• No results found

A BRIEF STUDY ON FIXED POINT THEOREMS OF GENERALIZED CONTRACTIONS IN PARTIALLY ORDERED CONE METRIC SPACES

N/A
N/A
Protected

Academic year: 2022

Share "A BRIEF STUDY ON FIXED POINT THEOREMS OF GENERALIZED CONTRACTIONS IN PARTIALLY ORDERED CONE METRIC SPACES"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

(www.rdmodernresearch.com) Volume I, Issue I, 2016

754

A BRIEF STUDY ON FIXED POINT THEOREMS OF GENERALIZED CONTRACTIONS IN PARTIALLY

ORDERED CONE METRIC SPACES

A. Dinesh Kumar*, M. Vasuki** & R. Prabhakaran*

* Assistant Professor, Department of Mathematics, Dhanalakshmi Srinivasan Engineering College, Perambalur, Tamilnadu

** Assistant Professor, Department of Mathematics, Srinivasan College of Arts and Science, Perambalur, Tamilnadu

Introduction: (Cone Metric on Poset)

Let 𝐸 be a real Banach Space. A nonempty convex closed subset 𝑃 βŠ‚ 𝐸 is called a cone in 𝐸 if it satisfies:

1) 𝑃 is closed, non-empty and 𝑃 β‰  {0},

2) π‘Ž, π‘πœ–β„, π‘Ž, 𝑏 β‰₯ 0 and π‘₯, π‘¦πœ–π‘ƒ imply that π‘Žπ‘₯ + π‘π‘¦πœ–π‘ƒ, 3) π‘₯πœ–π‘ƒand – π‘₯πœ–π‘ƒimply that π‘₯ = 0.

The space 𝐸 can be partially ordered by the cone𝑃 βŠ‚ 𝐸; that is, π‘₯ ≀ 𝑦 if and only if 𝑦 βˆ’ π‘₯πœ–π‘ƒ. Also we write π‘₯ β‰ͺ 𝑦 if 𝑦 βˆ’ π‘₯πœ–π‘ƒ0, where 𝑃0 denotes the interior of 𝑃. A cone 𝑃is called normal if there existsa constant 𝐾 > 0 such that 0 ≀ π‘₯ ≀ 𝑦 implies

||π‘₯|| ≀ 𝐾||𝑦||. In the sequel, suppose that 𝐸 is a real Banach space. 𝑃is a cone in 𝐸 with nonempty interior𝑃0 β‰  0 and ≀ is the partial ordering with respect to 𝑃.

Theorem:

Let (𝑋, βŠ‘) be a partially ordered set and suppose there exists a cone metric π‘‘πœ–π‘‹ such that (𝑋, 𝑑) is a complete cone metric space which the (ID) property holds.

Let𝑓: 𝑋 β†’ 𝑋 be a continuous and non-decreasing mapping such that πœ“ 𝑑 𝑓π‘₯, 𝑓𝑦 ≀ πœ“ 𝑑 π‘₯, 𝑦 βˆ’ πœ‘ 𝑑 π‘₯, 𝑦

for π‘₯ βŠ‘ 𝑦, where πœ“ and πœ‘are altering distance functions. If there exists π‘₯0πœ–π‘‹ withπ‘₯0 βŠ‘ 𝑓π‘₯0 then 𝑓 has a unique fixed point.

Proof:

If π‘₯0 = 𝑓π‘₯0 then the proof is finished. Suppose that π‘₯0 β‰  𝑓π‘₯0 .Sinceπ‘₯0 βŠ‘ 𝑓π‘₯0 and 𝑓 is a non-decreasing function, π‘₯0 βŠ‘ 𝑓π‘₯0 βŠ‘ 𝑓2π‘₯0 βŠ‘ 𝑓3π‘₯0….

Put π‘₯𝑛+1: = 𝑓π‘₯𝑛 = 𝑓𝑛π‘₯0 and π‘Žπ‘›: = 𝑑(π‘₯𝑛+1, π‘₯𝑛). Then for 𝑛 β‰₯ 1

πœ“ 𝑑 π‘₯𝑛+1, π‘₯𝑛 = πœ“ 𝑑 𝑓π‘₯𝑛, 𝑓π‘₯π‘›βˆ’1 ≀ πœ“ 𝑑 π‘₯𝑛, π‘₯π‘›βˆ’1 βˆ’ πœ‘( 𝑑(π‘₯𝑛, π‘₯π‘›βˆ’1)),

Therefore 0 ≀ πœ“(π‘Žπ‘›) ≀ πœ“(π‘Žπ‘›βˆ’1) βˆ’ πœ‘(π‘Žπ‘›βˆ’1) ≀ πœ“(π‘Žπ‘›βˆ’1). (1) Sinceπ‘₯𝑛 βŠ‘ π‘₯𝑛+1 βŠ‘ π‘₯𝑛+2 by the (ID) property

It follows that π‘Žπ‘› ≀ π‘Žπ‘›+1 (2) Or π‘Žπ‘›+1 ≀ π‘Žπ‘›. (3) If (2) holds, since πœ“is non-decreasing by (1). It gives that

0 ≀ πœ“ π‘Žπ‘› ≀ πœ“ π‘Žπ‘›βˆ’1 βˆ’ πœ‘ π‘Žπ‘›βˆ’1 ≀ πœ“ π‘Žπ‘› βˆ’ πœ‘ π‘Žπ‘›βˆ’1 ≀ πœ“(π‘Žπ‘›)(4)

This implies that πœ‘(π‘Žπ‘›βˆ’1) = 0 and so π‘Žπ‘›βˆ’1 = 0 for 𝑛 β‰₯ 1. Thus π‘₯𝑛 = π‘₯π‘›βˆ’1= 𝑓π‘₯π‘›βˆ’1 for 𝑛 β‰₯ 1 are fixed points of 𝑓. If (3) holds, since πœ“ and πœ‘ are non-decreasing by, relation (1) and induction, It implies that

πœ‘ π‘Žπ‘›+1 ≀ πœ‘ π‘Žπ‘› ≀ πœ“ π‘Žπ‘› ≀ πœ“ π‘Žπ‘›βˆ’1 βˆ’ πœ‘ π‘Žπ‘›βˆ’1 ≀ πœ“ π‘Žπ‘›βˆ’1 βˆ’ πœ‘ π‘Žπ‘›

≀ πœ“ π‘Žπ‘›βˆ’2 βˆ’ πœ‘ π‘Žπ‘›βˆ’2 βˆ’ πœ‘ π‘Žπ‘› . ≀ πœ“ π‘Žπ‘›βˆ’2 βˆ’ 2πœ‘ π‘Žπ‘› ≀ β‹―

≀ πœ“ π‘Ž0 βˆ’ π‘›πœ‘ π‘Žπ‘›

Then 0 ≀ πœ‘ π‘Žπ‘› ≀1+𝑛1 πœ“ π‘Ž0 for all 𝑛. This implies thatπœ‘ limπ‘›β†’βˆžπ‘Žπ‘› 𝑖𝑛 𝑃 ∩ βˆ’π‘ƒ and πœ‘ limπ‘›β†’βˆžπ‘Žπ‘› = 0 and sinceπœ‘ is altering distance function. Then limπ‘›β†’βˆžπ‘Žπ‘› = 0, and

π‘›β†’βˆžlim𝑑(π‘₯𝑛+1, π‘₯𝑛) = 0. (5)

(2)

(www.rdmodernresearch.com) Volume I, Issue I, 2016

755 Now show that the sequence {π‘₯𝑛} is cauchy.

Claim: For every 𝑐 𝑖𝑛 𝐸 and 𝑐 ≫ 0 there exists 𝑁 such that 𝑑(π‘₯𝑛+2, π‘₯𝑛) β‰ͺ 𝑐 for every 𝑛 β‰₯ 𝑁. Choose 𝑐 ≫ 0, by (5) there exists 𝑁 such that 𝑑(π‘₯𝑛+1, π‘₯𝑛) β‰ͺ 𝑐2for all 𝑛 β‰₯ 𝑁.

It makes that 𝑑 π‘₯𝑛+2, π‘₯𝑛 ≀ 𝑑 π‘₯𝑛+2, π‘₯𝑛+1 + 𝑑 π‘₯𝑛+1, π‘₯𝑛 β‰ͺ 𝑐for every 𝑛 β‰₯ 𝑁.

