• No results found

OR 13,149

N/A
N/A
Protected

Academic year: 2021

Share "OR 13,149"

Copied!
128
0
0

Loading.... (view fulltext now)

Full text

(1)

Pershing

Ia

System Description

June

1974

OR

13,149

MARTIN MARIE'ITA AEROSPACE

ORLANDO DIVISION

(2)
(3)

T h e P e r s h i n g Weapon y s t e m constitutes one of t h e United S t a t e ? s m a j o r nuclear d e t e r r e n t f o r c e s , The s y s t e m is deployed o p e r a t iy in Europe and continues t o

s t a n t i a l contribution t o t h e balance of r and t h e maintenance of peace,

m

I he c u r r e n t v e r s i o n i s the P e r s h i n g a ) which was derived by a n evoiutionary p r o c e s s of continuous i m p r m e n t s t o the initial s y s t e m iguralion, T h i s book provides a functional d e s c r on of t h e P e r s h i n g la m a j o r ipment i t e m s ,

T h i s book was under t h e d i r e c t i o n of Ro e r t L. Ferguson,

System E n g i n e e r i nd was composed, edited, and for atted by Charles

E.

Waters, P e r s h i n g P r e s e n t a t i o n s .

Reprinted by Army Field

(4)

. . .

Chapter One

.

G e n e r a l S y s t e m D e s c r i p t i o n 1

. . .

P e r s hing I a F i r i n g B a t t e r y Components 2 M i s s i l e

. . . e . e . ~ . . .

.

3

. . .

E r e c t o r - Launcher 3

. . .

P r o g r a m m e r - T e s t Station and P o w e r Station 4

. . .

Azimuth Laying Set 4

. . .

B a t t e r y C o n t r o l C e n t r a l 6

. . .

Radio T e r m i n a l Set 6 R e a r A r e a Support Components

. . .

7

. . .

S y s t e m Components T e s t Station 7

. . .

P o w e r Station Equivalent 7

. . .

Support Shops 8

. . .

M i s s i l e S e c t i o n C o n t a i n e r s 8

. . .

Chapter Two

.

T h e i s s i l e 9 A i r f r a m e . . . . . . . . . . . e . . . . . . . . . . . . . . . . . e . e e e . . . . .

. . .

9 Warhead Section

. . .

9

. . .

G u i d a n c e a n d C o n t r o l S e c t i o n 11

. . .

o r Section 12 r Section

. . .

12

. . .

P r o p u l s i o n 1-2 P r o p e l l a n t

. . .

. . .

F i r s t Stage Motor Assembly and C a s e

. . .

o t o r Assembly and C a s e 14

u l a t i o a

. . . a * . . .

. . .

(5)

. . .

Guidance and C o n t r o l

. . .

Guidance Scheme

. . .

Control Scheme

. . .

entati.cn

. . .

ntation

.

.

.

. . .

Referenee S y s t e m

. . .

n t r o l Computer

. . .

Actuator S y s t e m

. . .

E l e c t r i c a l

. . .

B a t t e r y

. . .

Static I n v e r t e r

. . .

ain D i s t r i b u t o r

. . .

High E n e r g y F i r i n g Units

. . .

P o w e r D i s t r i b u t o r

. . .

Additional Equipment

. . .

e r T h r e e

.

E r e c o r - l a u n c h e r

. . .

e r A s s e m b l y ernbly

. . .

. . .

Azimuth Ring A s s e m b l y a s t

. . .

on Handling Device

. . .

i t A s s e m b l y

. . .

tions

. . . * . . m e . .

. . .

. . .

. . .

. . .

. . .

. . .

a d s

. . .

. . .

Associated Corn onents

. . .

. . .

. . .

. . .

Booms

. . . * . . . * . . .

. . .

i s s i l e C r a d l e

. . . .

Retaining Ring Half

. . .

War head Section Handling eviee

. . . .

.

. . .

Control Box

. . .

r a u l i e C o n t r o l P a n e l

. . .

Hydrauli o r E r e c t i o n

lock and Associated Corn onents

. . .

T r a n s p o r t e r A s s e b l y . . . * e . . . s . e . . e e e e *

. . .

P h y s i c a l Data

. . .

Functional Data

. . .

Leveling S y s t e m

(6)

L e v e l S e n s o r

. . .

6 3 E l e c t r i c a l C o n t r o l C i r c u i t r y

. . .

6 3 anual D r i v e

. . .

63

. . .

E r e c t i o n S y s t e m 64

. . .

Hydraulic E r e c t i o n A s s e m b l i e s 64

. . .

Hydraulic Accumulator. 64

. . .

P i l o t v a l v e 64

. . .

S e l e c t o r Valve 64

. . .

E r e c t i o n Manifold and Associated Components 64

. . .

Hydraulic A c t u a t o r s 64

. . .

E l e c t r i c P u m p 64

. . .

anual P u m p 66

. . .

y d r a u l i c S y s t e m Oil Tank 66 Mechanical E r e c t i o n A s s e m b l i e s

. . .

67 Azimuth Ring A s s e m b l y

. . .

67 Booms

. . .

67 M i s s i l e c r a d l e

. . .

67

Retaining Ring Half

. . .

69

Uplock and Associated Components

. . .

69

Cable Mast A s s e m b l y

. . .

69 Azimuth Ring A s s e m b l y C l a m p R e l e a s e e c h a n i s m

. . .

69 Chapter F o u r

-

P r o g r a m m e r - T e s t Station

. . .

;

. . .

72 Shelter

. . .

73

. . .

Computer 75 Adapter

. . .

76

. . .

Operations C o n t r o l Function 77

. . .

Command and Monitoring Function 77

. . .

P l a t f o r m Alignment Function 79 AC /DC Stimuli Function

. . .

79

. . .

M e a s u r e m e n t s Function 79 P r e s e t t i n g Function

. . .

79

. . .

Modules 79 Adapter F i l t e r A s s e m b l y

. . .

79

. . .

Adapter E l e c t r i c a l Equipment Rack 8 v o l t a g e M e a s u r e m e n t

. . .

81

. . .

Stimulus Voltage 81 I n v e r t e r F r e q u e n c y

. . .

8 1 Synchro P r e s e t

. . .

81 Remote F i r e Box

. . .

82 Console

. . .

8 2 Azimuth Laying Control P a n e l Assembly

. . .

8 3

. . .

i t o r P a n e l Assembly

. . .

Assembly

Tape Reader

. . .

Countdown Control P a n e l Assembly

. . .

8 3

Utility P a n e l A s s e m b l y

. . .

. . .

T e l e p r i n t e r

. . .

(7)

. . .

.

Chapter F i v e Power Station

. . .

G e n e r a l Description

. . .

G a s Turbine Engine Gearbox

. . .

. . .

High P r e s s u r e Air System

. . .

Air Cycle Conditioning System

. . .

DC Power System

. . .

AC Power System

. . .

h e r Subsystems

. . .

.

Chapter Six Azimuth Laying Equipment Set

. . .

Equipment Description

. . .

~ o r i z o n t a l / V e r t i c a l Laying Theodolite

. . .

Orienting Station Theodolite

. . .

Orienting Line T a r g e t

. . .

Azimuth Laying Control Box

. . .

Miscellaneous Equipment

. . .

Laying Methods General

. . .

. . .

E r e c t and F i r e Mode

. . .

V e r t i c a l Laying Mode

. . .

.

Chapter Seven B a t t e r y Control C e n t r a l

. . .

Physical Description

. . .

E l e c t r i c a l Power

. . .

.

Chapter Eight Communications

. . .

ANiTRC.80. Radio T e r m i n a l Set

. . .

ANITRC- 133A. Radio T e r m i n a l Set

. . .

.

Chapter Nine Ground Networks

. . .

.

Chapter T e n System Components T e s t Station

. . .

E x t e r i o r Description

. . .

SCTS Major Assemblies

. . .

Major PTS Assemblies

. . .

Major SCTS Consoles and Assemblies

. . .

Assembly T e s t e r

. . .

Pneumatic T e s t Console

. . .

Distribution Console

. . .

Cable Entry P a n e l s

. . .

Equipment Storage

. . .

AC /DC Differential Voltmeter and Oscilloscope

. . .

t e r Eleven

.

ARS/SLA

. . .

Automatic Reference System

. . .

Azimuth Reference Unit

. . .

Reference Assembly

. . .

(8)

Translating Asse ly

. . .

a . ~ ~ . . ~ ~ ~ e * . ~ e e * * ~ * ~ e ~ e o ~ e . . ~ ~ * * * * ~ ~ ~ e * . ment

. . .

ueritial Launch A e r

. . .

de

. . .

1

. . .

r i e a l Section

. . .

neurnatic Section

. . .

n s

. . .

(9)

. . .

Typical P e r s h i n g Flight Scenario

. . .

