• No results found

REVIEW ARTICLE ON VILSMEIER-HAACK REACTION

N/A
N/A
Protected

Academic year: 2020

Share "REVIEW ARTICLE ON VILSMEIER-HAACK REACTION"

Copied!
19
0
0

Loading.... (view fulltext now)

Full text

(1)

IJPCBS 2012, 3(1), 25-43 Rajputet al. ISSN: 2249-9504

INTERNATIONAL JOURNAL OF PHARMACEUTICAL, CHEMICAL AND BIOLOGICAL SCIENCES

Available online at www.ijpcbs.com

REVIEW ARTICLE ON VILSMEIER-HAACK REACTION

AP. Rajput1* and PD. Girase2

1P.G. Research Center, Department of Chemistry, Z.B. Patil College, Dhule, Maharashtra, India. 2S.V.S’s Dadasaheb Rawal College, Dondaicha, Dhule, Maharashtra, India.

INTRODUCTION

The application of the Vilsmeier-Haack (VH) reagent (POCl3/DMF) for the formylation of

a variety of both aromatic and

heteroaromatic substrates is well

documented1. The Vilsmeier-Haack reagent is an efficient, economical and mild reagent for the formylation of reactive aromatic and heteroaromatic substrates2. It is now used as a powerful synthetic tool for the

construction of many heterocyclic

compounds3.

The classical Vilsmeier-Haack reaction4, however, involves electrophilic substitution of an activated aromatic ring with a halomethyleniminium salt to yield the corresponding iminium species, which facilitates easy entry into various nitrogen

and oxygen based heterocycles5,3a,d.

Vilsmeier reagent serves not only as a formylating agent6, but also as an activating reagent for carboxylic acids to give esters7, amides8and acid chlorides9and for alcohols to give alkyl chlorides10, esters11, alkyl aryl sulfides12 and imides13. Besides this, the reagent has also been extensively used for effecting various chemical transformations with other classes of compounds.

There is a growing interest in formylation as an interesting strategy to form intermediate carboxaldehydes, due to their

intrinsic pharmacological properties and chemical reactivity14. Formylation reactions

have been described for

pyrido[2,3-d]pyrimidines as a key step for the

introduction of functionalities via the intermediate carboxaldehydes15.

The Vilsmeier-Haack reaction can also be applied to introduce an acetyl group on activated aromatic or hetero aromatic compounds, many other conversions can be achieved with this technology. In general,

N,N-dimethylformamide (DMF) and

phosphorus oxychloride (POCl3) are used to generate a halomethyleniminium salt used in the synthesis of a large number of heterocyclic compounds16-19.

In 1896, Friedel noted the formation of a

red dye on treatment of

N-methylacetanilide with phosphoryl chloride to which he assigned the problematic structure (1)20. This was corrected by Fischer, Miller and Vilsmeier in 192521 who assigned the cynine-dye structure (2) and argued cogently that this product derived from the self condensation of the quinolinium salt (3). It was the realization by Vilsmeier & Haack22 that one molecule of

N-methylacetanilide had acetylated a

second molecule prior to cyclisation that led to the discovery of the Vilsmeier-Haack formylation using N-dimethylformanilide.

Review Article

ABSTRACT

This review article represents a survey covering the literatures on Vilsmeier-Haack reaction, glutarimides and dihydropyridines. This short review also provides an update on recent reports and demonstrates the usefulness and the efficiency of this approach. The data on the methods of synthesis, chemical reactions, and biological activity of these heterocycles published over the last years are reviewed here for the first time.

(2)

N N

H C6H4

Me

Me C6H4

Cl Me N N Me Cl Cl N Me Cl Me Me Cl Cl Cl + C (1) + (2) (3) -- -+

The formyl group thus, introduced in to a substrate is, of course, a highly reactive species and the versatility of this reaction, to a large extent, is due to the variety of synthetically useful transformations that may subsequently be performed. The V.H. reaction has been extensively studied and reviewed23.

The structure of the electrophilic adduct has aroused much interest. The behavior of the adduct appears to be consistent with an ionic character rather than a covalent character24. The structures a & b were considered most likely for the DMF/POCl3 adduct. N C H OPOCl2 C H3 C H3 N C H OPOCl2 C H3 C H3 .. N C H C H3 C H3 Cl N C Cl H OPOCl2 C H3 C H3 .. OPOCl2 + + + + -a b

Structure of the Vilsmeier-Haack

Complex

Phosphorous oxychloride reacts with

tertiary amides to give adduct which exhibits salt like properties. These adducts have been referred to as the Vilsmeier complexes25.