Therefore for some 𝑁 and𝑑 π‘₯𝑛+2, π‘₯𝑛 β‰ͺ 𝑐 for every 𝑛 β‰₯ 𝑁. Now by induction 𝑑(π‘₯𝑛+π‘š, π‘₯𝑛) β‰ͺ 𝑐 for every 𝑛 β‰₯ 𝑁and for all integer number π‘š β‰₯ 1. The sequence {π‘₯𝑛} is Cauchy and since (𝑋, 𝑑) is complete, and thus there exists π‘₯βˆ—π‘–π‘› 𝑋 such that π‘₯𝑛 β†’ π‘₯βˆ— and on the other hand 𝑓 is continuous andπ‘₯𝑛+1 = 𝑓π‘₯𝑛. Then π‘₯βˆ— = 𝑓π‘₯βˆ—. For uniqueness let π‘₯ = 𝑓π‘₯and𝑦 = 𝑓𝑦, and

πœ“ 𝑑 π‘₯, 𝑦 = πœ“ 𝑑 𝑓π‘₯, 𝑓𝑦 ≀ πœ“ 𝑑 π‘₯, 𝑦 βˆ’ πœ‘(𝑑(π‘₯, 𝑦))

The last inequality gives us πœ‘ 𝑑 π‘₯, 𝑦 = 0 and by property of the altering distance functions this implies 𝑑 π‘₯, 𝑦 = 0. Therefore π‘₯ = 𝑦. In the next theorem, the (Id) property is replaced by strongly minihedrallity of the cone.

Theorem:

Let (𝑋, βŠ‘) be a partially ordered set and suppose that thereexistsa cone metric 𝑑𝑖𝑛 𝑋 with strongly minihedral cone P, such that 𝑋, 𝑑 is a complete cone metric space.

Let 𝑓: 𝑋 β†’ 𝑋 be a continuous andnondecreasing mapping such that πœ“ 𝑑 𝑓π‘₯, 𝑓𝑦 ≀ πœ“ 𝑑 π‘₯, 𝑦 βˆ’ πœ‘ 𝑑 π‘₯, 𝑦 ,

for π‘₯ βŠ‘ 𝑦, where πœ“ and πœ‘ are altering distance functions. If there exists π‘₯0 ∈ 𝑋 with π‘₯0 βŠ‘ 𝑓π‘₯0 then 𝑓 has a fixed point.

Proof:

The sequence πœ“ π‘Žπ‘› has infimum. Put 𝑏 = π‘–π‘›π‘“π‘›πœ“(π‘Žπ‘›). Then there exists {πœ“(π‘Žπ‘›π‘˜ )}π‘˜such that πœ“(π‘Žπ‘›π‘˜ ) β†’ 𝑏 as π‘˜ β†’ ∞. Now by (1)

0 ≀ πœ“ π‘Žπ‘›π‘˜ ≀ πœ“ π‘Žπ‘›π‘˜βˆ’1 βˆ’ πœ‘ π‘Žπ‘›π‘˜βˆ’1 ≀ πœ“ π‘Žπ‘›π‘˜βˆ’1 , (6) Letting π‘˜ β†’ ∞, 𝑏 ≀ 𝑏 βˆ’ πœ‘( limπ‘˜β†’βˆžπ‘Žπ‘›π‘˜βˆ’1) ≀ 𝑏,

This implies that πœ‘ limπ‘˜β†’βˆžπ‘Žπ‘›π‘˜βˆ’1 ∈ 𝑃 ∩ βˆ’π‘ƒ andπœ‘ limπ‘˜β†’βˆžπ‘Žπ‘›π‘˜βˆ’1 = 0.

In the next corollary, the (ID) property is replaced and strongly minihedrality of the cone by regularity.

Corollary:

Let (𝑋, βŠ‘) be a partially ordered set and suppose that there exists a cone metric 𝑑 in 𝑋 with regular cone 𝑃 such that (𝑋, 𝑑) is a complete cone metric space. Let 𝑓 ∢ 𝑋 β†’ 𝑋 be a continuous and non decreasing mapping such that πœ“(𝑑(𝑓π‘₯, 𝑓𝑦)) ≀ πœ“(𝑑(π‘₯, 𝑦)) βˆ’ πœ‘(𝑑(π‘₯, 𝑦)), for π‘₯ βŠ‘ 𝑦, where πœ“ and πœ‘ are altering distance functions. If there exists π‘₯0 ∈ 𝑋with π‘₯0 βŠ‘ 𝑓π‘₯0, then 𝑓 has a fixed point.

Proof:

By proofing of the theorem the relation (1) the sequence πœ“ π‘Žπ‘› is decreasing and bounded below and 𝑃 is regular cone. Then πœ‘ limπ‘›β†’βˆžπ‘Žπ‘› = 0. Now similar as the proof of the previous theorem the proof is completed. In the sequel, theorems (1.8),(1.9) and corollary (1.10) are still valid where 𝑓is not necessarily continuous, but the following hypothesis holds in 𝑋. ”If π‘₯𝑛 is anondecreasing sequence in 𝑋 such that π‘₯𝑛 β†’ π‘₯ then π‘₯𝑛 βŠ‘ π‘₯ for all𝑛 ∈ 𝑁”.

Theorem:

Let (𝑋, βŠ‘) be a partially ordered set and suppose that there exists a cone metric 𝑑𝑖𝑛 𝑋 such that (𝑋, 𝑑) is a complete cone metric spacewhich the (ID) property holds. Let 𝑓 ∢ 𝑋 β†’ 𝑋 be a non decreasing mapping such that πœ“(𝑑(𝑓π‘₯, 𝑓𝑦)) ≀ πœ“(𝑑(π‘₯, 𝑦)) βˆ’ πœ‘(𝑑(π‘₯, 𝑦)), for π‘₯ βŠ‘ 𝑦, Where πœ“ and πœ‘are altering distance functions. If there exists

(3)

(www.rdmodernresearch.com) Volume I, Issue I, 2016

756 π‘₯0 ∈ 𝑋withπ‘₯0 βŠ‘ 𝑓π‘₯0 and 𝑋 satisfies in following Condition if π‘₯𝑛 is a nondecreasing sequence in 𝑋 such that π‘₯𝑛 β†’ π‘₯ then π‘₯𝑛 βŠ‘ π‘₯forall 𝑛 ∈ 𝑁, then 𝑓 has a fixed point.

Proof:

Following the proof of theorem (1.8) it is enough to prove that 𝑓π‘₯βˆ— = π‘₯βˆ—. Since π‘₯𝑛 βŠ‚ 𝑋is a non decreasing sequence andπ‘₯𝑛 β†’ π‘₯βˆ—as 𝑛 β†’ ∞. Now by hypothesis π‘₯𝑛 βŠ‘ π‘₯βˆ— for all 𝑛 ∈ 𝑁 and for all 𝑐 ≫ 0 there exists 𝑁 such that 𝑑 π‘₯𝑛, π‘₯ β‰ͺ 𝑐 and(𝑑(π‘₯𝑛+1, 𝑓π‘₯βˆ—)) = πœ“(𝑑(𝑓π‘₯𝑛, 𝑓π‘₯βˆ—)) ≀ πœ“ 𝑑 π‘₯𝑛, π‘₯βˆ— βˆ’ πœ‘ 𝑑 π‘₯𝑛, π‘₯βˆ— ≀ πœ“(𝑐),for all 𝑛 β‰₯ 𝑁. Since πœ“ and πœ‘ are altering distance function if 𝑛 β†’ ∞ and

0 ≀ πœ“( lim

π‘›β†’βˆžπ‘‘(π‘₯𝑛+1, 𝑓π‘₯βˆ—)) ≀ πœ“(𝑐),for all 𝑐 ≫ 0.

Thus 0 ≀ πœ“ lim

π‘›β†’βˆž 𝑑 π‘₯𝑛, 𝑓π‘₯βˆ— ≀ πœ“ π‘šπ‘ , for all 𝑐 ≫ 0 and every π‘š ∈ 𝑁. It gives that πœ“( lim

π‘›β†’βˆž 𝑑(π‘₯𝑛+1, 𝑓π‘₯βˆ—)) = 0 Then lim

π‘›β†’βˆž 𝑑 π‘₯𝑛+1, 𝑓π‘₯βˆ— = 0. Let 𝑐 ∈ 𝐸 and 𝑐 ≫ 0 so there exists 𝑁 such that 𝑑 π‘₯𝑛+1, 𝑓π‘₯βˆ— β‰ͺ 𝑐 for every 𝑛 β‰₯ 𝑁. Thus for some 𝑁, 𝑑 π‘₯βˆ—, 𝑓π‘₯βˆ— ≀ 𝑑 π‘₯βˆ—, π‘₯𝑛+1 + 𝑑 π‘₯𝑛+1, 𝑓π‘₯βˆ— β‰ͺ 𝑐, for every 𝑛 β‰₯ 𝑁. This implies that 0 ≀ 𝑑(π‘₯βˆ—, 𝑓π‘₯βˆ—) β‰ͺ 𝑐 for all 𝑐 ≫ 0.