P e r s h i n g Ia F i r i n g B a t t e r y Components

. . .

Surface Attack Guided Missile XMGM-31A ( P e r s h i n g Missile)

. . .

T r a c t o r with Erector-Launcher

. . .

P r o g r a m m e r - T e s t StationlPower Station

. . .

Azimuth Laying Set

. . .

B a t t e r y Control C e n t r a l

. . .

Radio T e r m i n a l Set AN/TRC-80

. . .

S y s t e m Components T e s t Station

Power Station Equivalent

. . .

. . .

Typical R e p a i r Shop

. . .

Typical Maintenance Shop and Supply Van

M i s s i l e Section Shipping and Storage Containers

. . .

. . .

P e r s h i n g M i s s i l e A e r o and S t r u c t u r a l Components

P e r s h i n g M i s s i l e Sections

. . .

. . .

P e r s h i n g F i r s t and Second Stage Motors

. . .

F i r s t Stage Motor Section. Inboard P r o f i l e

. . .

Second Stage Motor Section. Inboard P r o f i l e

. . .

Guidance and Control Section

. . .

Guidance and Control S y s t e m Functional Schematic

. . .

Missile Guidance Coordinates and E r r o r s

. . .

M i s s i l e Attitude E r r o r s

. . .

Missile Response t o Attitude E r r o r s

. . .

Missile Coordinate S y s t e m

. . .

Pitch/Yaw Loops R o l l h o p

. . .

. . .

Steering Scheme

. . .

e r t i a l System

. . .

i s s i l e Axes Orientation ST- 120 Gimbals

. . .

AB-5 Gyroscope

. . .

(10)
(11)
(12)
(13)

The P e r s h i n g Ia Weapon System i s a t a c t i c a l , mobile b a l l i s t i c m i s s i l e s y s t e m p o s s e s s i n g the capability t o respond effectively to any n u c l e a r o r m a j o r nonnuclear t h r e a t to the United S t a t e s o r i t s a l l i e s .

The s y s t e m i s c o m p r i s e d of all f i r i n g b a t t e r y components r e q u i r e d to conduct launch operations a s well a s equipment n e c e s s a r y f o r r e a r a r e a s u p p o r t and m a i n t e - nance functions.

In i t s b a s i c s c e n a r i o , the m i s s i l e d e l i v e r s a n u c l e a r warhead to p r e s e l e c t e d t a r g e t out to a range of 4C0 m i l e s f r o m the launch point ( F i g u r e 1-1). When the m i s s i l e is f i r e d , the f i r s t s t a g e r o c k e t m o t o r i s ignited, P e r s h i n g liftoff o c c u r s and the m i s s i l e begins a p r e d e t e r m i n e d pitchover m a n e u v e r toward t h e t a r g e t . When f i r s t s t a g e b u r n - out is achieved t h e m i s s i l e e n t e r s a c o a s t period. At the end of t h e c o a s t period, f i r s t s t a g e s e p a r a t i o n o c c u r s and the second s t a g e rocket m o t o r i s ignited to a c c e l e r a t e the r e m a i n i n g m i s s i l e s e c t i o n s along the flight path. During second s t a g e burn, t h e guid- a n c e computer constantly computes the m i s s i l e ' s velocity and displacement. When the p r o p e r values of attitude, r a n g e , and velocity have been attained a t h r u s t t e r m i n a t i o n signal i s applied, second s t a g e s e p a r a t i o n o c c u r s , and the warhead i s spun a t 32 r p m t o s t a b i l i z e i t s f o r w a r d motion a s it continues on a b a l l i s t i c t r a j e c t o r y t o the t a r g e t .

(14)

SEPARATION

-

I BURNING PHASE

Per

a

The v a r i o u s components r e q u i r e d t o conduct launch o p e r a t i o n s a t the firing b a t t e r y a r e the m i s s i l e , e r e c t o r - l a u n c h e r , p r o g r a m m e r - t e s t station and power station, azimuth laying s e t , b a t t e r y control c e n t r a l , and the r a d i o t e r m i n a l s e t . A l l of t h e s e components a r e mounted on wheeled vehicles ( F i g u r e 1 - 2 1 except f o r the azimuth l a y - ing s e t which i s t r a n s p o r t e d on a 2 1/2 ton c a r g o vehicle and unloaded f o r use.

(15)

T h e P e r s h i n g m i s s i l e ( F i g u r e 1- 3) is a two-stage, s u r - f a c e - t o - s u r f a c e b a l l i s t i c weapon c a able of engaging t a r g e t s

m i l e s . It has a n a l l - i n e r t i a l guidance s y s t e m e s t h e n u c l e a r warhead in a p r e s e l e c t e d b a l l i s t i c t r a j e c t o r y by using d a t a i n s e r t e d into t h e guidance and con- t e r b e f o r e liftoff. Once t h e m i s s i l e is a i r b o r n e ,

etely f r e e of ground control and t h e r e f o r e un- affected by a l l known methods of guidance countermeasures.

Designed f o r simplified t r a n s p o r t a t i o n and f a s t e r e c t i o n and f i r i n g of the P e r s h i n g m i s s i l e , the e r e c t o r - l a u n c h e r ( F i g u r e 1-41 i s capable of paved road o r c r o s s country t r a v e l . At t h e firing s i t e automatic e r e c t i o n and leveling contribute t o a v e r y rapid r a t e of f i r e . The e r e c t o r - l a u n c h e r ( E L ) with m i s s i l e aboard i s towed by the XM757

t r a c t o r . The e r e c t o r - l a u n c h e r with m i s s i l e aboard can a l s o be t r a n s p o r t e d by C-130, (2-133, and C - 1 4 1 a i r c r a f t .

(16)

r o g r a m m e r - t e s t station own in F i g u r e 1 - 5 i s

6 5 6 vehicle and f e a - t u r e s rapid m i s s i l e checkout and countdowns, with complete c o m - puter control, and automatic s e l f - t e s t and malfunction isolation. Ad- ditionally, the P T S p e r f o r m s t e s t s that s i m u l a t e a i r b o r n e m i s s i l e op- e r a t i o n , p r o g r a m s the t r a j e c t o r y of the m i s s i l e , and controls the firing sequence. Modern e l e c t r o n i c s pack- aging, featuring plug-in m i c r o m o d - ules, i n c r e a s e s maintainability and allows the P T S o p e r a t o r to p e r f o r m 80 p e r c e n t of all r e p a i r s at the f i r - ing position. T h e power station, which provides the p r i m a r y e l e c t r i

-

e a l and pneumatic power f o r the m i s s i l e and ground support equip- ment a t the firing position, i s t r a n s - ported on the s a m e vehicle.

The azimuth laying s e t ( F i g u r e 1 - 6 ) , which i s s i m i l a r in design and function to standard surveying equipment, i s used to align the m i s s i l e i n e r t i a l guiance s y s t e m t o the c o r r e c t t a r g e t azimuth. All of t h e equipment i s s t o r e d in two p r o t e c t i v e c o n t a i n e r s and c a r r i e d aboard a n a u x i l i a r y equipment vehicle.

(17)
(18)

T o control the P e r s h i n g

e n s u r e n u c l e a r safety, the b a t t e r y c o m - m a n d e r m o n i t o r s and d i r e c t s f i r i n g s i t e a c t i v i t i e s by maintaining communications with a i l units f r o m a firing b a t t e r y con-

is a l s o linked with other b a t t e r i e s and ion h e a d q u a r t e r s f o r positive c o m -

T o c o n t r o l and coordinate firing bat- t e r y o p e r a t i o n s , s e v e r a l communication links a r e established with higher head- q u a r t e r s . Battalion communications a r e maintained with the r a d i o t e r m i n a l s e t ,

g u r e 1-8). The radio d e r - provides voice and t e l e - type communications between m i s s i l e firing units and higher h e a d q u a r t e r s . During t r a v e l the inflatable antenna is s t o r e d in a r e c e s s e d s p a c e in the roof of the RTS. Like the o t h e r e l e m e n t s of the firing b a t t e r y the RTS i s c a r r i e d on an

M6 56 vehicle.

Radio t e r m i n a l s e t , A N / T R C - ~ ~ ~ A , i s a l s o used at the firing s i t e a s the p r i m a r y QRA (Quick Reaction Alert) r e l e a s e m e s - s a g e s y s t e m . T h e A N / T R C - ~ ~ S A i s gov- e r n m e n t furnished equipment.

