doubleindexingovercomesinaccuracies inmultiplexsequencingontheIlluminaplatform.NucleicAcidsRes.40,e3.

Laurence,M.,Hatzis,C.,Brash,D.E.,2014.Commoncontaminantsin next-generationsequencingthathinderdiscoveryoflow-abundance microbes.PLOSONE9,e97876.

Lim,Y.W.,Schmieder,R.,Haynes,M.,Willner,D.,Furlan,M.,Youle,M.,Abbott,K., Edwards,R.,Evangelista,J.,Conrad,D.,Rohwer,F.,2013.Metagenomicsand metatranscriptomics:windowsonCF-associatedviralandmicrobial communities.J.Cyst.Fibros.12,154–164.

Lunter,G.,Goodson,M.,2011.Stampy:astatisticalalgorithmforsensitiveandfast mappingofIlluminasequencereads.GenomeRes.21,936–939.

Mailles,A.,Vaillant,V.,Stahl,J.P.,2007.InfectiousencephalitisinFrancefrom2000 to2002:thehospitaldatabaseisavaluablebutlimitedsourceofinformation forepidemiologicalstudies.Med.Mal.Infect.37,95–102.

Martin,M.,2011.Cutadaptremovesadaptersequencesfromhigh-throughput sequencingreads.EMBnetJ.(NorthAmerica),17.

Quan,P.L.,Wagner,T.A.,Briese,T.,Torgerson,T.R.,Hornig,M.,Tashmukhamedova, A.,Firth,C.,Palacios,G.,Baisre-De-Leon,A.,Paddock,C.D.,Hutchison,S.K.,

Egholm,M.,Zaki,S.R.,Goldman,J.E.,Ochs,H.D.,Lipkin,W.I.,2010.Astrovirus encephalitisinboywithX-linkedagammaglobulinemia.Emerg.Infect.Dis.16, 918–925.

Radford,A.D.,Chapman,D.,Dixon,L.,Chantrey,J.,Darby,A.C.,Hall,N.,2012.

Applicationofnext-generationsequencingtechnologiesinvirology.J.Gen. Virol.93,1853–1868.

Salter,S.J.,Cox,M.J.,Turek,E.M.,Calus,S.T.,Cookson,W.O.,Moffatt,M.F.,Turner,P., Parkhill,J.,Loman,N.J.,Walker,A.W.,2014.Reagentandlaboratory

contaminationcancriticallyimpactsequence-basedmicrobiomeanalyses. BMCBiol.12,87.

Siebert,P.D.,Chenchik,A.,1993.Modifiedacidguanidinium

thiocyanate-phenol-chloroformRNAextractionmethodwhichgreatlyreduces DNAcontamination.NucleicAcidsRes.21,2019–2020.

Solomon,T.,Hart,I.J.,Beeching,N.J.,2007.Viralencephalitis:aclinician’sguide. Pract.Neurol.7,288–305.

Strong,M.J.,Xu,G.,Morici,L.,SplinterBon-Durant,S.,Baddoo,M.,Lin,Z.,Fewell,C., Taylor,C.M.,Flemington,E.K.,2014.Microbialcontaminationinnext generationsequencing:implicationsforsequence-basedanalysisofclinical samples.PLoSPathog.10,e1004437.

Studahl,M.,Lindquist,L.,Eriksson,B.M.,Gunther,G.,Bengner,M.,Franzen-Rohl,E., Fohlman,J.,Bergstrom,T.,Aurelius,E.,2013.Acuteviralinfectionsofthe centralnervoussysteminimmunocompetentadults:diagnosisand management.Drugs73,131–158.

Tanle,V.,vanDoorn,H.R.,Nghia,H.D.,Chau,T.T.,Tule,T.P.,deVries,M.,Canuti,M., Deijs,M.,Jebbink,M.F.,Baker,S.,Bryant,J.E.,Tham,N.T.,Boni,N.T.B.K.M.F.,Loi, T.Q.,Phuongle,T.,Verhoeven,J.T.,Crusat,M.,Jeeninga,R.E.,Schultsz,C.,Chau, N.V.,Hien,T.T.,vanderHoek,L.,Farrar,J.,deJong,M.D.,2013.Identificationof anewcyclovirusincerebrospinalfluidofpatientswithacutecentralnervous systeminfections.mBio4,e00231–e313.

Wilson,M.R.,Naccache,S.N.,Samayoa,E.,Biagtan,M.,Bashir,H.,Yu,G.,Salamat, S.M.,Somasekar,S.,Federman,S.,Miller,S.,Sokolic,R.,Garabedian,E.,Candotti, F.,Buckley,R.H.,Reed,K.D.,Meyer,T.L.,Seroogy,C.M.,Galloway,R.,Henderson, S.L.,Gern,J.E.,DeRisi,J.L.,Chiu,C.Y.,2014.Actionablediagnosisof

neuroleptospirosisbynext-generationsequencing.N.Engl.J.Med.370, 2408–2417.

ScienceDirect w w w . e l s e v i e r . c o m / l o c a t e / j v i r o m e t (http://creativecommons.org/licenses/by-nc-nd/4.0/ http://hannonlab.cshl.edu/fastx 98,11609–11614. 403–410. 142–146. 427–434. 9, 575–583. 903–925, 2172–2181. 1565–1577. 268–272. 40, 9, 154–164. 936–939. 95–102. 17. Astrovirusencephalitis 1853–1868. 87. 2019–2020. 288–305. 10, 131–158. Identification 370,2408–2417.

References

Related documents

The catalogue for the important sale of Karl Lagerfeld's collection of Memphis furniture and objects.. Lager- feld had built up the collection during the 1980s in order to furnish

Please use the following steps to connect the socket adapter to the SEL-735 or SEL-734 meter and test set.. Ensure the circuit

The frequent incidences of radiographic examination requests have significant impact in economic status of the countries, quality of medical services and patient and

Effect of replacing fishmeal with Spirulina on psychrophilic count, coliform and Escherichia coli in common carp intestine, muscle and rearing

Drawing on signaling and relationship marketing theory, this study examined the effect of brand credibility on consumer purchase intention and found that attitude

i18.99 High magnifi cation of this bone marrow core biopsy section fr om a patient with acute erythroid leukemia shows abundant immature erythroid and myeloid lineage

Vážená pani poslankyňa, vážený pán poslanec Národnej rady Slovenskej republiky, na rokovanie nasledujúcej schôdze Národnej rady Slovenskej republiky (NRSR) boli

Answer any Five questions All questions carry equal marks 1. State the origin and development of Bibliometric studies. Explain different types of communication in the