R O

C N R1R2 P O C l3 R C

N R

1R2

O P O Cl

2

R

N R1R2

C C l

P O

2C l2

R O

C N R1R2 A rS O2Cl

C l

R C

O

N R

1R2

S O

O

A r R C

C l

N R1R2

A r S O3

( D ) P O2C l

+ + + + + (A ) -(B ) (E )

-C H A R T -I N a tu r e o f V ils m e ie r-H a a c k R e a g e n t -. . . . . . . . . .. . . . . . . . . . . -C l

C l

-.

(F )

+ +

Recent studies on the NMR spectra of the DMF/POCl3 complex pointed to the imidoyl chloride salt structure (B)26-28 (Chart-1). Challis and Challis29 suggested that O- acyl structure (A) might be more stable for POCl3 than for other halides such as SOCl2, COCl2 and PCl5.

R C O POCl2

NR1R2

R NR1R2

C Cl

PO2Cl2

C O R

NR1R2

Cl2X R C O

NR1R2 Cl

R NR1R2

C Cl X O Cl + + (A) -(B) + (C) --- X + (D)

X = CO, SO or PCl3 . . . . . . .. .. . . . . . . . . .. .. . . + -Cl -Cl +

The Vilsmeier complexes are generally prepared at low temperatures (250C). If the reaction with nucleophile is carried out

at low temperature (300C) the

rearrangement of (A) and (B) does not seem to be favoured. Furthermore, the Vilsmeier complex undergoes a much wide range of nucleophilic substitution reactions.

Reagents

The Vilsmeier complexes employed in the formylation reactions are usually derived from N,N-disubstituted amide and POCl3. N-Methyl formanilide and N,N- dimethyl formamide are commonly used. N-Methyl formamide, N-formylpiperidine27 and N-formylindeline28 have also been used. The use of unsubstituted formamide has also been investigated30, but the complex was found to be less reactive than the DMF / POCl3 or MFA / POCl3 complexes.

Other amides such as N, N-dimethyl acetamide, N-methyl acetamide, N, N-dimethyl

benzamide, N, N ׀

‘, ,,-pentamethyl acetamide, etc. have been employed in the presence of POCl3 but these amides are prone to undergo self condensation. Acid chlorides other than POCl3 have also been used in the Vilsmeier reactions. They are COCl231, SOCl232, ClOCl33, CH3COCl34, ArCOCl34,35, ArSO2Cl35, PCl536, Me2NSO2Cl37 and RO2CNH SO2Cl38.

(3)

IJPCBS 2012, 3(1), 25-43 Rajputet al. ISSN: 2249-9504

Solvents

In the case of amides like DMF, dimethyl acetamide, N-methyl pyrrolidone, etc. which are liquids, an excess of the amide can be used as solvent. Other solvents like

chloroform, methylchloride, benzene,

toluene, o-dichlorobenzene, dioxane and tetrahydrofuran have also been used.

Temperatures

Normally the reactions are carried out at room temperature or between 600 and 800C. Reactions at temperature as high as 1200C have also been described39. The Vilsmeier reaction has been the subject of many review articles of varying scope and length. Some of the reviews are enlisted here in chronological order. Vilsmeier (1951)40, Bayer (1954)41, Bredereck et al.

(1959)42, Eilingsfeld, Seefeder and

Weidinger (1960)43, Minkin and Darofeenko (1960)44,Oda and Yamamoto (1960)45, De Maheas (1962)46, Hofner et al. (1963)47, Gore (1964)48, Hazebroucq (1966)49, Jutz (1968)50, Ulrich (1968)51, Kuehne (1969)52, Seshadri (1973)24, Jutz (1976)53, Meth-cohn and Tarnowski (1982)54, Smichen (1983)55, Marson (1992)56 , Meth-cohn and Stanforth

(1991)57 and Meth-cohn (1993)58,

Arumugam S. (1994)59, Duduzile M. M. (2007)60, Carsten Borek (2008)61, Jones G. and Stanforth S. P. (1997)62, Kantlehner (1976)63 has reviewed adducts from acid amides and acylation reagents and also the

preparation and reaction of

chloromethyliminium salt with

nucleophiles. Liebscher and Hartmann (1979)64 have published anarticle relating to vinylogous chloroiminium salts. These excellent reviews deal with the Vilsmeier reaction, its mechanism and the structure of the various eletrophilic reagents. In this study we have restricted our coverage to important concepts rather than reiterate all the literature material.