(19)

e l e m e n t s of the s y s t e m a r e maintained in a s t a t e of combat r e a d i n e s s by Lie r e a r a r e a s u p p o r t e

The s y s t e m components t e s t station (SCTS} i s used t o p e r f o r m r e a r a r e a mainte- nance of the P e r s h i n g s y s t e m ( F i g u r e 1-91. Housed in a mobile c e n t e r , the SCTS utilizes a c o m p u t e r and tape p r o g r a m s f o r t e s t i n g m i s s i l e sections, a s s e m b l i e s , c a r d s , r e l a y s , and modules f r o m the guided m i s s i l e and a s s o c i a t e d ground support equipment. Diagnostic tape p r o g r a m s a r e a l s o provided f o r verification and troubleshooting of m a j o r SCTS a s s e m b l i e s . The SCTS contains a dismounted P T S and h a s f a c i l i t i e s

whereby one m i s s i l e guidance section can be t e s t e d and another r e p a i r e d simultaneously under controlled t e m p e r a t u r e conditions. P o w e r f o r the SCTS o r i g i n a t e s f r o m the power

T h e power s t a t i o n equivalent (PSE) provides the s a m e outputs a s the firing b a t t e r y power station but i s capable of m o r e sustained o p e r a - tion. C o m p r i s e d of two t r a i l e r mounted power s t a t i o n s and one f a c i l i t i e s distribution t r a i l e r

F i g u r e 1-10), the PSE f u r n i s h e s a l l the power r e q u i r e d f o r r e a r a r e a checkout.

(20)

S e v e r a l shops and s e m i t r a i l e r vans ( F i g u r e s 1-11 and 1-12) a r e assigned to the r e a r a r e a t o provide f a c i l i t i e s f o r e l e c t r i c a l and mechanical maintenance and r e p a i r , p a r t s s t o r a g e , and offices f o r d i r e c t i o n and c o n t r o l of d i r e c t support and g e n e r a l s u p - p o r t maintenance functions.

S e p a r a t e r e u s a b l e shipping and s t o r a g e c o n t a i n e r s ( F i g u r e 1-13) a r e provided f o r e a c h of the four m i s s i l e s e c t i o n s . The c o n t a i n e r s p r o t e c t the m i s s i l e s e c t i o n s f r o m the e f f e c t s of e x c e s s i v e vibration, a b n o r m a l handling, and intolerable a t m o s p h e r i c conditions.

(21)

P e r s h i n g i s a two s t a g e , solid propellant b a l l i s t i c m i s s i l e ( F i g u r e 2-1). T h e m i s s i l e a i r f r a m e is 415.27 i n c h e s long, h a s a m a j o r d i a m e t e r of 40 i n c h e s , and weighs approxi- m a t e l y 1 0 , 0 0 0 pounds. Monocoque in construction, the m i s s i l e h a s an o u t e r skin a s s e m - bled t o t r a n s v e r s e r i n g s f o r r i g i d i t y d u r i n g flight and ground handling. Splice r i n g s m a k e w a r h e a d s e c t i o n s , guidance and c o n t r o l s e c t i o n s , and second and f i r s t s t a g e m o t o r s e c t i o n s c o m p l e t e l y i n t e r c h a n g e a b l e . F l i g h t c o n t r o l is m a i n t a i n e d by using s e t s of t h r e e a i r and jet v a n e s a t the aft end of e a c h m o t o r s e c t i o n ; t h e s e v a n e s a r e mounted 1 2 0 d e - g r e e s a p a r t a r o u n d t h e m o t o r p e r i p h e r y . S p e c i f i c l o c a t i o n s along the m i s s i l e longitudi- n a l l i n e a r e m e a s u r e d i n i n c h e s f r o m s t a t i o n 100, a point 3.99 i n c h e s i n f r o n t of the m i s - s i l e n o s e . P e r s h i n g i s s t r u c t u r a l l y and functionally divided into four s e c t i o n s : the w a r - head s e c t i o n , the g u i d a n c e and c o n t r o l s e c t i o n , and the second and f i r s t s t a g e m o t o r s e c - t i o n s ( F i g u r e 2-2).

T h e w a r h e a d s e c t i o n is c o n s t r u c t e d on an a l u m i n u m s u b s t r u c t u r e with an ablative type p l a s t i c s h e l l of v a r y i n g t h i c k n e s s . T h i s s h e l l is f a b r i c a t e d f r o m l a y e r s of pheonolic- i m p r e g n a t e d , r a n d o m o r i e n t e d a s b e s t o s t a p e , c u r e d i n t o a homogeneous s t r u c t u r e u n d e r heat and high p r e s s u r e . T h e s u r f a c e is h a r d and b r i t t l e with ablative c h a r a c t e r i s t i c s .

In t h e f i n a l p h a s e of flight, t h e w a r h e a d s e c t i o n b e c o m e s a r e e n t r y body e x p o s e d to the heating e f f e c t s of high s p e e d p a s s a g e t h r o u g h a t m o s p h e r e . T h e v a r y i n g t h i c k n e s s of the s k i n is designed in a c c o r d a n c e with the r a t e of ablation experienced by the r e e n t r y body when s u b j e c t e d t o t h e s e heating e f f e c t s . Nose cone, c e n t e r , and aft s u b s e c t i o n s f o r m the w a r h e a d s e c t i o n .

(22)

1 2 PAD, AIR VANE ( 3 )

13 SHELL, BODY, F I R S T STAGE

1 4 ROCKET MOTOR ASSEMBLY, F I R S T STAGE

15 J E T VANE ( 3 ) 1 6 FLAME S H I E L D ( 3 ) 17 BOLT, MACHINE ( 2 1 ~ - , i s AIR VANE ( 3 ) 19 PAD, A I R VANE ( 3 ) 2 0 BAND, S E C T I O N ( 4 ) 21 SHELL, BODY, SECOND STAGE

2 2 ROCKET MOTOR ASSEMBLY, SECOND STAGE

23 CASE VENTING - - - - SYSTFM

2 4 THRUST REVERSAL PORT COVER ( 3 )

25 THRUST REVERSAL PORT ( 3 ) 2 6 BOLT. MACHINF ( 7 1 2 7 CONNECTING L I N ~ S ' ( P ) 2 8 BASE STRUCTURE ASSEMBLY 2 9 COVER ASSEMBLY 30 BOLT, MACHlNE ( 2 ) BODY SECTION, GUIDED M I S S I L E , WARHEAD ( X M 2 8 ) BODY SECTION, GUIDED M I S S I L E , GUIDANCE AND CONTROL ( X M 9 2 ) BODY SECTION, GUIDED M I S S I L E , SECOND STAGE ( X M 1 0 2 )

(23)

T h e n o s e cone s u b s e c t i o n is a plastic cone a s s e m b l e d with a n o n s t r u c t u r a l nose l i n e r having an aluminum s p l i c e ring a t the aft end. The c e n t e r subsection i s a double-cone f r u s t u m shaped a s s e m b l y with the p e r i p h e r a l s h e a r type of aluminum s p l i c e r i n g s located at i t s f o r w a r d and aft e n d s . An additional f r a m e with longitudinal s t i f f e n e r s placed r a d i - a l l y i n t h e aft end is used to s u p p o r t the w a r h e a d and r e l a t e d n e t w o r k s . T h e aft s u b s e c - tion, s i m i l a r i n c o n s t r u c t i o n t o t h e c e n t e r s u b s e c t i o n , is mated to the c e n t e r subsection with an aluminum s p l i c e r i n g . An insulated, domed aluminum bulkhead, located at the aft end of t h i s s u b s e c t i o n , i s the c l o s u r e f o r the warhead s e c t i o n . Both the spin s y s t e m and c o v e r plate a r e mounted on t h i s bulkhead. A s p l i c e r i n g a s s e m b l y c o u p l e s the w a r - head s e c t i o n with the guidance and c o n t r o l s e c t i o n . T h e s p l i c e r i n g is held t o g e t h e r by e x p l o s i v e bolts to p e r m i t inflight s e p a r a t i o n of the two s e c t i o n s .

T h e guidance and c o n t r o l s e c t i o n i s a two p i e c e , m e t a l c o n i c a l , f r u s t u m shaped s t r u c - t u r e p r e s s u r i z e d t o p e r m i t t e m p e r a t u r e and p r e s s u r e c o n t r o l f o r a i r b o r n e guidance and c o n t r o l equipment. T h e two p i e c e s a r e the c o v e r f o r w a r d s e c t i o n ) and the b a s e

tion), A s p l i c e r i n g a s s e m b l y j o i n s the guidance and c o n t r o l s e c t i o n and second s t a g e m o t o r s e c t i o n . Conventional b o l t s a r e used t o hold the s p l i c e r i n g t o g e t h e r s i n c e no i n - flight s e p a r a t i o n o c c u r s at t h i s i n t e r f a c e . Support b r a c k e t s f o r the c o m p o n e n t s and w i r i n g , and the a i r d u c t s and manifold f o r the ST-120 a i r s u p p l y a r e i n t e g r a l p a r t s of the i n t e r n a l s t r u c t u r e .