Then 𝑑(π‘₯βˆ—, 𝑓π‘₯βˆ—) = 0 and consequently π‘₯βˆ— = 𝑓π‘₯βˆ—. In what follows, a sufficient condition is given for the uniqueness of the fixed point in theorem. This condition is: ”for π‘₯, 𝑦 ∈ 𝑋

there exists 𝑧 ∈ 𝑋 which is comparable to π‘₯ and 𝑦”. (7)

Ciric’s Fixed Point Theorem in a Cone Metric Space: Fixed Point Theorem: Let (𝑋, 𝑑) be a complete cone metric space, 𝑃 be a normal cone with normal constant π‘˜(π‘˜ β‰₯ 1). Suppose the mapping 𝑇: 𝑋 β†’ 𝑋 satisfies the following constractive condition: 𝑑(𝑇π‘₯, 𝑇𝑦) ≀ 𝐴1(π‘₯, 𝑦)𝑑(π‘₯, 𝑦) + 𝐴2(π‘₯, 𝑦)𝑑(π‘₯, 𝑇π‘₯) + 𝐴3(π‘₯, 𝑦)𝑑(𝑦, 𝑇𝑦) +𝐴4 π‘₯, 𝑦 𝑑 π‘₯, 𝑇𝑦 + 𝐴4 π‘₯, 𝑦 𝑑 𝑦, 𝑇π‘₯ (9)

for all π‘₯, 𝑦 in 𝑋, where 𝐴𝑖: 𝑋 Γ— 𝑋 β†’ β„’(𝐸), 𝑖 = 1,2,3,4. Further, assume that for all π‘₯, 𝑦 𝑖𝑛 𝑋, βˆƒ 𝛼 ∈ [0,1/π‘˜)| 4𝑖=1 βˆ₯ 𝐴𝑖 π‘₯, 𝑦 βˆ₯ +βˆ₯ 𝐴4 π‘₯, 𝑦 βˆ₯≀ 𝛼 (10)

βˆƒ 𝛽 ∈ [0,1)| βˆ₯ 𝑠(π‘₯, 𝑦) βˆ₯≀ 𝛽 (11)

(𝐴1 π‘₯, 𝑦 +𝐴2 π‘₯, 𝑦 ) 𝑃 βŠ† 𝑃 (12)

𝐴2 π‘₯, 𝑦 𝑃 βŠ† 𝑃 (13)

𝐴4 π‘₯, 𝑦 (𝑃) βŠ† 𝑃 (14)

𝐼 βˆ’ 𝐴3 π‘₯, 𝑦 βˆ’ 𝐴4 π‘₯, 𝑦 βˆ’1 𝑃 βŠ† 𝑃 (15)

Here, 𝑆: 𝑋 Γ— 𝑋 β†’ β„’ 𝐸 is given by: 𝑆 π‘₯, 𝑦 = 𝐼 βˆ’ 𝐴3 π‘₯, 𝑦 βˆ’ 𝐴4 π‘₯, 𝑦 βˆ’1(𝐴1 π‘₯, 𝑦 + 𝐴2 π‘₯, 𝑦 + 𝐴4 π‘₯, 𝑦 ), for all π‘₯, 𝑦 𝑖𝑛 𝑋. Then, Thas a unique fixed point. Proof: Using the triangular inequality, it given that: 𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛+1) ≀ 𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛) + 𝑑(π‘₯𝑛, π‘₯𝑛+1), i.e., 𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛) + 𝑑(π‘₯𝑛, π‘₯𝑛+1) βˆ’ 𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛+1) 𝑖𝑛 𝑃. From (14), it follows that: 𝐴4 π‘₯π‘›βˆ’1, π‘₯𝑛 𝑑 π‘₯π‘›βˆ’1, π‘₯𝑛 + 𝑑 π‘₯𝑛, π‘₯𝑛+1 βˆ’ 𝑑 π‘₯π‘›βˆ’1, π‘₯𝑛+1 𝑖𝑛 𝑃, and 𝐴4 π‘₯π‘›βˆ’1, π‘₯𝑛 𝑑 π‘₯π‘›βˆ’1, π‘₯𝑛+1 ≀ 𝐴4 π‘₯π‘›βˆ’1, π‘₯𝑛 𝑑 π‘₯π‘›βˆ’1, π‘₯𝑛 + 𝐴4(π‘₯π‘›βˆ’1, π‘₯𝑛) 𝑑(π‘₯𝑛, π‘₯𝑛+1). π‘‡β„Žπ‘’n it implies that: 𝑑(π‘₯𝑛, π‘₯𝑛+1)≀(𝐴1(π‘₯π‘›βˆ’1, π‘₯𝑛)+𝐴2(π‘₯π‘›βˆ’1, π‘₯𝑛)+𝐴4(π‘₯π‘›βˆ’1, π‘₯𝑛))𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛)+(𝐴3(π‘₯π‘›βˆ’1, π‘₯𝑛)+𝐴4( π‘₯π‘›βˆ’1, π‘₯𝑛))𝑑(π‘₯𝑛, π‘₯𝑛+1). Then, 𝐼 βˆ’ 𝐴3 π‘₯π‘›βˆ’1, π‘₯𝑛 𝐴4 π‘₯π‘›βˆ’1, π‘₯𝑛 𝑑(π‘₯𝑛, π‘₯𝑛+1) ≀(𝐴1(π‘₯π‘›βˆ’1, π‘₯𝑛)+𝐴2 π‘₯π‘›βˆ’1, π‘₯𝑛 + 𝐴4(π‘₯π‘›βˆ’1, π‘₯𝑛))𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛). Using (15), 𝑑(π‘₯𝑛, π‘₯𝑛+1) ≀ 𝑆(π‘₯π‘›βˆ’1, π‘₯𝑛)(𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛). (16) It is not difficult to see that under hypotheses (12), (14) and (15),

𝑆(π‘₯, 𝑦)(𝑃) βŠ† 𝑃, π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯, 𝑦 𝑖𝑛 𝑋.

(4)

(www.rdmodernresearch.com) Volume I, Issue I, 2016

757 Using this remark, (16) and proceeding by iterations,

d(π‘₯𝑛,π‘₯𝑛+1)≀ 𝑆(π‘₯π‘›βˆ’1,π‘₯𝑛) 𝑆 π‘₯π‘›βˆ’2, π‘₯π‘›βˆ’1 … 𝑆 π‘₯0, π‘₯1 𝑑 π‘₯0, π‘₯1 , which implies by (11) that:

βˆ₯d(π‘₯𝑛,π‘₯𝑛+1)βˆ₯≀kβˆ₯ 𝑆 π‘₯π‘›βˆ’1,π‘₯𝑛 βˆ₯βˆ₯ 𝑆 π‘₯π‘›βˆ’2, π‘₯π‘›βˆ’1 βˆ₯……βˆ₯ 𝑆 π‘₯0, π‘₯1 βˆ₯

βˆ₯ 𝑑 π‘₯0, π‘₯1 βˆ₯ ≀ π‘˜π›½π‘› βˆ₯ 𝑑 π‘₯0, π‘₯1 βˆ₯.