Synthetic Applications of the Vilsmeier-Haack Reaction

i) Formylation of aromatic

hydrocarbons, phenols, phenolethers, olefins, ketones, Beta-chlorovinylal dehydes.

ii) Diformylation reactions.

iii) Formylation with aromatization.

iv) Regiospecific formylation.

v) Oxygen and nitrogen nucleophiles are

also reactive towards Vilsmeier reagent.

vi) Formylation with dimerization. vii)Transformation of iminium salt into

product other than aldehyde. viii) Miscellaneous V-H reactions.

In view of the vastness of the literature, we have endeavored in this review to demonstrate the powerful potential of Vilsmeier-Haack reaction in the synthesis of

different compounds. Only few

representative reactions are illustrated under the following titles.

A) Synthesis of Pyrroles

Gupton J. T. et al.65 have studied and

reported the synthesis of

4-Aryl-2-carbethoxypyrrole (6) from compound (4) with POCl3, DMF and heat followed by NaPF6/H2O via formation of Vinylogous iminium salt (5) (Scheme-1).

COOH

N N

Me Me Me

Me

PF6

N CO2Et

H POCl3 / DMF

NaPF6/H2O H

2N CO2Et

DABCO.DMF and heat +

-and heat followed by

(4)

(5) (6)

(Scheme-1)

They have also reported microwave accelerated Vilsmeier-Haack formylation of pyrrole (7) into formyl pyrrole (8) (Scheme-2).

N Y X

CO2Et N

Y X

CO2Et

OHC POCl3,DMF

Microwave heating

(Scheme-2)

(7) (8)

Z= H, Me

Z Z

Pfefferkorn J. A. et al.66 have described formylation of pyrrole (9) under

Vilsmeier-N N

N O

O R2 R1

CF3

(105-106)

(4)

-Haack conditions into pyrrole

carboxaldehyde (10) as a part of

development of an efficient and scalable second generation synthesis of novel,

pyrrole-based HMG-COA reductase

inhibitors (Scheme-3).

N

F F

EtO2C N

F F

CHO EtO2C

POCl3, DMF

DCE 800C

(9) (10)

(Scheme-3)

Cho T. P. et al.67 have discovered the series of novel pyrrolopyridazine derivatives by carrying out synthesis of pyrrolopyridazine (14) from pyrrole diesters (11) by using V-H reagents (Scheme-4).

POCl3

NH2NH2.H2O,

POCl3,

CH3CN,

N O O

O H O

N O O

O H O O

H

N H

N NH O EtOOC N

H N N EtOOC Cl

2.0 equiv DMF, 100 0C, 2 h 77%

1.5 equiv

EtOH 90 0C, 3 h, 72%

2.0 equiv 80 0C, 5 h

(11)

(14)

(12)

(13) (Scheme-4)

B) Synthesis of Functionalized Pyridines

Xiang D. et al.68 developed a facile and efficient one- pot synthesis of highly substituted pyridin-2(1H)-ones(18), (19) and (20) via Vilsmeier-Haack reactions of radily available 2-arylamino-3-acetyl-5,6-dihydro-4H-pyrans (15), (16) and (17) respectively (scheme-5).

O

Ar H N O

N

X ( C H2)3Br

O

O H C A r

O

O

N

B r

( C H2)3Br

O

O H C P h C l

P Br3/ D M F

( C H2)3Br N H P h C l

O O

O P h N H

O

N B r

( C H2)3Br

O O H C P h

P Br3/ D M F

(5 .0 e q u iv )

8 00C , 1 0 m in

- 4

+

- 4

(1 6 )

(1 7 )

(1 9 )

(2 0 ) (S c h e m e -5 )

(3 .0 e q u iv )

8 00C

(1 5 ) (1 8 )

P B r3/D M F (5 .0 e q u iv ) 8 00C

4 -C lP h H N

Pan W. et al.69 also reported the synthesis of functionalized pyridine-2(1H)-ones (22) and (23) from 1-acetyl, 1-carbamoyl cyclopropanes (21) by using POCl3 and DMF

under different temperature conditions (scheme 6).

Functionalized pyridine-2(1H)-ones and

their benzo/hetero-fused analogues

represent an important class of organic heterocycles for their presence in numerous natural products and synthetic organic compounds along with diverse bio-physico and pharmacological activities70-71.

DMF/POCl3 DMF/POCl3

NHPhCl O O

N

Cl CH2CH2Cl

O PhCl OHC

N

Cl CH2CH2Cl

O PhCl 800C, 1 h

1200C, 2 h

- 4

(10.0 equiv)

(10.0 equiv)

- 4

- 4 (21)

(22)

(23) (Scheme-6)

Asokan C. V. et al.72 have reported the conversion of enolizable ketones such as acetophenones and benzal acetones (24) into 2-chloronicotinonitriles (25) upon

treatment with malononitrile under

Vilsmeier-Haack reaction conditions.