(24)

T h r e e m a j o r s t r u c t u r a l p a r t s c o m p r i s e the s e c o n d s t a g e m o t o r s e c t i o n : the second s t a g e m o t o r c a s e , the f o r w a r d m o t o r a d a p t e r , and the aft c o n t r o l s package.

T h e hydrospun, high s t r e n g t h D6AC s t e e l c a s e s e r v e s a d u a l p u r p o s e in being both the p r o p e l l a n t c o n t a i n e r a r d the o u t e r s k i n of the m i s s i l e in the c e n t e r of the s e c t i o n . T h e f o r w a r d m o t o r a d a p t e r , a t t a c h e d t o the domed end of the m o t o r c a s e , a d a p t s to the guidance and c o n t r o l s e c t i o n by a V-band s p l i c e r i n g . T h e f o r w a r d m o t o r a d a p t e r is 4

i n c h e s i n d i a m e t e r and 19.93 i n c h e s wide.

S t r u c t u r a l s u p p o r t between t h e second s t a g e m o t o r c a s e and t h e f i r s t s t a g e m o t o r Fee-

tion is provided by the aft c o n t r o l s package which h o u s e s the a i r vane and jet vane a s s e m - b l i e s , t h r e e h y d r a u l i c a c t u a t o r units, a f l a m e s h i e l d , and a i r vane pads.

In addition t o the i n t e r n a l s t r u c t u r e , a conduit c o v e r and c a s e venting shaped c h a r g e s a r e attached t o the o u t e r s k i n of the m i s s i l e .

Like the second s t a g e , the f i r s t s t a g e i s c o m p r i s e d of t h r e e m a j o r s t r u c t u r a l p a r t s : f i r s t s t a g e m o t o r c a s e , f o r w a r d m o t o r a d a p t e r , and aft c o n t r o l s package. M a t e r i a l and c o n s t r u c t i o n t e c h n i q u e s used f o r the f i r s t and s e c o n d s t a g e m o t o r c a s e s a r e the s a m e ; h o w e v e r , the f i r s t s t a g e is l a r g e r and h o u s e s no i m p u l s e c o n t r o l e q u i p m e n t . T h e f i r s t s t a g e m o t o r c a s e a l s o s e r v e s a s the o u t e r m i s s i l e s k i n i n the c e n t e r portion of the s e c - tion.

T h e f o r w a r d m o t o r a d a p t e r is provided to adapt the f i r s t s t a g e m o t o r s e c t i o n t o the second s t a g e . T h e s p l i c e r i n g V-band, a f o u r s e g m e n t band having explosive links with d e t o n a t o r a s s e m b l i e s adapted t o i t , m a t e s the s e c t i o n s .

S t r u c t u r a l s u p p o r t between the f i r s t s t a g e m o t o r c a s e and the a z i m u t h r i n g of the e r e c t o r - l a u n c h e r is provided by the f i r s t s t a g e aft c o n t r o l s package. It a l s o p r o v i d e s s u p p o r t and housing f o r the t h r e e h y d r a u l i c actuation s y s t e m s , f l a m e s h i e l d , a i r and jet v a n e s , f o r w a r d a i r vane pads, and the t a i l plug a s s e m b l y . In addition to the i n t e r n a l

s t r u c t u r e , a conduit c o v e r i s e x t e r n a l l y mounted between the f o r w a r d m o t o r a d a p t e r and the aft c o n t r o l package.

T h e p r i m a r y function of t h e r o c k e t m o t o r s ( F i g u r e 2-3) i s to p r o p e l the P e r s t l i n g m i s s i l e f r o m liftoff to f i r s t s t a g e s e p a r a t i o n and f r o m second s t a g e ignition to cutoff. At t h i s t i m e the w a r h e a d s e c t i o n i s s e p a r a t e d f r o m the guidance and c o n t r o l and second s t a g e s e c t i o n s and b e c o m e s a f r e e b a l l i s t i c m i s s i l e .

Pro

hifotor p r o p e l l a n t used is of a composite c a s t f o r m u l a using aluminum powder a s the fuel, a m m o n i u m p e r c h l o r a t e a s the o x i d i z e r , and polybutadiene a c r y l i c acid (PBAA) a s the b i n d e r ( t h e PBAA a l s o s e r v e s a s a fuel). Both m o t o r s have an i n t e r n a l burning c y l i n d r i c a l c o r e which t e r m i n a t e s in a d o m e shaped s l o t at the head end. Since PBAA b i n d e r i s b a s i c a l l y a s y n t h e t i c r u b b e r , t h i s f o r m u l a and configuration r e s i s t c r e e p o r

(25)

T h e f i r s t s t a g e m o t o r a s s e m b l y c o n s i s t s of o n e s o l i d p r o p e l l a n t r o c k e t m o t o r with i n t e g r a l f o r w a r d a d a p t e r , one V s p l i c e band, two f i r i n g unit a s s e m b l i e s , t h r e e h y d r a u - l i c p a c k a g e s , t h r e e a i r v a n e s , t h r e e j e t v a n e s , t h r e e a i r v a n e p a d s , f l a m e s h i e l d , i n i t i - a t o r s , d e t o n a t o r s , s e p a r a t i o n l i n k s , t o r q u i n g l i n k s , e l e c t r i c a l n e t w o r k s h a r n e s s e s , and e x t e r n a l conduit c o v e r ( F i g u r e 2 -4).

(26)

A

hydrospun c y l i n d r i c a l s e c t i o n , the f i r s t s t a g e motor. c a s e is g i r t h welded t o an e l - l i p t i c a l f o r w a r d d o m e and a c o n i c a l aft d o m e . T h e e n t i r e c a s e i s m a d e of DGAC high s t r e n g t h s t e e l , T h e f o r w a r d d o m e h a s an opening i n the c e n t e r f o r the pyrogen unit and the aft d o m e c o n t a i n s p r o v i s i o n s f o r attaching the nozzle t o the m o t o r . il f o r w a r d a d a p t - e r is riveted to the c a s e to provide f o r i n t e r s t a g e connectiotl. T h e P B A A propellant i s c a s t i n t o the m o t o r c a s e , then c u r e d , and the nozzle a t t a c h e d .

E x c e p t f o r l e n g t h the second s t a g e m o t o r a s s e m b l y i s s i m i l a r to the f i r s t s t a g e . S h o r t e r than the f i r s t s t a g e m o t o r a s s e m b l y , the second s t a g e c a s e a l s o h a s a c a s e venting s y s t e m and i m p u l s e c o n t r o l s y s t e m ( F i g u r e 2-5).

An i m p u l s e c o n t r o l s y s t e m is provided t o reduce f o r w a r d t h r u s t of the second s t a g e m o t o r , a t any p r e d e t e r m i n e d t i m e o v e r the designed operatirlg r a n g e of the s y s t e m , t o p e r m i t effective w a r h e a d s e c t i o n separa"con. The s y s t e m c o n s i s t s of t h r e e p a r t s placed s y m e t r i c a l l y , 120 d e g r e e s a p a r t i n the m o t o r f o r w a r d d o m e . An irnpulse c o n t r o l tube p r o j e c t s f r o m e a c h port at an angle of 3 i i . 5 d e g r e e s f r o m the m o t o r longitudinal c e n t e r - l i n e t o an opening in the m o t o r f o r w a r d a d a p t e r . E a c h port i s plugged with an a l u m i n u m

(27)

T h e case venting system e retainer assern

mounted on the external hor

ucing flow interference etween the war

Vent m 121 SECTION 6-C Air Air Vane ane 3 ir Vane

(28)

During b u r n i n g , t h e m o t o r c a s e i n t e r i o r i s p r o t e c t e d by a combination of the unburned p r o p e l l a n t , a l a y e r of l i n e r , s w e p t - i n - i n s u l a t i o n i n t h e f o r w a r d d o m e i n s u l a t i o n is a c a r - boxyl t e r m i n a t e d PBAA ( C T P B ) p o l y m e r c o m p o s i t i o n which i s swept into the f o r w a r d d o m e . T h e aft d o m e i n s u l a t i o n , a h a r d , p r e m o l d e d p l a s t i c , s e a l e d with an epoxy and polysulfide c o m p o s i t i o n , i s bonded t o t h e aft d o m e of the m o t o r with the s a m e m a t e r i a l used f o r the f o r w a r d i n s u l a t i o n .