For any positive integer p, 𝑑(π‘₯𝑛, π‘₯𝑛+𝑝) ≀ 𝑝𝑖=1𝑑(π‘₯𝑛+π‘–βˆ’1, π‘₯𝑛+𝑖), which implies that:

βˆ₯ 𝑑(π‘₯𝑛, π‘₯𝑛+𝑝) βˆ₯ ≀ π‘˜ 𝑝𝑖=1βˆ₯ 𝑑(π‘₯𝑛+π‘–βˆ’1, π‘₯𝑛+𝑖) βˆ₯ ≀ π‘˜2 𝑝𝑖=1𝛽𝑛+π‘–βˆ’1 βˆ₯ 𝑑(π‘₯0, π‘₯1 βˆ₯

≀ π‘˜2 𝛽1βˆ’π›½π‘› βˆ₯ 𝑑 π‘₯0, π‘₯1 βˆ₯ (17) Since 𝛽 ∈ 0, 1 , 𝛽𝑛 β†’ 0 π‘Žπ‘  𝑛 β†’ +∞. So from (17) it follows that the sequence(π‘₯𝑛)π‘›βˆˆπ‘ is Cauchy. Since (𝑋, 𝑑) is complete, there is a point 𝑒 ∈ 𝑋 such that:

𝑛→+∞lim 𝑑 𝑇π‘₯𝑛, 𝑒 = lim

𝑛→+βˆžπ‘‘ π‘₯𝑛, 𝑒 = lim

𝑛→+βˆžπ‘‘ 𝑇π‘₯𝑛, π‘₯𝑛+1 = 0 (18) Now, using the contractive condition (9),

𝑑(𝑇𝑒, 𝑇π‘₯𝑛) ≀ 𝐴1(𝑒, π‘₯𝑛)d(𝑒, π‘₯𝑛)+𝐴2(𝑒, π‘₯𝑛) 𝑑(𝑒, 𝑇𝑒) + 𝐴3 𝑒, π‘₯𝑛 𝑑 π‘₯𝑛, π‘₯𝑛+1 + 𝐴4 𝑒, π‘₯𝑛 𝑑 π‘₯𝑛, π‘₯𝑛+1 + 𝐴4 𝑒, π‘₯𝑛 𝑑 π‘₯𝑛, 𝑇𝑒 .

By the triangular inequality, 𝑑 𝑒, 𝑇𝑒 ≀ 𝑑 𝑒, π‘₯𝑛+1 + 𝑑 π‘₯𝑛+1, 𝑇𝑒 𝑑 π‘₯𝑛, 𝑇𝑒 ≀ 𝑑 π‘₯𝑛, 𝑇π‘₯𝑛 + 𝑑 𝑇π‘₯𝑛, 𝑇𝑒 .

By (13) and (14), 𝐴2(𝑒, π‘₯𝑛)𝑑 𝑒, 𝑇𝑒 ≀ 𝐴2(𝑒, π‘₯𝑛)(𝑑 𝑒, π‘₯𝑛+1 + 𝑑 π‘₯𝑛+1, 𝑇𝑒 ) 𝐴4 𝑒, π‘₯𝑛 𝑑 π‘₯𝑛, 𝑇𝑒 ≀ 𝐴4 𝑒, π‘₯𝑛 𝑑 π‘₯𝑛, 𝑇π‘₯𝑛 + 𝐴4 𝑒, π‘₯𝑛 𝑑 𝑇π‘₯𝑛, 𝑇𝑒 .

Then 𝑑 𝑇𝑒, 𝑇π‘₯𝑛 ≀ 𝐴1 𝑒, π‘₯𝑛 + 𝑑 𝑒, π‘₯𝑛 + (𝐴2 𝑒, π‘₯𝑛 + 𝐴4 𝑒, π‘₯𝑛 )𝑑 𝑒, π‘₯𝑛+1 + (𝐴2 𝑒, π‘₯𝑛 + 𝐴4 𝑒, π‘₯𝑛 )𝑑 π‘₯𝑛+1, 𝑇𝑒 + ( 𝐴3 𝑒, π‘₯𝑛 + 𝐴4 𝑒, π‘₯𝑛 )𝑑 π‘₯𝑛, π‘₯𝑛+1

Using (10), this inequality implies that:

βˆ₯ 𝑑 𝑇𝑒, 𝑇π‘₯𝑛 βˆ₯≀1βˆ’π‘˜π›Όπ‘˜π›Ό (βˆ₯ 𝑑 𝑒, π‘₯𝑛 βˆ₯ +βˆ₯ 𝑑 𝑒, π‘₯𝑛+1 βˆ₯ +βˆ₯ 𝑑 π‘₯𝑛, π‘₯𝑛+1 βˆ₯).

From (18), it follows immediately that: lim𝑛→+βˆžπ‘‘ 𝑇𝑒, 𝑇π‘₯𝑛 = 0. (19) Then, (18), (19) and the uniqueness of the limit imply that 𝑒 = 𝑇𝑒, 𝑖. 𝑒. , 𝑒 is a fixed point of 𝑇 . and𝑇 has least one fixed point 𝑒 ∈ 𝑋. Now, if 𝑣 ∈ 𝑋 is another fixed point of 𝑇 , by (9), 𝑑 𝑒, 𝑣 = 𝑑 𝑇𝑒, 𝑇𝑣 ≀ 𝐴1 𝑒, 𝑣 𝑑 𝑒, 𝑣 + 2𝐴4 𝑒, 𝑣 𝑑 𝑒, 𝑣 ,

Which implies that: βˆ₯ 𝑑 𝑒, 𝑣 βˆ₯ ≀ π‘˜ βˆ₯ 𝐴1 𝑒, 𝑣 βˆ₯ +2 βˆ₯ 𝐴4 𝑒, 𝑣 βˆ₯ βˆ₯ 𝑑 𝑒, 𝑣 βˆ₯≀ π‘˜π›Ό βˆ₯ 𝑑 𝑒, 𝑣 βˆ₯, 1 βˆ’ π‘˜π›Ό βˆ₯ 𝑑 𝑒, 𝑣 βˆ₯≀ 0. Since 0 ≀ 𝛼 <1π‘˜ ,we get 𝑑(𝑒, 𝑣) = 0, i.e., 𝑒 = 𝑣. So the proof of the theorem is completed.

Metrizability of Cone Metric Spaces:

Theorem:

For every cone metric 𝐷: 𝑋 Γ— 𝑋 β†’ 𝐸 there exists metric 𝑑: 𝑋 Γ— 𝑋 β†’ ℝ+which is equivalent to 𝐷 on 𝑋.

Proof:

Define 𝑑 π‘₯, 𝑦 = inf βˆ₯ 𝑒 βˆ₯: 𝐷 π‘₯, 𝑦 ≀ 𝑒 . We shall to prove that 𝑑 is an equivalent metric to 𝐷. If 𝑑 π‘₯, 𝑦 = 0 then there exists 𝑒𝑛 such thatβˆ₯ 𝑒𝑛 βˆ₯β†’ 0 and 𝐷 π‘₯, 𝑦 ≀ 𝑒𝑛. And𝑒𝑛 β†’ 0 and consequently for all 𝑐 ≫ 0 there exists 𝑁 ∈ β„• such that 𝑒𝑛 β‰ͺ 𝑐 for all 𝑛 β‰₯ 𝑁. Thus for all 𝑐 ≫ 0, 0 ≀ 𝐷(π‘₯, 𝑦) β‰ͺ 𝑐. Namely π‘₯ = 𝑦. If π‘₯ = 𝑦 then 𝐷(π‘₯, 𝑦) = 0 which implies that 𝑑 π‘₯, 𝑦 ≀βˆ₯ 𝑒 βˆ₯ for all 0 ≀ 𝑒. Put 𝑒 = 0 it implies 𝑑(π‘₯, 𝑦) ≀ βˆ₯ 0 βˆ₯= 0, on the other hand 0 ≀ 𝑑(π‘₯, 𝑦), Therefore𝑑(π‘₯, 𝑦) = 0.It is clear that 𝑑(π‘₯, 𝑦) = 𝑑(𝑦, π‘₯). To prove triangle inequality, forπ‘₯, 𝑦, 𝑧 ∈ 𝑋,

βˆ€πœ– > 0 βˆƒπ‘’1 βˆ₯ 𝑒1 βˆ₯< 𝑑 π‘₯, 𝑧 + πœ–, 𝐷(π‘₯, 𝑧) ≀ 𝑒1,

βˆ€πœ– > 0 βˆƒπ‘’2 βˆ₯ 𝑒2 βˆ₯< 𝑑(𝑧, 𝑦) + πœ–, 𝐷(𝑧, 𝑦) ≀ 𝑒2. But 𝐷 π‘₯, 𝑦 ≀ 𝐷 π‘₯, 𝑧 + 𝐷(𝑧, 𝑦) ≀ 𝑒1+ 𝑒2, Therefore

𝑑(π‘₯, 𝑦) ≀ βˆ₯ 𝑒1+ 𝑒2 βˆ₯ ≀ βˆ₯ 𝑒1 βˆ₯ +βˆ₯ 𝑒2 βˆ₯ ≀ 𝑑(π‘₯, 𝑧) + 𝑑(𝑧, 𝑦) + 2πœ–.