(Scheme-7).

O

N Cl

CN

(25) (24)

(Scheme-7)

R1 R

2

R2

R1

1. POCl3, DMF, rt, 12h

2. NCCH2CN, 90 0C, 2h

3. Aq. K2CO3

Quiroga J. et al17 formylated

pyrazolopyridine (26) into pyrazolo[3,4-b] pyridine-5-carbaldehyde (27) by using DMF and POCl3 (Scheme-8).

They have concluded that, the formylation on the pyridine ring only takes place when there is a dihydroderivative on the appropriate pyrazolo-fused system. They have also observed that the use of the Vilsmeier-Haack condition developed a fast and efficient method for the formation of

pyrazolo[3,4-b] pyridine-5-carbaldehyde

(27)

N N

N C H3

R

R' Ph

N N

N C H3

R

R' Ph

CHO POCl3/DM F

R=H, C6H5

(Schem e-8)

(5)

IJPCBS 2012, 3(1), 25-43 Rajputet al. ISSN: 2249-9504

Tabuchi Y. et al73 used Vilsmeier-Haack condition for the synthesis of 4-chloro-3-formylbenzo[b]furo[3,2-b] pyridine (29) from 2-acetyl-3-acylaminobenzo[b] furans (28) (Scheme-9).

O COCH3

O N

CHO

Cl R1

R2

NHCOR3

R1

R2

POCl3 , DMF, 24 0C

(28) (29)

(Scheme-9)

C) Synthesis of Pyrimidines

Quiroga J. et al17 suggested the

regioselective formylation of pyrazolo

[1,5-a] pyrimidine system using Vilsmeier-Haack

conditions. They have synthesized pyrazolo [1,5-a] pyrimidine-3,6-dicarbaldehyde (31) from 6,7-dihydroderivatives (30).They have also converted 6,7-dihydroderivative (30) into aromatic pyrazolo pyrimidine (32) which was formylated with DMF & POCl3

and afforded

pyrazolopyrimidine-3-carbaldehyde (33) (Scheme-10).

N N

R' R

A r

N

N N

R' R

A r

N H

O H

C H O

N N

R' R

A r

N

N N

R' R

A r

N C H O

...

P O C l3 / D MF

N BS/ Et h ano l

P OC l3 / D MF

(3 3) (32)

(Sch em e-10)

(30 ) (31)

Quiroga J. et al74 extended their work & carried out microwave assisted synthesis of pyrazolo[3,4-d]pyrimidines from 2-amino-4,6-dichloropyrimidine-5-carbaldehyde under solvent free conditions (Scheme-11).

PO C l3 / D M F

N

N OH

OH N H2

N

N Cl

C l N H2

O N

N Cl

N H2

O

N

N N H2

N N H Ethanol, TEA

HN R1R2

R eflux

M ethod A or M ethod B

NR1R2

N R1R2 (Scheme-11)

D) Synthesis of Pyrazoles

Aruna kumar D. B. et al75 converted benzofurans (34) into benzofuran phenyl hydrozone (35) by treatment with phenyl

hydrazine in ethanol and acetic acid. The intermediate phenyl hydrazone (35) when subjected to Vilsmeier-Haack reaction condition, cyclized to afford substituted pyrazoles (36) which are well documented to posses antihypertensive, antibacterial,

anti-inflammatory and antitumor

activities76 (Scheme-12).

O C H3

N N H

N N

O O H

N H

N H2

O O

C H3

(35) (34)

(Scheme-12) (36)

R1

R1= H, CH3

R2= H, NO2

R1

R2

EtOH / AcOH

R1

R2

DM F / POCl3

R2

Goudarshivannanavar B. C. et al77 have

reported that, 2-acetyl

benzofurohydrozones (37) on reaction with Vilsmeier-Haack reagent at appropriate molar ratio, underwent smooth cyclization followed by formylation afforded

3(1-benzofuran-2-yl)-1-(substituted

phenyl)-1H-pyrazole-4-carbaldehyde (38) (Scheme-13).

O N NH

R

O NN

R OHC

DMF / POCl3

R= H, NO2, CH3, OCH3, Cl, F, Br

Reflux / 2 hr

(37) (38)

(Scheme - 13)

Damljanovic I. et al78 reported that the condensation of acetylferrocene (39) with

phenyl hydrazine (40) followed by

intramolecular cyclization of the

intermediate hydrazone (41) under

Vilsmeier-Haack conditions formed

1H-3-ferrocenyl-1-phenyl

pyrazole-4-carboxaldehyde (42) (Scheme-14)79.