P e r s h i n g m o t o r s a r e ignited by a pyrogen unit which, i n t u r n , i s ignited by two e x - ploding b r i d g e w i r e i n i t i a t o r s and a s m a l l p y r o t e c h n i c c h a r g e . T h e pyrogen unit i s a m i n i a t u r e r o c k e t m o t o r which v e n t s i t s r o c k e t e x h a u s t p r o d u c t s i n t o the c o m b u s t i o n c h a m b e r of the m o t o r t o b r i n g the t e m p e r a t u r e and p r e s s u r e up to the point w h e r e t h e p r o p e l l a n t g r a i n w i l l ignite. T h e g r a i n of the pyrogen unit is a l s o PBAA c a s t and shaped t o e x p o s e as m u c h burning s u r f a c e a s p o s s i b l e . T h i s , i n t u r n , p r o v i d e s a v e r y s h o r t burning t i m e f o r achieving t h e h i g h e s t p o s s i b l e p r e s s u r e and t e m p e r a t u r e i n the f i r s t s t a g e m o t o r c o m b u s t i o n c h a m b e r t o e n s u r e i n s t a n t a n e o u s ignition, T h e pyrogen unit c a s e is f i l a m e n t wound f i b e r g l a s s a t t a c h e d t o a s t e e l a d a p t e r t o p e r m i t a t t a c h m e n t t o t h e m a i n m o t o r c a s e , E a c h pyrogen unit is f i t t e d with two i n i t i a t o r s , e a c h on a s e p a r a t e c h a n n e l t o e n s u r e ignition.

T h e f i r s t s t a g e flight n o z z l e h a s an a v e r a g e expansion r a t i o of 7.06; the second s t a g e r a t i o is 15.06. T h e s e n o z z l e s c o n s i s t of i n t e r l o c k e d s t e e l a t t a c h m e n t r i n g s , a n e n t r a n c e and e x i t s e c t i o n of molded chopped g r a p h i c cloth, a c a r b o n t h r o a t i n s e r t , and a f i b e r - g l a s s s h e l l . T h e s h e l l is a combination of r e s i n - i m p r e g n a t e d , b i d i r e c t i o n a l g l a s s cloth

and a l t e r n a t e l a y e r s of r e s i n - i m p r e g n a t e d , c i r c u m f e r e n t i a l f i b e r g l a s s winding, attached t o the aft end of the m o t o r c a s e with b o l t s through the s t e e l a t t a c h m e n t ring.

T h e guidance and c o n t r o l s e c t i o n ( F i g u r e 2 - 6 ) c o n t a i n s the e l e c t r i c a l and e l e c t r o n i c a s s e m b l i e s t h a t c o n t r o l the t r a j e c t o r y of the m i s s i l e . T h e m a j o r a s s e m b l i e s of the guidance and c o n t r o l s e c t i o n a r e t h e ST-120 s t a b i l i z e d p l a t f o r m and i t s a s s o c i a t e d s e r v o - a m p l i f i e r , the guidance and c o n t r o l c o m p u t e r ( G & C C ) , m a i n d i s t r i b u t o r , and power sup-

p l i e s . T h e p r i m a r y power s u p p l i e s c o n s i s t of the m i s s i l e b a t t e r i e s and a s t a t i c i n v e r t e r . O t h e r c o m p o n e n t s a r e an a i r bottle, a h i g h - p r e s s u r e a i r d i s t r i b u t i o n s y s t e m , and s a f e t y r e l a y s f o r discontinuing a f i r i n g s e q u e n c e , if n e c e s s a r y , a f t e r ground power h a s been r e m o v e d . T h e guidance s y s t e m d e t e c t s e r r o r s i n the m i s s i l e t r a j e c t o r y , a s c o m p a r e d to the p r e d e t e r m i n e d flight path, and c o n v e r t s t h e s e e r r o r s i n t o guidance s i g n a l s . T h e c o n t r o l s y s t e m c o m b i n e s the guidance s i g n a l s with attitude s i g n a l s t o g e n e r a t e a c o r - r e c t i v e s i g n a l f o r t r a n s m i s s i o n to the c o n t r o l packages. ?In the guidance s y s t e m , the ST-120 p r o v i d e s m i s s i l e attitude and v e l o c i t y i n f o r m a t i o n f r o m which deviations f r o m t h e progra-mmed t r a j e c t o r y a r e computed by the C;&CC, T h e s e r v o a m p l i f i e r w o r k s with

t o c r e a t e a s t a b l e r e f e r e n c e f r o m which the t r a j e c t o r y d e v i a t i o n s a r e o b - tained. T h e G&CC c o m b i n e s the guidance s i g n a l s with the m i s s i l e attitude r e f e r e n c e d a t a f r o m the ST-120 to c r e a t e the combined c o n t r o l s i g n a l that o p e r a t e s the c o n t r o l p a c k a g e s . T h e guidance s y s t e m continuously m o n i t o r s the a c t u a l v e l o c i t y and d i s p l a c e - m e n t of the m i s s i l e along t h e t r a j e c t o r y , c o m p a r e s the a c t u a l d a t a with the p r e s e t i n - f o r m a t i o n , and c a l c u l a t e s the e x a c t i n s t a n t f o r second s t a g e cutoff and w a r h e a d s e p a r a - tion.

(29)

WINDOW

e a

T h e improved PZa guidance and c o n t r o l s y s t e m i s designed t o function in an a l m o s t i d e n t i c a l fashiori a s i t s p r e d e c e s s o r . The irn Zernentation of both the guidance s c h e m e

and the c o n t r o l s c h e m e w e r e a s e d on i d e n t i c a l c a r r y o v e r r e q u i r e m e n t s f r o log m i s s i l e , The guidance s c h e m e is an implicit scheme which is based on

b e r of computer flown t r a ~ e c t o r i e s t o a r r i v e a t t h e p r e s e t s f o r a given m i s s i o n . The s t e e r i n g s c h e m e i s o timized so that two b a s i c pitcho a s a function of

l t a r g e t s o v e r the P e r s h i n g The control. s y s t e m type of s y s t e m using m i c r o koffs f r o m the ST-12 eh, yaw, and r o i l command e c o m m a n d s which cirive s u c h a fashion to f o r m s i m u l t a n e o u s guidance and c o n t r o l i n all t h r e e g r a m of the guida and c o n t r o l s y s t e m is shown in F i g u r e 2 - 7 . B a s i c a l l y ,

r o v i d e s t h r e e velocity and t h r e e attitude s i g n a l s to the G&CC f o r guidance

and c o n t r o l computations, r e ectively. The C & C t e s the n e c e s s a r y ane commands and i n i t i a t e s

(30)

NOTE SL = CR = RN = PO = SECOND STAGE LIFT AND CUTOFF TO WARHEAD

T h e P e r s h i n g g u i d a n c e s c h e m e c o n s t r a i n s the t o t a l t i m e of flight s u c h t h a t the t a r g e t position a t i m p a c t and the f i r i n g a z i m u t h c a n be c o m p u t e d . T h i s r e d u c e s the guidance p r o b l e m t o a p l a n a r p r o b l e m of r e a c h i n g the r e q u i r e d cutoff conditions a s defined i n the g u i d a n c e p l a n e , T h e g u i d a n c e c o o r d i n a t e s and g u i d a n c e e r r o l - s a r e i l l u s t r a t e d i n F i g u r e 2-8. T h e c r o s s r a n g e c o o r d i n a t e , by definition, l i e s p e r p e n d i c u l a r t o the g u i d a n c e plane defined by the s l a n t a l t i t u d e and s l a n t r a n g e c o o r d i n a t e s . T h e s t e e r i n g s c h e m e a l w a y s d r i v e s the c r o s s r a n g e v e l o c i t y and position e r r o r s t o z e r o . T h e s l a n t r a n g e c o o r d i n a t e

is not used f o r s t e e r i n g but f o r computing a p r e c i s e cutoff t i m e b a s e d on the p r e s e t s i.e., s t o r e d v e l o c i t y a s i l l u s t r a t e d i n F i g u r e 2-8) f o r a given t a r g e t . T h e s l a n t a l t i t u d e c o o r d i n a t e i s used f o r pitching o v e r the m i s s i l e s o t h a t i t s v e l o c i t y and position h i s t o r y and f i n a l v a l u e s a r e a s near- a s p o s s i b l e t o the n o m i n a l t r a j e c t o r y preflown i n d e r i v i n g t h e p r e s e t s .

P e r s h i n g e m p l o y s air- and j e t v a n e s , a c t u a t e d by h y d r a u l i c a c t u a t o r s , f o r c o n t r o l . M i s s i l e a t t i t u d e e r r o r s a r e s e n s e d by t h e ST-120; g u i d a n c e path e r r o r s a r e d e r i v e d in t h e G & C C , T h e s e e r r o r s i g n a l s a r e o p e r a t e d on by c o m p e n s a t i o n f i l t e r s in t h e G & C C and r e s o l v e d i n t o i n d i v i d u a l v a n e c o m m a n d s .