Since πœ– > 0 was arbitrary so 𝑑(π‘₯, 𝑦) ≀ 𝑑(π‘₯, 𝑧) + 𝑑(𝑧, 𝑦).

Claim: For all π‘₯𝑛 βŠ† 𝑋 π‘Žπ‘›π‘‘ π‘₯ ∈ 𝑋, π‘₯𝑛 β†’ π‘₯ in (𝑋, 𝑑) ifand only if π‘₯𝑛 β†’ π‘₯ in (𝑋, 𝐷).

(5)

(www.rdmodernresearch.com) Volume I, Issue I, 2016

758

βˆ€π‘›, π‘š ∈ 𝑁 βˆƒπ‘’π‘›π‘šsuch that βˆ₯ π‘’π‘›π‘š βˆ₯ < 𝑑 π‘₯𝑛, π‘₯ + 1m, 𝐷 π‘₯𝑛, π‘₯ π‘’π‘›π‘š. 𝑃𝑒𝑑 𝑣𝑛: = 𝑒𝑛𝑛 π‘‘β„Žπ‘’π‘› βˆ₯ 𝑣𝑛 βˆ₯< 𝑑(π‘₯𝑛, π‘₯) +1𝑛 and 𝐷(π‘₯𝑛, π‘₯) ≀ 𝑣𝑛. Now if π‘₯𝑛 β†’ π‘₯in (𝑋, 𝑑) then 𝑑(π‘₯𝑛, π‘₯) β†’ 0 and 𝑣𝑛 β†’ 0. Therefore for all 𝑐 ≫ 0 thereexists 𝑁 ∈ β„• such that 𝑣𝑛 β‰ͺ 𝑐 for all 𝑛 β‰₯ β„•. This implies that 𝐷 π‘₯𝑛, π‘₯ β‰ͺ 𝑐for all 𝑛 β‰₯ β„•. Namelyπ‘₯𝑛 β†’ π‘₯ in (𝑋, 𝐷).

Conversely, For every real πœ– > 0, choose 𝑐 ∈ 𝐸 with 𝑐 ≫ 0 and βˆ₯ 𝑐 βˆ₯ < πœ–. Then there exists 𝑁 ∈ β„• such that 𝐷 π‘₯𝑛, π‘₯ β‰ͺ 𝑐 for all 𝑛 β‰₯ 𝑁. This means that for all πœ– > 0 there exists 𝑁 ∈ β„• such that d(π‘₯𝑛, π‘₯) ≀βˆ₯cβˆ₯<Ξ΅for all 𝑛 β‰₯ 𝑁. Therefore 𝑑 π‘₯𝑛, π‘₯ β†’ 0 as𝑛 β†’

∞ soπ‘₯𝑛 β†’ π‘₯ 𝑖𝑛 (𝑋, 𝑑).

Lemma:

Let 𝐷, π·βˆ—: 𝑋 Γ— 𝑋 β†’ 𝔼 be cone metrics, 𝑑, π‘‘βˆ—: 𝑋 Γ— 𝑋 β†’ ℝ+ their equivalent metrics respectively and 𝑇: 𝑋 β†’ 𝑋 a self map. If 𝐷(𝑇π‘₯, 𝑇𝑦) ≀ π·βˆ—(π‘₯, 𝑦), then 𝑑(𝑇π‘₯, 𝑇𝑦) ≀ π‘‘βˆ—(π‘₯, 𝑦).

Proof:

By the definition of π‘‘βˆ—, βˆ€πœ– > 0 βˆƒπ‘£ βˆ₯ 𝑣 βˆ₯< π‘‘βˆ—(π‘₯, 𝑦) + πœ€, π·βˆ—(π‘₯, 𝑦) ≀ 𝑣.

Therefore if 𝐷(𝑇π‘₯, 𝑇𝑦) ≀ π·βˆ—(π‘₯, 𝑦) ≀ 𝑣, then 𝑑(𝑇π‘₯, 𝑇𝑦) ≀βˆ₯ 𝑣 βˆ₯≀ π‘‘βˆ—(π‘₯, 𝑦) + πœ€.

Sinceπœ€ > 0 was arbitrary so 𝑑(𝑇π‘₯, 𝑇𝑦) ≀ π‘‘βˆ—(π‘₯, 𝑦).

Theorem:

Let 𝐷: 𝑋 Γ— 𝑋 β†’ 𝐸 be a cone metric, 𝑑: 𝑋 Γ— 𝑋 β†’ ℝ+its equivalent metric, 𝑇: 𝑋 β†’ 𝑋 a self map and πœ‘: 𝑃 β†’ 𝑃 a bounded map, then there exists πœ“: ℝ+ β†’ ℝ+such that 𝐷 𝑇π‘₯, 𝑇𝑦 ≀ πœ‘ 𝐷 π‘₯, 𝑦 for every π‘₯, 𝑦 ∈ 𝑋 implies 𝑑(𝑇π‘₯, 𝑇𝑦) ≀ (βˆ₯ 𝐷(π‘₯, 𝑦) βˆ₯) for all π‘₯, 𝑦 ∈ 𝑋.Moreover if is decreasing map or πœ‘ is linear and increasing map then, 𝑑(𝑇π‘₯, 𝑇𝑦) ≀ (𝑑(π‘₯, 𝑦)) for all π‘₯, 𝑦 ∈ 𝑋.

Proof:

Put πœ“ 𝑑 : = sup

0β‰ π‘₯πœ–π‘ƒ πœ‘ βˆ₯π‘₯βˆ₯𝑑 π‘₯ for all 𝑑 ∈ ℝ+, and βˆ₯ πœ‘ π‘₯ βˆ₯ ≀ πœ“(βˆ₯ π‘₯ βˆ₯) π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ π‘₯ ∈ 𝑃. Therefore if 𝐷 𝑇π‘₯, 𝑇𝑦 ≀ πœ‘ 𝐷 π‘₯, 𝑦 , then 𝑑 𝑇π‘₯, 𝑇𝑦 ≀βˆ₯ πœ‘ 𝐷 π‘₯, 𝑦 βˆ₯ ≀ πœ“ βˆ₯ 𝐷π‘₯, 𝑦βˆ₯. Now if πœ“ be decreasing map, bythe definition of d we have 𝑑π‘₯, 𝑦≀𝐷π‘₯, 𝑦βˆ₯, and 𝑑 𝑇π‘₯, 𝑇𝑦 ≀ πœ“ βˆ₯ 𝐷 π‘₯, 𝑦 βˆ₯ ≀ πœ“ 𝑑 π‘₯, 𝑦 .If πœ‘ be a linear increasing map then πœ“ 𝑑 = 𝑑 βˆ₯ πœ‘ βˆ₯. The definition of d implies βˆ€πœ€ > 0 βˆƒπ‘£ βˆ₯ 𝑣 βˆ₯< 𝑑 π‘₯, 𝑦 + πœ€, 𝐷 π‘₯, 𝑦 ≀ 𝑣.

Therefore if 𝐷(𝑇π‘₯, 𝑇𝑦) ≀ πœ‘(𝐷(π‘₯, 𝑦)) ≀ πœ‘(𝑣), then we have 𝑑(𝑇π‘₯, 𝑇𝑦) ≀ βˆ₯ πœ‘(𝑣) βˆ₯≀ πœ“(βˆ₯

𝑣 βˆ₯) ≀ πœ“(𝑑(π‘₯, 𝑦)) + πœ“(πœ€). Since πœ€ > 0 was arbitrary and πœ“(πœ€) β†’ 0 as πœ€ β†’ 0, so𝑑(𝑇π‘₯, 𝑇𝑦) ≀ πœ“(𝑑(π‘₯, 𝑦)). In the following summary of our results are listed.

Fixed Point Theorems in Partial Cone Metric Spaces:

A Cone metric spaces is Hausdorff and so has the property that any singleton is a closed subset of the space. In applications to computer science, especially to computer domains, a space induced by a distance function in which a singleton need not be closed is used. A partial cone metric space is such a space which might have a great application potential in computer science.

Theorem:

Any partial cone metric space (𝑋, 𝑝) is a topological space.