O

N H N H

2

P h

N N H

P h

N N

P h

C H O

( 4 2 )

( 4 1 )

( S c h e m e - 1 4 )

F e F e

+

E th a n o l

r e f l u x

F e P O C l3 ( 3 e q u i v )

D M F , r . t .

( 3 9 )

(6)

Vera-Divaio M. A. F. et al80 illustrated Vilsmeier-Haack formylation of compound

(43) into

1-Phenyl-1H-pyrazole-4-carboxaldehyde (44) in 65% yield. The aldehyde functional group has been utilized to synthesize corresponding acid (45) (Scheme-15).

N

N DMF / POCl3 NN

(43) (44)

Ph COOH Et3N, Ac2O

N N

COOH

(45) (Scheme-15)

CHO

E) Synthesis of Quinolines

Some S. et al81 developed a new protocol for the preparation of quinolines (50) involving the subjection of certain enolizable ketones (46) to a Vilsmeier-Haack haloformylation reaction (Scheme-16)82.

O Br

CHO

CHO

O2N N

X

O2N POBr3,

DMF

Cu, DMSO,

(X=Br or l)

10% Pd on C

+

Pd[O] (10 mol%)

H2

(46) (47) (48)

(49) (50)

(Scheme -16)

F) Synthesis of Indoles

Diana P. et al83 have reported a rapid access to 1,4-Bis-indolyl-diketones (54) using Vilsmeier-Haack reaction (Scheme-17).

N R

H

N R

H CHO

N R

SO2Ph

CHO

N R

H O

N R

SO2Ph

O POCl3 / DMF

NaOH

NaH / THF ClSO2Ph

Thiazolium Salt, EtOH

(54)

(Scheme- 17)

They have also converted N-methyl derivatives (55) into 1, 4-diketones (57) by

Vilsmeier-Haack reaction using

phosphorous oxychloride and tetramethyl succinamide (56) (Scheme-18).

N R

Me

N R

Me O

N R

Me O POCl3 / DMF

N

O O

N Me

Me Me

Me

(57) (Scheme- 18)

(56) (55)

Popowycz F. et al84 have prepared dimer

(59) from

5-Methyoxy-1-methyl-7-azaindole (58) using Vilsmeier-Haack reaction conditions (Scheme-19).

N N

MeO

N N

O H

N N

O Br

n

N N

O OHC

N N

O n

CHO

N N

O AcHN

N N

O n

NHAc

(58)

(59) (Scheme- 19)

NaBH4, SiO2, i-PrOH/CHCl3, rt, 12h

BBr3, CH2Cl2,

0 0C,1 h,

K2CO3, DMF, Br(CH2)nBr,

n=4-6, rt, 4h,

K2CO3, DMF, 80 0C, 6h,

POCl3, DMF, rt, 3h,

MeNO2, NH4OAc, 120 0C, 4h

H2, Raney Ni, MeOH, 60 0C,6 h,

Ac2O, CH2Cl2, rt, 12h,

Barraja P. et al85 have synthesized choro-bis-formylated derivatives (62) and (63) from substituted tetrahydroindolones (60) and (61) by using DMF/POCl3 and DCM at 00C (Scheme20).

N Me Me O

N Me Me Cl OHC

CHO

N Me O

Me N

Me Cl OHC

Me CHO DMF/POCl3,DCM

00C then reflux

(60)

(62)

DMF/POCl3,DCM

00C then reflux

(61)

(63) (Scheme-20)

G) Synthesis of Pyranones and

Naphthaldehydes

Xiang-Ying Tang and Min shi86 have

developed a convenient and efficient method to synthesize3-(2-Chloroethyl)-5-aryl-4H-pyran-4-ones(65) and 2-Chloro-3-(2-chloroethyl)-1-napthaldehydes (66) in moderate to good yields via the Vilsmeier-Haack reaction of readily available

1-Cyclopropyl-2-aryl ethanones (64) at

(7)

IJPCBS 2012, 3(1), 25-43 Rajputet al. ISSN: 2249-9504

O R

O O

C l R

C l

C l C H O

R

DM F/ POCl3

D M F/PO Cl3

(12.0 equiv), 80-100 0C

(12.0 equiv), 120-135 0C (64)

(65)

(66) (Scheme-21)

H) Synthesis of Oxazines

Damodiran M. et al87 have reported the synthesis of highly functionalized oxazines (68) by Vilsmeier-cyclization of amidoalkyl naphthols (67) (Scheme-22).