(31)

M I S S I L E GUIDANCE ERRORS

TRAJECTORY DOWN RANGE

SLANT ALTITUDE ERROR

SLANT RANGE ERROR

/

CUTOFF POINT, EPIPSURED OFF POINT, MEASURED

VELOCITY = STORED OCITY > THAN STORED

POINT, MEASURED VELOCITY < THAN STORED

SLANT RANGE COORDINATE

M i s s i l e r o t a t i o n s i n r o l l and yaw a r e sensed a s e r r o r s r e l a t i v e t o the ST-120 r e f e r - ence; i.e., outputs of the r o l l and yaw g i m b a l angle s y n c h r o s a r e used d i r e c t l y a s e r r o r s i g n a l s . T h e pitch attitude e r r o r is computed by subtracting (by m e a n s of a synchro differential) the pitch g i m b a l angle s y n c h r o output f r o m a c a m - g e n e r a t e d pitch attitude p r o g r a m .

Sign conventions r e l a t i v e t o attitude c o n t r o l a r e defined in F i g u r e s 2-9 and 2-10. In F i g u r e 2-9, the s e n s e of the attitude e r r o r s i s defined for r o l l , pitch, and yaw motions. In F i g u r e 2-10, fin r o t a t i o n s and resulting m i s s i l e attitude c o r r e c t i o n , corresponding to a given attitude e r r o r , a r e tabulated.

T h e a x e s of the t h r e e integrating a c c e l e r o m e t e r s mounted on the ST-12

a c c e l e r a t i o n i n c r o s s r a n g e , s l a n t altitude and s l a n t r a n g e a r e defined in F i g u r e 2-11. Velocity outputs of the a c c e l e r o m e t e r s a r e fed into the C & C C . The slant range velocity

input is used to d e t e r m i n e second stage cutoff. T h e c r o s s r a n g e velocity input is used d i r e c t l y a s a guidance path e r r o r since a z e r o value of c r o s s r a n g e velocity i

T h e s l a n t altitude velocity ihput is effectively c o m p a r e d to a s t o r e d p r o g r a m

G&CC) to d e r i v e a s l a n t altitude velocity e r r o r signal.

Attitude control, is accomplished by processing the pitch, yaw, and r o l l attitude e r - r o r s in the G&GC t o generate corresponding vane commands. Guidance is accomplished

(32)

a t t i t u d e and g u i d a n c e c o m p o n e n t s of the v a n e c o m m a n d s a r e s u m m e d t o g e n e r a t e e r r o r s i g n a l s f o r the h y d r a u l i c a c t u a t o r s . T h u s , five c o n t r o l loops e x i s t :

I P i t c h attitude

-

2 Yaw attitude

-

3 Slant altitude

-

4 C r o s s r a n g e

-

5 R o l l a t t i t u d e . -

YAM ATTITUDE ERROR

TRAJECTORY

COORDINATE

P I T C H ATTITUDE ERROR

,

\

PITCH DOUR ALTITUDE

COORDINATE

PIT

/

TRAJECTORY

ROLL ATTITUDL ERROR

(33)

F i n C o r r e c t i o n s 2W = CLOCKWISE CCW = COUNTER-CLOCKNISI PITCH SLANT

I

ALTITUDE

The f i r s t four of t h e s e loops a r e block d i a g r a m m e d in F i g u r e 2-12, F o r yaw attitude and c r o s s r a n g e control, the p r o g r a m m e d inputs a r e s e t to z e r o . T h e atti-

demodulated and analog filtered p r i sampled at 122 s a m p l e s - ps) r a t e . T h e sampled a t t i t ~ d e e r r o r s i g n a l is compensated by a d i g i t a l f i l t e r . T h i s f i l t e r i s depicted a s ( -F.als)D(Z) i n the block d i a g r a m to e

proportional-plus-derivative t e r i n h e r e n t in the digital f i l t e r , T h e

"

(34)

ATTITUDE

T h e accelerometer outputs are demodulated atid analog filtered prior to being sampled

at 30.5 sps. The guidance error signal,

<,

is in general digitally compensated by pr-o-

portional-plus-intepl control. This oper,ation is depicted in the guidance compensation

block as eg -?- ei,'~,

T h e roll attitude ioop is block diagrammed in Figare 2 - 1 3 , T h e roll attitude error is

demodulated arid analog filtered prior to beiag sampled ;:I" 122 sps, T h e sampled e r r o r .

signal is c o m p e ~ s a t e d by ti digital filter. of the s a m e f o r m as described above for pitcil,'

y a w cortmi, Guidarice inputs are not required in the roil control ioop.

(35)

T h e g e n e r a l i z e d c o n t r o l law which c l o s e s the pitch loop i s :

w h e r e

s

= @

P r o g r a m

-

'Missile

T h e yaw c o n t r o l law is s i m i l a r except c r o s s range r e p l a c e s s l a n t altitude.

T h e r o l l plane c o n t r o l law is m e r e l y :

Vane d e f l e c t i o n s r e s u l t i n g f r o m the above c o n t r o l l a w s a r e d e s c r i b e d by the following equations:

w h e r e = c o m m a n d v a n e d e f l e c t i o n s i n pitch, yaw r o l l

a = pitch, y a ~ - , r o l l attitude e r r o r c o n t r o l gain

a d a = pitch, yaw, r o l l attitude e r r o r r a t e c o n t r o

113, IY) 11:

e = c o n t r o l g a i n f o r guidance ath e r r o r i n s l a n t

'

aEtitiide and c r o s s r a n g e

e = c o n t r o l g a i n f o r r a t e of guidance path e r r o r in s l a n t altitude and c r o s s r a n g e

g y r i

giRf = t t t i t u d e e r r o r i n pitch, yaw, r o l l

'PC9 'YC' = attitude e r r o r r a t e i n pitch, yaw, r o l l = s l a n t altitude d i s p l a c e m e n t e r r o r F = s l a n t altitude v e l o c i t y e r r o r E

cf

= c r o s s r a n g e d i s p l a c e m e n t e r r o r

cc

= c r o s s r a n g e v e l o c i t y e r r o r i n t e g r a t i o n s t a r t s at second s t a g e ignition,

(36)

i n the yxv; plane, v m e s 2 and 3 c?efiec! o n e - ! l d f tiie iirnomt. a n d o p p o s i t e t o vane 1 ,

t o p r e v e n t a r o l l m o m e n t . Since v a n e s 2 ~ i n d 3 ; w e e a c h d i s p l a c e d by !iO d e g r e e s f r o n i tine yaw a x i s , the t o t a l f o r c e in tiie yaw plane i s the f o r c e of cine \.;me p l u s tile c o s i n e of 60 d e g r e e s t i m e s the f o r c e of two v m e s , o r one and one-half t i m e s t!ie e f f e c - t i v e n e s s of cine v a n e ,

-411 tlzree v a n e s d e f l e c t e q u a l l y for i ~ o l l c o r r , e c t i o n and t h e t o t s ? fo:.ce avail:*ble i s t h r e e t i r n e s the f o x e a v a i l a b l e f r o m o n e v m e . ' r h u s , the v a n e dcfiection equations b e - c o m e : Vane 3 = i:

+ P I >

-

112 /3 Y T h e s t e e r i n g f u n c t i o n i s a c c o m p l i s h e d the ST-120, G R - C C , v a n e s and a c t u a t o r s , and n e c e s s a r y n e t w o r k s i n t e r c o n n e c t i n g tiie s u b s y s t e m s .

-

C r o s s r a n g e s t e e r i n g i s i i l n s t r a t e d i n F i g u r , ~ Z - l 3 ( ~ i ) . Tlhe c r o s s - r m g e a c c e l e r o m e t e r . p r o v i d e s v e l o c i t y info:-mation t o tile G & C C . T h i s v e l o c i t y i s s a m -

pled f r e q u e n t l y by the GR-CC a n a l o g - t o - d i g i t a l ( A / D ) c o n v e r t e r t o d e t e r m i n e the amount of c r o s s r a n g e v e l o c i t y e r r o r . By i n t e g r a t i n g t h i s inpu; the position e r r o r i s a l s o c a l - c u l a t e d . P r o p e t . g a i n s a r e applied to the v e l o c i t y and position e r r o r s to f o r m a yaw c o m -

(37)

mand, T h i s command is summed with the yaw attitude compensation output and r e s o l v e d into p r o p e r vane commands before b utputted by the

G&CC.

The outputting is accomplished through the digital-to-analog c o n v e r t e r , with the resulting d c voltage applied to the vane a c t u a t o r s . T h e vane deflections r e d i r e c t the m i s s i l e ' s flight path to null out these e r r o r s .