Proof:

For𝑐 ∈ 𝑖𝑛𝑑𝑃 let 𝐡𝑝 π‘₯, 𝑐 = 𝑦 ∈ 𝑋 ∢ 𝑝 π‘₯, 𝑦 β‰ͺ 𝑐 + 𝑝 π‘₯, π‘₯ and𝛽 = {𝐡𝑝(π‘₯, 𝑐): π‘₯ ∈ 𝑋, 𝑐 ∈ 𝑖𝑛𝑑𝑃}. Then πœπ‘ = π‘ˆ βŠ‚ 𝑋: βˆ€π‘₯ ∈ π‘ˆ, βˆƒ 𝐡 ∈ 𝛽π‘₯ ∈ 𝐡 βŠ‚ π‘ˆ is a topology on 𝑋.

Theorem:

Let (𝑋, 𝑝) be a partial cone metric space and P be a normal cone with normal constant 𝐾, then 𝑋, 𝑝 is 𝑇0

(6)

(www.rdmodernresearch.com) Volume I, Issue I, 2016

759 Proof:

Suppose 𝑝: 𝑋 Γ— 𝑋 β†’ 𝐸is a partial cone metric, and supposeπ‘₯, 𝑦 ∈ 𝑋 with π‘₯ β‰  𝑦, from (p1) and (p2) 𝑝(π‘₯, π‘₯) < 𝑝(π‘₯, 𝑦) or 𝑝(𝑦, 𝑦) < 𝑝(π‘₯, 𝑦). Suppose𝑝(π‘₯, π‘₯) < 𝑝(π‘₯, 𝑦) and0 < 𝑝(π‘₯, 𝑦) βˆ’ 𝑝(π‘₯, π‘₯), 0 <βˆ₯ 𝑝(π‘₯, 𝑦) βˆ’ 𝑝(π‘₯, π‘₯) βˆ₯= 𝛿π‘₯. For𝛿π‘₯ > 0, choose 𝑐π‘₯ ∈ 𝑖𝑛𝑑𝑃 with

βˆ₯ 𝑐π‘₯ βˆ₯< 𝛿π‘₯. And π‘₯ ∈ 𝐡𝑝(π‘₯, 𝑐π‘₯) and𝑦 βˆ‰ 𝐡𝑝 π‘₯, 𝑐π‘₯ . Consequently (𝑋, 𝑝) partial cone metric space is𝑇0.

Theorem:

Let 𝑋, 𝑝 be a partial cone metric space,𝑃 be a normal cone with normal constant 𝐾. Let π‘₯𝑛 be a sequence in 𝑋. Then π‘₯𝑛 converges to π‘₯if and only if

𝑝 π‘₯𝑛, π‘₯ β†’ 𝑝 π‘₯, π‘₯ 𝑛 β†’ ∞ . Proof:

Suppose that π‘₯𝑛 converges to π‘₯. For every real πœ€ > 0, choose𝑐 ∈ 𝑖𝑛𝑑𝑃 with𝐾 βˆ₯ 𝑐 βˆ₯< πœ€. Then there is 𝑁, for all𝑛 > 𝑁, 𝑝 π‘₯𝑛, π‘₯ β‰ͺ 𝑐 + 𝑝(π‘₯, π‘₯). So that when 𝑛 > 𝑁, βˆ₯ 𝑝(π‘₯𝑛, π‘₯) βˆ’ 𝑝(π‘₯, π‘₯) βˆ₯≀ 𝐾 βˆ₯ 𝑐 βˆ₯< πœ€. This means 𝑝(π‘₯𝑛, π‘₯) β†’ 𝑝(π‘₯, π‘₯)(𝑛 β†’ ∞).

Conversely, suppose that p(xn, x) β†’ p(x, x) (n β†’ ∞). For c ∈ intP, there is Ξ΄ > 0, such that βˆ₯ x βˆ₯< 𝛿 implies c βˆ’ x ∈ intP. For this Ξ΄ there is N,such that for all n > 𝑁,

βˆ₯ p(xn, x) βˆ’ p(x, x) βˆ₯< 𝛿. andc βˆ’ [p(xn, x) βˆ’ p(x, x)] ∈ intP. This means p(xn, x) βˆ’ p(x, x) β‰ͺ c. Therefore ( xn) converges to x. Note that let (X, p) be a partial cone metric space, P be a normal cone with normal constant K, ifp(xn, x) β†’ p(x, x) (n β†’ ∞) then p(xn, x) β†’ p(x, x) (n β†’ ∞).

Lemma:

Let (xn) be a sequence in partial cone metric space (X, p). If a point x is the limit of (xn) and p y, y = p y, x then y is the limit point of (xn).

Proof:

Suppose that xn β†’ x and p(y, y) = p(y, x). Since for all c ∈ intP there is N such that for all n > 𝑁 p(xn , y) ≀ p xn, x + p x, y βˆ’ p x, x β‰ͺ c + p y, y atxnβ†’y.

Lemma:

If (𝑋, 𝑝) be a partial cone metric space, then the function 𝑑𝑝 ∢ 𝑋 Γ— 𝑋 β†’ 𝑃defined by 𝑑𝑃(π‘₯, 𝑦) = 𝑝(π‘₯, 𝑦) βˆ’ 𝑝(π‘₯, π‘₯)is a quasi-cone metric space on 𝑋. If the quasi-cone metric topology Ο„dp and partial cone metric topology πœπ‘, then πœπ‘ = πœπ‘‘π‘.

Proof

Consider π‘₯, 𝑦 ∈ 𝑋. Then 𝑑𝑃(π‘₯, 𝑦) = 𝑝(π‘₯, 𝑦) βˆ’ 𝑝(π‘₯, π‘₯) ∈ 𝑃 because of 𝑝(π‘₯, π‘₯) ≀ 𝑝(π‘₯, 𝑦). It is easy to see that 𝑑𝑃 is a quasi-cone metric. Now we show that = πœπ‘‘π‘ . Indeed, let π‘₯ ∈ 𝑋 and 𝑐 ∈ 𝑖𝑛𝑑𝑃 and consider 𝑦 ∈ 𝐡𝑑𝑝(π‘₯, 𝑐). Then 𝑑𝑃(π‘₯, 𝑦) = 𝑝(π‘₯, 𝑦) βˆ’ 𝑝(π‘₯, π‘₯) β‰ͺ 𝑐 and, 𝑝(π‘₯, 𝑦) β‰ͺ 𝑐 + 𝑝(π‘₯, π‘₯). Consequently 𝑦 ∈ 𝐡𝑃 π‘₯, 𝑐 and πœπ‘‘π‘ βŠ† πœπ‘.

Conversely if 𝑦 ∈ 𝐡𝑝(π‘₯, 𝑐) implies that 𝑝(π‘₯, 𝑦) β‰ͺ 𝑐 + 𝑝(π‘₯, π‘₯). Thus𝑑𝑝(π‘₯, 𝑦) β‰ͺ 𝑐, 𝑦 ∈ 𝐡𝑑𝑝(π‘₯, 𝑐) and gives thatπœπ‘ βŠ† πœπ‘‘p . If 𝑃 is a partial cone metric on 𝑋, then the 𝑑: 𝑋 Γ— 𝑋 β†’ 𝐸 given by 𝑑 π‘₯, 𝑦 = 𝑑𝑃 π‘₯, 𝑦 + 𝑑𝑃 𝑦, π‘₯ is a cone metric on 𝑋.

Theorem:

Let (𝑋, 𝑝) be a partial cone metric space. If (π‘₯𝑛) is a Cauchy sequence in (𝑋, 𝑝), then it is a Cauchy sequence in the cone metric space (𝑋, 𝑑).

Proof:

Let (π‘₯𝑛) be a Cauchy sequence in (𝑋, 𝑝). There is π‘Ž ∈ 𝑃 for every real πœ€ > 0 there is 𝑁, for all 𝑛, π‘š > 𝑁 βˆ₯ 𝑝(π‘₯𝑛, π‘₯π‘š) βˆ’ π‘Ž βˆ₯<πœ€4 .