OH N H O

O NH

CHO

R R

(68) (Scheme-22)

(67) R1= H, CH3, Ph

R2 = CH3, Ph, CHO

DMF / POCl3

R1

R2

3 h, 90 0C

Tabuchi Y. et al73 have suggested, the ring closure reaction of 2-acetyl-(E)-3-aral-Kenylcarbonylaminobenzo[b] furans (69) using Vilsmeier reagent which generated oxazine (70) (Scheme-23).

O COCH3

O O N

CHCHO R1

R2

NHCOR3

R1

R2

R3

1) POCl3, DMF, 25 0C

2) Method A (NaOH aq. sol.) or

Method B (Et3N), 16-46%

(69) (70)

(Scheme-23)

I) Synthesis of Chromones

Wang B. D. et al88 have prepared the

6-hydroxy-3-carbaldehyde chromone via

Vilsmeier-Haack reaction. The compounds 6-hydroxy-4-chromone-3-carbaldehydes (72) were easily prepared by the reaction of 2,5,-dihydroxy acetophenone (71) with DMF in POCl3 solution (Scheme-24).

OH

OH (CH3CO)2CO

H2SO4 98%

OCOCH3

OCOCH3

OH

OH COCH3

AlCl3 DMF, POCl3

O

O O

H CHO

(71) (72)

(Scheme- 24)

J) Synthesis of Bithiophenes and

Benzothiophene dioxides

Herbivo C. et al89 synthesized a series of formyl substituted 5-aryl-2,2-bithiophenes (74) starting from acetophenones (73)

using Vilsmeier-Haack reaction (Scheme-25). Formyl thiophene derivatives are versatile “Crossroads” intermediates.

C H3

O

R C l

H O

R

S O R

C l C H2C O C H3 / K2C O3

S C l R

H O

C l C H2C H O / K2C O3 S

R

S C H O

( 7 4 ) ( S c h e m e - 2 5 ) ( 7 3 )

P O C l3 / D M F / 6 0 0C N a2S . 9 H2O / D M F

P O C l3 / D M F / 6 0 0C

N a2S . 9 H2O / D M F

Bhatti H.S. and Seshadri S.90 formylated benzo[b] thiophene-3(2H)-one-1,1-dioxide (75) by using DMF and POCl3 to give (76) (Scheme 26).

S O

O O

DMF/POCl3 S Cl

O O

CH=N(CH3)2

S OH

O O

CHO +

75 76

(Scheme-26) Cl_

H2O

K) Synthesis of Naphthyridinepyrazoles Mogilaiah K. et al91 used V-H reaction condition to develope a simple and efficient method for the synthesis of 1-[3-(3- fluorophenyl)[1,8]naphthyridin-2-yl]-3-(2-oxo-2H-chromenyl)-H-4-pyrazolecarbalde- hydes (78) from (77) (Scheme 27).

N N NHN

F

O O CH

3

O O N N

N N

F

CHO POCl3-DMF / SiO2

MW

(Scheme-27)

R2

R1

C

R2

R1

(77)

(78)

L) Synthesis of Quindolines

(8)

CH3

O NO2

Cl NO2

H CHO

(79) (80)

POCl3,DMF,00C,1h

800C,4h

(Scheme-28)

M) Formylation of Pyrrolones

Becker C. et al93 have used Vilsmeier-Haack reaction conditions for the synthesis of enaminoimine (85) and enaminoaldehyde (86) starting from Pyrrolin-3-on-1-oxide derivatives (81) (Scheme 29).

N R

O

N R

O Cl

N R

Cl Cl

N

Cl Cl

O

N

Cl Cl

N

N H

Cl Cl

O

(81) (82) (83)

(84)

(85) (86)

-DMF - H+

_

DMF POCl3

DMF POCl3

(Scheme-29)

They have also reported, the reaction of exo-cyclic enhydroxylaminone (87) with the Vilsmeier reagent to form chlorosubstituted compound (88) (Scheme 30).

OH O

N

N

O

N H

N Cl POCl3, DMF

2. OH _ 1.

(Scheme-30)

(87) (88)

N) Formylation of Phloroglucinols

Naturally occurring phloroglucinol

compounds have shown diverse range of biological activities94. Bharate S. B. et al95 formylated monoacyl phloroglucinol (89) to acylphloroglucinols (90) using V-H reaction (Scheme 31).