-

The s l a n t altitude s t e e r i n g is implemented in a s i m i l a r fashion to tsated i n F i g u r e 2-13(b). The slant altitude a c c e l e r o m e t e r is Sam-

A I D c o n v e r t e r to obtain slant altitude velocit T h e s l a n t altitude r e d to a s l a n t altitude velocity p r o g r a m value ontinuously computed a s a function of t i m e in the

C&CC)

to obtain the s l a n t altitude v ocity e r r o r . In the s a m e fashion a s c r o s s r a n g e , the velocity and position e r r o r s a r e weighted and summed to f o r m a pitch command. (The position input, however, is n e i t h e r used n o r integrated until the second s t a g e of flight,) T h i s pitch command

&A)

is then summed with the pitch attitude compensation output and resolved into p r o p e r vane commands before being outputted by the

G&CC,

T h e s e outputs, through the D / A c o n v e r t e r , a r e applied to the vane a c t u a t o r s , T h e vane deflections r e d i r e c t the m i s s i l e flight path t o null out t h e s e e r r o r s .

T h e completion of the P e r s h i n g guidance function o c c u r s when the cutoff command i s i s s u e d and the warhead section s e p a r a t e s f r o m the second stage beginning i t s f r e e flight b a l l i s t i c path to the t a r g e t . T h e cutoff solution i s calculated exclusively f r o m the s l a n t r a n g e a c c e l e r o m e t e r output and the p r e s e t s s t o r e d prior- to flight. The following cutoff equation is solved by the C & C C :

S R V SRV) T

+

P

w h e r e = the cutoff p a r a m e t e r

SRVp = the s l a n t range velocity p r e s e t negative value)

= the slaiit r a g e displacement p r e s e t

T = the weighting factor applied to the velocity e r r o r

ant r a n g e a c c e l e r o m e t e r provided velocity

SRD

= s l a n t range displacement ( i n t e g r a t e d f r o m SRVf =

T h e cutoff p a r a m e t e r ) a t liftoff i s a l a r g e fiegative value and r e a c h e s z e r o well into second s t a g e flight a t which t i m e the cutoff command i s i s s u e d . As

A

n e a r s z e r o : the

d e t e r m i n e s the p r e c i s e instant of cutoff by using a East, i t e r a t i v e countdown routine.

i n e r t i a l r e f e r e n c e system W i g c r e 2 - 151, consisting of a s t a b l e platform and a n a s s o c i a t e l i f i e r a s s e m b l y , p r o v i d e s a n e a r t h fixed e o o r d i n a t ~ r e f e r -

y s t e m defined by the local horizontal 'rnuth at the launch s i t e . At t h i s orientation becomes s p a c e fixed

(38)

Roll Axis of Missile

,

, , X Axis of ST-i20 Roll Axis X ' S Yaw Axis - 1 ~ 0 o i bjvlissiie

X Axis Yaw Axis

l

Y Axis !

of Missile

Target

(39)

s s i l e d i s t u r b a n c e s a r e s e n s e d t h r o u g h tin '

igidly connected t o the m i s s i l e s a1 a r r a n g e m e n t supporting " r e s t a b i l i z e d

t i o n s of the m i s s i l e : T h r e e A B - 5 s t a b i l i z i n g g y r o s aPar t o e a c h o t h e r on t h

f i e r s and m o t o r s hold the platforrri s p a c e fixed d u r i n g flight,

FiXED TO

MISSILE W L L H A I N SUAFT

R O L L BEARING

STABILIZED CARRIER RIN

MISSILE H U L L

SLANT ALTITUDE ACCELEROMETE

(40)

sile is pitched over into the desired attitude for second s b g e motor cutoff, C O N T R O L COMPUTER OUIPU' OF R C L L _

EIET%kT

DEGREE f 5 2 " 4 FREEDOM 0 2 2 9 I 90.1 MICRCSYN AT

W i L POSITION -0 C l R R i E R RING W W L C FROM

(41)

~s~'To"[ m- INDUCED iST-120

!

FIXED)

j

I

PITCH SiGNAL TO CONTROL j ; FIXEC) CCMPGTER

AE-3

accelerometers mounted on the carrier ring so that each accelerometer is sensitive

tion along a specific direction. Acceleration is sensed in the direction illustrated in

Figure 2-19. The cross range, slaqt range, and slant altitude acee erometers are of

the integrating gyro type. The output of each m i t is a recessional rate proportional-

to-input acceleration with the total displacement angle being the integral of the tot-" a1 iic-

(42)

leveling errors about the X - a x i

a d direction of leveling e r

test station. T h e arnplifieG

gyro torquer, causing the s EXCITATION

VOLTAGE

(43)

T h e azimuth pic off is a high-sensitivity bridge-type microsyn used only in the ground alignment s c h e e pickoff provides information n e c e s s a r y to align the m i s - s i l e and platform i n azi F i g u r e 2 - 2 6 ) . A p o r r o p r i s m is mounted on the c a r r i e r ring f o r d e t e r m i n i n g pl azimuth heading. It i s oriented s o that a reflected i m a g e (theodolite light s o u r e t e s perpendicularity to t X r e f e r e n c e axis. The heading of the platform, with r e s p e c t to t r u e north, i s viewed d e g r e e s f r o m this heading, T h e pendulums, azimuth pickoff, and p o r r o p r i s m have no function a f t e r launch.

ST-120 ALIGNMENT

l

i

7

AMPLIFIER IN A N U L L POT AZIMUTH PICKUP AT NULL POSITION 1 ION

INPUT ROLL ANGLE CCW ROTATION OF STATOR WITH RESPECT TO ARMATURE VIEWED FROM ABOVE T H E ACTION IN LOOP TAKES PLACE L A N G L E ORDER WIRING DRUM @ @ @ @

00

INPUT ROLL ANGLE COUNTER- CLOCKWISE ROTATION OF MAIN SHAFT ABOUT PLATFORM "Y" AXIS WITH RESPECT TO CARRIER RlNG VIEWED FROM ABOVE THE PLATFORM

-

T h e s e r v o a m l i f i e r a s s e m b l y , used in conjunction f o r m , contains s i x a l i f i e r s : t h r e e A M A B - 3 e l e c t r o n i c c o n t r o l a m p l i f i e r s , and t h r e e A B - 5 e l e c t r o n i c cont

two types of a m p l i f i e r s differ only i n c i r c u i t cornpone

a r e used with the t h r e e a c c e k r o m e t e r s . The a c c e l e r s e n s o r provides the input signal to the a m p l i f i e r with power to the c o n t r o l of the a c c e l e r o m e t e r s e r v o m o t o r provided by tine a m p l i f i e r output,

.! 3 INDICATOR

(44)

One A B - 5 amplifier provides power to the c o n t r o l phase winding of the r o l l g i m b a l s e r v o m o t o r , and the o t h e r provides power t o the yaw gimbal s e r v o motor. The inputs t o t h e s e two a m p l i f i e r s r o i l and yaw) a r e the outputs of the pitch r e s o l v e r . Resolver

e s a r e dependent upon the pitch angle of the m i s s i l e and the output of the X r e c e s s i o n s e n s o r s ,

T h e third

AB-5

am l i f i e r r e c e i v e s an i n ut f r o m the Z gyro precession s e n s o r ,

P o w e r to the c o n t r o l phase of the g i m b a l s e r v o m o t o r i s provided by the am put.

P o w e r t r a n s f o r m e r s a r e used to rovide the r e q u i r e d excitation voltages f o r the pendulums, g y r o s , a c c e l e r o m e t e r s , s e r v o m o t o r s , and attitude sensing devices.

i t c h c a m p r o g r a m m e r is a modular electromechanical device which p r o d u c e s a v a r i a b l e e l e c t r i c a l r e f e r e n c e f r o m which the i t c h attitude e r - r o r many be m e a s u r e d , T h e c a m profile provides both a long and s h o r t c o a s t

the p r o g r a m selection being dependent on d i r e c t i o n of rotation of the c a m , T h

b a s e f o r the p r o g r a m is supplied by a synchronous m o t o r which d r i v e s the c a m through a g e a r reduction and clutch F i g u r e 2 - 2 8 ) , A r e l a y a s s e m b l y provides the switch- ing function r e d p r e s e t t i n g the pitch p r o g r a m ,

p r o g r a m m e r i s checked t o d e t e r m i n e whether o r not

e c a m is turning i n the o g r a r n , During flight, the

t c h c o n t r o l t r a n s m i t t e r ated by the groove i n the use the m i s s i l e t o a s s u m e the t r a j e c t o r y attitude,

y s y s t e m provides the c l e a n , d r y a i r r e q u i r e d ing controlled flight. T h e a i r s y s t e m , located in the guidance sad c o n t r o l section, c o n s i s t s of a s p h e r i c a l a i r bottle, fi?t

t o r s , and a h e e s e r v e s as a storage a r e a and contains i n c h e s of a i r , 0 pslg, The bottle is charged by a i r f r o

(45)

station through the umbilical m a hen the m a s t is disconnected, just before launch, the umbilical cou ve s e a l the missile a i r system,

c t s the installation of the a i r d i s t r i &ion s y s t e m while F i g u r e functional d i a g r a m ,