𝑑 π‘₯𝑛, π‘₯π‘š = 2 𝑝 π‘₯𝑛, π‘₯π‘š βˆ’ π‘Ž βˆ’ 𝑝 π‘₯𝑛, π‘₯𝑛 βˆ’ π‘Ž βˆ’ (𝑝(π‘₯π‘š, π‘₯π‘š) βˆ’ π‘Ž)

There exist𝑛, π‘š > 𝑁, βˆ₯ 𝑑(π‘₯𝑛, π‘₯π‘š) βˆ₯ < πœ€. This means 𝑑(π‘₯𝑛, π‘₯π‘š) β†’ 0(𝑛, π‘š β†’ ∞). Finally we show that πœπ‘ βŠ† πœπ‘‘. Indeed, let π‘₯ ∈ 𝑋 and 𝑐 ∈ 𝑖𝑛𝑑𝑃 and consider 𝑦 ∈ 𝐡𝑑(π‘₯, 𝑐). Then

(7)

(www.rdmodernresearch.com) Volume I, Issue I, 2016

760 𝑑(π‘₯, 𝑦) β‰ͺ 𝑐 from (𝑝2) 𝑝(π‘₯, 𝑦) βˆ’ 𝑝(π‘₯, π‘₯) ≀ 𝑑(π‘₯, 𝑦) β‰ͺ 𝑐and,then 𝑝(π‘₯, 𝑦) β‰ͺ 𝑐 + 𝑝(π‘₯, π‘₯).

Consequently 𝑦 ∈ 𝐡𝑝(π‘₯, 𝑐) and πœπ‘ βŠ† πœπ‘‘.

Theorem:

Let (𝑋, 𝑝) be a partial cone metric space, 𝑃 be a strongly minihedral,𝐴 βŠ‚ 𝑋 and π‘Ž ∈ 𝑋.Thenπ‘Ž ∈ 𝐴 if and only if 𝑝(π‘Ž, 𝐴) = 𝑝(π‘Ž, π‘Ž).

Proof:

Suppose that π‘Ž ∈ 𝐴 . Then for each 𝑐 ∈ 𝑖𝑛𝑑 𝑃there is π‘₯𝑐 ∈ 𝐴 such that 𝑝 π‘Ž, π‘₯𝑐 β‰ͺ 𝑐 + 𝑝 π‘Ž, π‘Ž . Hence for each 𝑐 ∈ 𝑖𝑛𝑑 𝑃

inf 𝑝 π‘Ž, π‘₯ : π‘Ž ∈ 𝐴 ≀ 𝑝 π‘Ž, π‘Ž + 𝑐

Then 𝑝(π‘Ž, 𝐴) ≀ 𝑝(π‘Ž, π‘Ž).For all π‘₯ ∈ 𝐴, 𝑝(π‘Ž, π‘Ž) ≀ 𝑝(π‘Ž, π‘₯), then 𝑝(π‘Ž, π‘Ž) ≀ 𝑝(π‘Ž, 𝐴). Therefore 𝑝(π‘Ž, 𝐴) = 𝑝(π‘Ž, π‘Ž). Then for all 𝑐 ∈ 𝑖𝑛𝑑 𝑃 there is π‘₯𝑐 ∈ 𝐴 such that 𝑝(π‘Ž, π‘₯𝑐) β‰ͺ 𝑝(π‘Ž, π‘Ž) + 𝑐.

Then 𝐡(π‘Ž, 𝑐) ∩ 𝐴 β‰  βˆ… for all 𝑐 ∈ 𝑖𝑛𝑑𝑃. This implies π‘Ž ∈ 𝐴 ( notethat not all partial cone metric spaces are𝑇1 space and also there are partial cone metric spaces which are not 𝑇1 space). As an example, in the partial cone metric space in Example (4.2), the singleton point set π‘₯ is not closed. Indeed, suppose that 𝑦 > π‘₯ > 0, then 𝑝(𝑦, {π‘₯}) = 𝑝(𝑦, π‘₯) = (π‘šπ‘Žπ‘₯ 𝑦, π‘₯ , π›Όπ‘šπ‘Žπ‘₯ 𝑦, π‘₯ ) = (𝑦, 𝛼𝑦 = 𝑝 𝑦, 𝑦 ). Then 𝑦 ∈ {π‘₯}. Since a topological space 𝑋 is a 𝑇1 space if and only if any singletonpoint set is closed, the partial cone metric space (𝑋, 𝑝) is not 𝑇1. A partial cone metric space complete if every Cauchy sequence is convergent.

Theorem:

Let (𝑋, 𝑝) be a complete partial cone metric space,𝑃 be a normal cone with normal constant K. Suppose that the mapping 𝑇: 𝑋 β†’ 𝑋 satisfies the contractive condition. 𝑝(𝑇π‘₯, 𝑇𝑦) ≀ 𝑐𝑝(π‘₯, 𝑦) for all π‘₯, 𝑦 ∈ 𝑋where𝑐 ∈ (0, 1) is a constant. Then 𝑇 has a unique fixed point in 𝑋, and for anyπ‘₯ ∈ 𝑋 iterative sequence (𝑇𝑛π‘₯) converges to the fixed point.

Proof:

Choose π‘₯0 ∈ 𝑋. Define the sequence π‘₯1 = 𝑇π‘₯0, π‘₯2 = 𝑇π‘₯1 = 𝑇2π‘₯0… , π‘₯𝑛+1 = 𝑇π‘₯𝑛=𝑇𝑛+1π‘₯0,…. Then for π‘š>𝑛,

𝑝 π‘₯π‘š, π‘₯𝑛 ≀ 𝑝 π‘₯π‘š, , π‘₯π‘šβˆ’1 + 𝑝 π‘₯π‘šβˆ’1, π‘₯π‘šβˆ’2 + β‹― + 𝑝(π‘₯𝑛+2, π‘₯𝑛+1)𝑝(, π‘₯𝑛+1, π‘₯𝑛) βˆ’ 𝑝 π‘₯π‘š βˆ’ π‘˜, π‘₯π‘š βˆ’ π‘˜

π‘šβˆ’π‘›βˆ’1

π‘˜=1 ≀ π‘π‘šβˆ’1+ π‘π‘šβˆ’2 … + 𝑐𝑛 𝑝 π‘₯1,π‘₯0 = 𝑐𝑛 1βˆ’π‘1– π‘π‘š βˆ’π‘› 𝑝 π‘₯1,π‘₯0

≀ 𝑐𝑛 1

1 βˆ’ 𝑐𝑝(π‘₯1,π‘₯0)

βˆ₯ 𝑝 π‘₯π‘š, π‘₯𝑛 βˆ₯ ≀ 𝑐𝑛𝐾1βˆ’π‘1 βˆ₯ 𝑝(π‘₯1, π‘₯0) βˆ₯.

Thus 𝑇𝑛π‘₯ is a Cauchy sequence in 𝑋, 𝑝 such that lim𝑛,π‘šβ†’βˆžπ‘ 𝑇𝑛π‘₯0, π‘‡π‘šπ‘₯0 = 0. As 𝑋, 𝑝 is complete there exists π‘₯0 ∈ 𝑋 such that 𝑇𝑛π‘₯0 converges to π‘₯ and 𝑝(π‘₯, π‘₯) = limπ‘›β†’βˆžπ‘(π‘₯𝑛, π‘₯) = limπ‘›β†’βˆžπ‘(π‘₯𝑛, π‘₯𝑛 ) = 0. Now for any 𝑛 ∈ 𝑁, then

𝑝 𝑇 π‘₯, π‘₯ ≀ 𝑝 𝑇π‘₯, 𝑇𝑛+1π‘₯0 + 𝑝 𝑇𝑛+1π‘₯0, π‘₯ βˆ’ 𝑝 𝑇𝑛+1π‘₯0, 𝑇𝑛+1π‘₯0

≀ 𝑐𝑝 π‘₯, 𝑇𝑛π‘₯0 + 𝑝 𝑇𝑛+1π‘₯0, π‘₯

βˆ₯ 𝑝 𝑇 π‘₯, π‘₯ βˆ₯ ≀ 𝐾𝑐 βˆ₯ 𝑝 π‘₯, 𝑇𝑛π‘₯0 βˆ₯ + βˆ₯ 𝑝 𝑇𝑛+1π‘₯0, π‘₯ βˆ₯ β†’ 0

Hence 𝑝(𝑇π‘₯, π‘₯) = 0. But since 𝑝(𝑇π‘₯, 𝑇π‘₯) ≀ 𝑐𝑝(π‘₯, π‘₯) = 0. 𝑝(𝑇π‘₯, 𝑇π‘₯) = 𝑝(𝑇π‘₯, π‘₯) = 𝑝(π‘₯, π‘₯) = 0which implies that 𝑇π‘₯ = π‘₯. Now if 𝑦 is another fixed point of, then

𝑝(π‘₯, 𝑦) = 𝑝(𝑇π‘₯, 𝑇𝑦) ≀ 𝑐𝑝(π‘₯, 𝑦)

Since 𝑐 < 1,𝑝(π‘₯, 𝑦) = 𝑝(π‘₯, π‘₯) = 𝑝(𝑦, 𝑦). Then π‘₯ = 𝑦, thus the fixed pointof 𝑇 is unique.