O O

R O

H

OH O

O R O

H CHO

OH

R1 R1

POCl3,DMF

EtOAc,rt.1h

(89) (90)

(Scheme-31)

O) Formylation of Pyrenopyrrole

Gandhi V. et al96 carried out, Vilsmeier-Haack formylation of pyrenopyrrole (91) to afford monoaldehyde (92) which after protection of pyrrole and further treatment with POCl3-DMF afforded the dialdehyde (94) (Scheme 32).

N

H N

H CHO

N H

C H N

H CHO OHC

CN

CO2Et

POCl

3 / DMF

Piperidine EtO2C-CH2-CN

POCl3

DMF 1.

NaOH 2.

C

(91)

(93) (94)

(92)

(Scheme-32)

P) Synthesis of Azeteochlorins

Banerji S. et al97 have reported the formation of chlorophin monoaldehyde (96) from chlorophin (95) upon treatment with DMF/POCl3 in CHCl3 followed by addition of aq.NaHCO3. The reaction of (96) with methyl-Grignard, followed by an acid-catalyzed ring-closure reaction, generated

the compound

[meso-tetraphenyl-2-methylazeteo-chlorinato] Ni (II) (97) in good yields (Scheme 33).

N Ph

Ph

N

Ph

N

Ph N Ni

N Ph

Ph N

Ph CHO

N

Ph N Ni

N Ph

Ph N

Ph Me

N

Ph N Ni

N Ph

Ph

N

Ph Me

OH

N

Ph N Ni

D MF-POCl3

NaHCO3

CH2Cl2

NaHCO3

(95) (96)

MeMgBr, dry THF

(97)

(Scheme-33)

,CHCl3

(1)

(2) aq.

(1) TMSOTf,

(2) aq

Q) Miscellaneous V-H reactions

Bera R. et al98 used Vilsmeier-Haack reaction condition for alkynylation of β -Chloroacroleins. β-Chloroacroleins(99)

were readily prepared from the

(9)

IJPCBS 2012, 3(1), 25-43 Rajputet al. ISSN: 2249-9504

in the presence of 10% Pd/C, PPh3, CuI and Et3N under nitrogen to afford 4-alkynyl-2H-chromene-3-carbaldehydes (100) (Scheme 34).

O n O DMF / POCl3

Z

(98)

O n

Z

HC R Pd/C, PPh3, CuI

Et3N, CH3CN

80°, 2-3h O n

Z C R

(99) (100)

(Scheme-34)

CHO CHO

Cl

n= 1, 2 Z= H, Br

Bubenyak M. et al99 showed that,

Deoxyvasicinone (101), upon Vilsmeier-Haack formylation using two equiv. of POCl3 in DMF at 600C for 3 hrs. gave the 3-dimethylaminomethylene derivative (102) in 94% yield (Scheme-35).

N

N

O

N

N

O 3

1 (101)

(102)

(Scheme- 35) Dimethylformamide,

2 equiv POCl3, rt, 1h, 60 0C

3h (94% yield)

Glutarimides

Piperidine-2,6-diones(glutarimides, cyclic

imides) have various biological

activities100 and the 2,6-piperidinedione

moiety constitutes an important

substructure in several new anticancer agents which have recently been introduced

into experimental chemotherapy101,102.

Furthermore, these have been used as precursors in the synthesis of a variety of heterocyclic compounds103. Therefore, the

synthesis of piperidine-2,6-dione

derivatives have attracted considerable attention of synthetic chemists and several methods have been reported in the literature104-112, most of which have used multi-step reactions using harsh reaction conditions. Many compounds possessing a cyclic imide moiety exhibit pharmacological

activity such as antitumor113,

immunosuppressive113, sedative113,

anxiolytic113, anticonvulsive114 and

others115.

Paluchowska M. H. et al116 have showed that, the glutarimides 103 and 105 demonstrated anxiolytic activity while the

glutarimides 103, 104and 106

demonstrated antidepressant like activity in the four-plate and the swim tests in mice,

respectively. These glutarimides also

inhibited the locomotor activity of mice. The antidepressant-like effect of 106 was reported significantly stronger than that induced by imipramine used as a reference antidepressant.

N N

N O

O R2 R1

CF3

(103-104)

103, R1=R2 =H 104, R1=R2 = -(CH

2)2

-Shaabani A. et al117 havesynthesized fully functionalized N-alkyl-2-triphenyl phosph-

ora-hylidene glutarimides (107) and

concluded that these glutarimide

derivatives constitute an essential part of many natural products with antibacterial, antitumor or fungicidal activity.

Chen C. Y. et al107 have reported one-pot facile synthesis of N-alkyl 3-(E)-alkylidine-5-substituted sulfonylpiperidine-2,6-dione (108).