(46)

T h e d i g i t a l guidance and contr.01 c o m p u t e r is a Bendix BDX 8 2 computer- coiltaining a c e n t r a l p r o c e s s o r and m e m o r y , an input loutput

(1'0)

p r o c e s s o r designed l o i n t e r f a c e with the P e r s h i n g m i s s i l e and ground s u p p o r t equipment, and a power supply,

T h e c o m p a t e r i n t e r f a c e s w i t h the ST-120 s t a b i l i z e d p l a t f o r m , and c o n t a i n s a l l n e c e s - s a r y functions to p r o p e r l y condition the a c c e l e r o m e t e r output and attitude r e f e r e n c e s i g n a l s r e q u i r e d f o r controlling the m i s s i l e f i r s t and second s t a g e c o n t r o l s i i r f a c e s , I n t e r f a c e s a l s o e x i s t between t!le c o m p u t e r 2nd tile m i s s i l e m2in d i s t r i b u t o r - , telemetr-:)- t r a n s m i t t e r , and p r e l a u n c h ground s u p p o r t e q u i p m e n t . In addition, s p e c i a l i n t e r f a c e p r o v i s i o n s a r e m a d e t o f a c i l i t a t e t e s t i n g and m e m o r y loading at the SC'I'S. A s y s t e m o r g a n i z a t i o n d i a g r a m i s shown in F i g u r e 2 - 3 1 ,

GUIDANCE

- - -

AND CONTROL COMPUTE?

C o m p u t e r power is obtained f r o m the m i s s i l e e l e c t r i c a l b u s s y s t e m m d c o n v e r t e d to v o l t a g e s r e q u i r e d by the c e n t r a i p r o c e s s o r , m e m o r y , and 1 / 0 p r o c e s s o r . T h e guidance and c o n t r o l c o m p u t e r a l s o g e n e r a t e s t i m e s e q u e n c e s i g n a l s t o the m i s s i l e f o r s t a g i n g

a n d a cutoff s i g n a l t o t e r m i n a t e second s t a g e m o t o r t h r u s t and c a u s e w a r h e a d s e p a r a t i o n when g u i d a n c e p a r a m e t e r s a r e s a t i s f i e d .

W h e r e p o s s i b l e , d e s i g n c o n s i d e r a t i o n s f o r the d i g i t a l c o m p u t e r use e x i s t i n g m i s s i l e e l e c t r i c a l and m e c h a n i c a l i n t e r f a c e r e q u i r e m e n t s , T h e guidance and c o n t r o l s o f t w a r e and h a r d v ~ a r e use s t a t e of tihe art t e c h n i q u e s t o p r o d u c e a c c e p t a b l e r e l i a b i l i t y a g a i n s t guidance s u b s y s t e m f a i l u r e .

(47)

F i g u r e 2-32 is a signal flow d i a g r a m of the guidance and control functions performed by the computer. The functions a r e specified by the r e q u i r e m e n t s f o r a delta-minimum guidance profile.

The a j r b o r n e functions m a y be divided into s i x groups: guidance, stability, control, good guidance, time d i s c r e t e generation, and telemetry. The computer accepts bus 2 8

Vdc and 115V, 400 Hz power, and converts the power to usable voltages for the c e n t r a l p r o c e s s o r ,

110,

m e m o r y , and s e n s o r excitations. The detailed design of the functions is discussed below.

Hardware and software a r e defined such that optimum a c c u r a c i e s and timing effi- ciency a r e achieved. Reliability of the guidance and control function is optimized by software techniques, such a s redundant calculation and self-test f e a t u r e s . Scaling to optimize word a c c u r a c i e s and an extended length algorithm a r e used t o i n c r e a s e a c - c u r a c y in the cutoff solution.

AID

and D / A conversions a r e multiplexed to and f r o m a common ladder network, and 1/O analog signal processing is designed t o optimize use of the full digital

110

word.

nee E'unetion

-

The guidance function accepts the m i s s i l e velocity signals in

the f o r m of a c c e l e r o m e t e r synchro voltages and outputs yaw and pitch s t e e r i n g signals t o the control function and a cutoff signal t o the good guidance function. The input sig- n a l s f r o m the a c c e l e r o m e t e r s a r e t h r e e groups of amplitude modulated signals between the s t a t o r t e r m i n a l s of s y n c h r o t r a n s m i t t e r s and r e p r e s e n t instantaneous m i s s i l e velo- c i t y along each of the t h r e e mutually perpendicular axes.

The guidance function converts the sampled input signals to d c signals propor- tional to the s i n e and cosine of c r o s s r a n g e velocity, slant range velocity, and slant altitude velocity. T h e s e dc signals a r e used a s excitations f o r the A / D converter. The A / D converter in turn u s e s a s u c c e s s i v e approximation technique f o r determining digital w o r d s proportional t o the s i n e and cosine of the scaled velocity signals.

The c r o s s r a n g e guidance function i n t e g r a t e s the c r o s s r a n g e velocity to obtain a c r o s s r a n g e displacement signal, and s c a l e s and s u m s the velocity and displacement signals t o f o r m a c r o s s r a n g e s t e e r i n g command f o r the control function.

The slant altitude guidance function s u b t r a c t s f r o m the slant altitude velocity s i g - n a l a d e s i r e d velocity profile f r o m the slant altitude p r o g r a m to f o r m a slant altitude velocity e r r o r signal.

The slant altitude velocity e r r o r s i g n a l is integrated, a s in the c r o s s r a n g e guid- ance function, t o f o r m a s l a n t altitude displacement e r r o r signal, which in t u r n is scaled and summed with the velocity e r r o r to f o r m a slant altitude s t e e r i n g signal f o r the con- t r o l function.

The slant range c o m p a r a t o r guidance function s u b t r a c t s f r o m the slant range velo- c i t y a ground p r e s e t velocity value. The velocity difference s i g n a l is integrated to f o r m a displacement signal which is in turn reduced by a d i s p l a ~ e ~ m e n t p r e s e t value. The r e - sultant displacement difference and velocity difference signals a r e used to solve the cutoff equation, A.

A cutoff d i s c r e t e s i g n a l is i s s u e d by the slant range eorn a r a t o r guidance function when

1

changes sign a f t e r second stage ignition. T h i s cutoff s i g n a l in conjunction with the good guidance determination i s used to t e r m i n a t e second s t a g e t h r u s t and initiate

(48)
(49)

e function are irn

tant errors are small for the cross-

t altitude, due to closed

nt integration, being

idance generator is designated as a f a i l -

ate does riot allow a

ted m l y when the

ocity error less tin

-

2 S l a n t altitude velocity error less t h a n limit;

-

3 Slant range velocity difference within tolerance;

-

4 Slant r m g e dispiaeerneat dif erence within tolerance;

-

5

ST-

-

ut bas not exceeded 1

onitor signal present;

-

7 Pressure monitor

signal

present;

-

uter has notffai

-

an a predetermined value,

-

iscrete generator function issups rr,rnanri vane unlock, an3 first sta

at p r e s c r i b e d times

signal is issced to the controi function

system currect and eedback s.s;-itching,

i t y function accepts m i s iie attitude signals f r o m

ressed carrier arxplilu.de modulaied

and TOE iriptits are icrosyri outpxs c

is the o u t p u t of a

C X - C T pair, and is the difference betweec actual missile attitu

red pitch program angle, M a x i m u m input voltage for :he y a w

voltage for the pitch ckannel is I T 5 V r m s isat is satura-

eve1 for I ~ O d e s i g n eorisidera"cioils, Sahration of the pitch

input signal does not degrade performance, s computer gains of this magnitude s i g n a l

References

Related documents

The behavioral intention to purchase via the Internet was examined as a function of attitude towards purchase, perceived usefulness, and perceived ease of use Technology

Customer types, needs and expectations and their impact upon hospitality products and services CU3.. Types of customer and their needs

Menganjurkan kepada nenek untuk menjaga kebersihan diri anak, kebersihan lingkungan dan makanan sehingga dapat mencegah masuknya kuman, bakteri dan virus kedalam tubuh

• Bulk specific gravity is the ratio of the weight in air of a unit volume of  aggregate (including the permeable and impermeable voids in the particles,  but not including

ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any

Henry Rosemont’s essay argues that while Confucian thought does not have a conception of individual rights grounded in a view of human beings as free autonomous individuals, it

Terjadinya pengurangan ukuran pada pepaya kering tidak dipengaruhi oleh empat parameter suhu pengeringan yang digunakan, tetapi justru dipengaruhi oleh tiga konsnetrasi

By contrast, salinity reduced shoot DW in all genotypes, as expected for plants with a diminished leaf area, but it did not affect, in the double mutant, either root DW or primary