Theorem:

Let (𝑋, 𝑝) be a complete cone partial metric space, 𝑃 a normal conewith normal constant 𝐾. Suppose the mapping 𝑇: 𝑋 β†’ 𝑋 satisfies the contractive condition 𝑝(𝑇π‘₯, 𝑇𝑦) ≀ π‘˜(𝑝(𝑇π‘₯, π‘₯) + 𝑝(𝑇𝑦, 𝑦)) for all π‘₯, 𝑦 ∈ 𝑋 whereπ‘˜ ∈ (0,12 ) is a constant. Then

(8)

(www.rdmodernresearch.com) Volume I, Issue I, 2016

761 𝑇 has a unique fixed point 𝑋. And for anyπ‘₯ ∈ 𝑋, iterative sequence (𝑇𝑛π‘₯) converges the fixed point.

Proof:

Choose π‘₯0 ∈ 𝑋. Define the sequence π‘₯1 = 𝑇π‘₯0, π‘₯2 = 𝑇π‘₯1 = 𝑇2π‘₯0, … , π‘₯𝑛+1 = 𝑇π‘₯𝑛=𝑇𝑛+1π‘₯0,…

𝑝 π‘₯𝑛 + 1, π‘₯𝑛 = 𝑝 𝑇 π‘₯𝑛, 𝑇 π‘₯π‘›βˆ’1 ≀ π‘˜ 𝑝 𝑇 π‘₯𝑛, π‘₯𝑛 + 𝑝 𝑇π‘₯π‘›βˆ’1, π‘₯π‘›βˆ’1

= π‘˜ 𝑝 π‘₯𝑛+1, π‘₯𝑛 + 𝑝 π‘₯𝑛, π‘₯π‘›βˆ’1 𝑝 π‘₯𝑛+1, π‘₯𝑛 ≀ π‘˜

1 βˆ’ π‘˜π‘ π‘₯𝑛, π‘₯π‘›βˆ’1 = 𝑐𝑝 π‘₯𝑛, π‘₯π‘›βˆ’1

Where c=1βˆ’π‘˜π‘˜ . For π‘š > 𝑛; 𝑝 π‘₯π‘š, π‘₯𝑛 ≀ 𝑝 π‘₯π‘š, π‘₯π‘š βˆ’1 + 𝑝 π‘₯π‘šβˆ’1, π‘₯π‘š βˆ’2 + β‹― + 𝑝 π‘₯𝑛+2, π‘₯𝑛+1 + 𝑝 π‘₯𝑛+1, π‘₯𝑛 βˆ’ π‘šβˆ’π‘›βˆ’1π‘˜=1 𝑝 π‘₯π‘šβˆ’π‘˜, π‘₯π‘š βˆ’π‘˜

≀ 𝑝(π‘₯π‘š, π‘₯π‘š βˆ’1) + 𝑝((π‘₯π‘šβˆ’1, π‘₯π‘šβˆ’2) + … + 𝑝(π‘₯𝑛+2, π‘₯𝑛+1) 𝑝(π‘₯𝑛+1, π‘₯𝑛)

≀ [(π‘π‘šβˆ’1 + π‘π‘š βˆ’2+ . . . + 𝑐𝑛)]𝑝(π‘₯1, π‘₯0) ≀1βˆ’π‘π‘π‘› 𝑝 π‘₯1, π‘₯0

βˆ₯ 𝑝 π‘₯𝑛, π‘₯π‘š βˆ₯ ≀ 1βˆ’π‘π‘π‘› 𝐾 βˆ₯ 𝑝(π‘₯1, π‘₯0) βˆ₯.

This implies 𝑝(π‘₯𝑛, π‘₯π‘š) β†’ 0 (𝑛, π‘š β†’ ∞). There exist a Cauchy sequence(π‘₯𝑛).

By the completeness of 𝑋, there is π‘₯ ∈ 𝑋 suchthat π‘₯𝑛 β†’ π‘₯ 𝑛 β†’ ∞

π‘›β†’βˆžlim𝑝 π‘₯𝑛, π‘₯ = 𝑝 π‘₯, π‘₯ = lim

π‘›β†’βˆžπ‘ π‘₯𝑛, π‘₯𝑛 = 0 Since 𝑝 𝑇π‘₯, π‘₯ ≀ 𝑝 𝑇π‘₯, 𝑇π‘₯𝑛 + 𝑝 𝑇π‘₯𝑛, π‘₯ βˆ’ 𝑝 𝑇π‘₯𝑛, 𝑇π‘₯𝑛

≀ π‘˜ 𝑝 𝑇π‘₯, π‘₯ + 𝑝 𝑇π‘₯𝑛, π‘₯𝑛 + 𝑝 π‘₯𝑛+1, π‘₯ 𝑝 𝑇π‘₯, π‘₯

≀1βˆ’π‘˜1 π‘˜π‘ 𝑇π‘₯𝑛, π‘₯𝑛 + 𝑝 π‘₯𝑛+1, π‘₯

𝑝 𝑇π‘₯, π‘₯ π‘˜ ≀ 𝐾1βˆ’π‘˜1 π‘˜ βˆ₯ 𝑝 π‘₯𝑛+1, π‘₯𝑛 βˆ₯ + βˆ₯ 𝑝 π‘₯𝑛+1, π‘₯ βˆ₯ β†’ 0

Hence 𝑝(𝑇π‘₯, π‘₯) = 0. But since 𝑝(𝑇π‘₯, 𝑇π‘₯) ≀ π‘˜[𝑝(𝑇π‘₯, π‘₯) + 𝑝(𝑇π‘₯, π‘₯)] = 2π‘˜π‘(𝑇π‘₯, π‘₯) = 0 𝑝(𝑇π‘₯, 𝑇π‘₯) = 𝑝(𝑇π‘₯, π‘₯) = 𝑝(π‘₯, π‘₯) = 0 which implies that 𝑇π‘₯ = π‘₯. So xis fixed point of T.

Now if y is another fixed point of T, Then 𝑝 π‘₯, 𝑦 = 𝑝 𝑇π‘₯, 𝑇𝑦 ≀ π‘˜ 𝑝 𝑇π‘₯, π‘₯ + 𝑝 𝑇𝑦, 𝑦

= 0

𝑝 π‘₯, 𝑦 = 𝑝 π‘₯, π‘₯ = 𝑝 𝑦, 𝑦 = 0.

Therefore, π‘₯ = 𝑦.The fixed point of 𝑇 isunique. Hence proved.

Conclusion:

The present work contains not only an improvement and a generalization of the concept of a partial metric, as it has been presented in a more general setting, a partial cone metric space which is more general than the partial metric space, but also an investigation of some fixed point theorems one of which is also new for a partial metric space. So that one may expect it to be more useful tool in the field of topology in modeling various problems occurring in many areas of science, computer science, information theory, and biological science. On the other hand, a concept of fuzzy partial cone metric is investigated fixed points theorems for fuzzy functions. However due to the change in settings, the definitions and methods of proofs will not always be analogous to those of the present results.

References:

1. Mehdi Asadi, Hossein Soleimani, Fixed Point Theorems of Generalized Contractions in Partially Ordered Cone Metric Spaces, August 8, 2010.

2. Ayse Sonmez, Fixed Point Theorems in Partial Cone Metric Spaces, Jan 14, 2011.

3. Palais, R. "A simple proof of the Banach contraction principle." J. fixed point theory appl. 2 (2007), 221–223

References

Related documents

As a result, kilka oil samples treated with Spirulina extract exhibited a significantly lower Totox value and likewise lower amounts of peroxide and p -anisidine

2.1 Gas Processing and Reprocessing Plants The main products of gas processing plants (field plants) are propane, butanes, pentanes plus and sulphur.. Deep-cut facilities adjacent to

Artificial breeding and captive propagation of species is linked to its critical life history parameters such as growth, fecundity, reproductive potential, size

Evaluation of Parental Satisfaction with the Medical Care of a Retarded Child ATTITUDE STUDY OF PARENTS WITH MENTALLY RETARDED

The purpose of this study was to assess ADNC and neuronal loss, applying sensitive immunohistochemical (IHC) technique in surgical biopsies from frontal cortex of patients with

(c) Comparison of resistance rates for strains from treatment-naΓ―ve adult patients and individuals in the general population who participated in a health survey The individuals