Kiyota H. et al118 suggested the synthesis of actiketal (RK-441S) (109) as a new acetal type glutarimide antibiotic119 which is expected to be a new anti-cancer agent and an immunosuppressant because of its low cytotoxicity119,120.

In recent years Fu R. et al121 have developed protected (R) and (S)-glutarimides (110) as a versatile building blocks122,123 for the asymmetric synthesis of substituted

3-piperidinol containing alkaloids and

pharmaceutically relevant molecules.

N O

R' Ph3P

O CO2R

2

CO2R 2

(107)

N O

R2 O

(1 0 8 )

S R1

O

=

O

R3

N N

N O

O R2 R1

CF3

(105-106)

(10)

-In view of these useful pharmacological

properties, biological activities and

synthetic applications of glutarimides, various methods have been developed for their synthesis. Some of the important methods are described in the following schemes.

1) Method due to Kiyota H. et al118

O CO2Me

CO2Me

+ O

CO2Me

CO2Me

O NH O

O

(Scheme-36)

O CO2Me

CO2Me

Pd(OAc)2 ( 1eq.), AcOH,60 0

C

H2,Pd Powder,EtOA c (98%) i. KOH,MeOH

ii.Ac2O,heat

iii.NH3gas,Et2O

iV.NaOAc,Ac2O,heat

2) Method due to Huang C. G. et al124

Cl Cl O

1. R'NH2

2. NaSPh 3. NaIO4

PhS

O N R' O

1.NaH (2eq.)

2.

O R2 MeO

N O

S

R' Ph O

(Scheme-37)

R2

3) Methods due to Mederski Werner

W. K. R. et al125

N H2N

H2N

Cl

HO2C CO 2H

PPA, 80°C, 2h

N

N NH2

Cl O

O

(Scheme-38)

NO2

NH2

HO2C

CO2H PPA, 80°C, 12h

NO2

N O

O (Scheme-39)

R

R

4) Method due to Chen B. F. et al126

Ts

O NH R

+ O EtO

OMe 3 eq. NaOH

N O O Ts OMe

R 5

6

(Scheme-40)

5) Method due to Shaabani A. et al117

N C

R' +

CO2R2

CO2R 2

+EtO PPh3Br

O CH2Cl2

r.t. 24h O N R' Ph3P

O CO2R

2 CO2R

2

(Scheme-41)

Dihydropyridines

1,4-dihydropyridines and their derivatives are an important class of bioactive molecules in the pharmaceutical field127. The dihydropyridine heterocyclic ring is a common feature of a variety of bioactive

compounds including anticonvulsant,

antidiabetic, antianxiety, antidepressive, antitumor, analgesic, sedative, vasodilator,

bronchodilator, hypnotic and

anti-inflammatory agents128.

Diydropyridines are reported as calcium channel blockers129 and are clinically useful agents for the treatment of cardiovascular diseases such as anginapectoris130 and hypertension131.These are also used as

antioxidants and are important for

developing drugs. However, these are relatively difficult to synthesize.

During the years 1980-1990 considerable importance was acquired by derivatives of

1,4-dihydropyridines, as the first

representatives of highly effective

vasodilators and antihypertensive agents, the calcium channel blockers (Nicardipine, Nifedipine, Felodipine, etc)132-134. Many derivatives of 1,4-dihydropyridines with

more valuable pharmacological

properties135-137, which make further searches in the 1,4-dihydropyridine series extremely urgent. Till date an enormous number of symmetrical and unsymmetrical derivatives of 1,4-dihydropyridine with various functional substituents have been synthesized, and a great number of methods of obtaining them (including microwave)

have been developed by further

conversions and aromatization138-142.

Scientists from the Latvian Institute of Organic Synthesis have carried out the

systematic synthesis of numerous

derivatives of 1,4-dihydropyridines with the aim of searching for new cardiotonic

and ionotropic preparations, and

clarification of structure–activity

(11)

IJPCBS 2012, 3(1), 25-43 Rajputet al. ISSN: 2249-9504

dihydropyridine molecules make them promising precursors for further synthetic transformations.

The use of formylation reaction as synthetic strategy to form versatile carboxaldehyde intermediates is still of interest, due to both their intrinsic pharmacological properties and chemical reactivity146. Formylation

reactions have been described for

pyrazoles147, pyridines148 and

pyrimidines149 as a key step to the

introduction of functionalities via the intermediate carboxaldehydes, and further

cyclization to fused heterocycles.

Vilsmeier–Haack reaction carried out on methylene-active compounds leads mainly to the formation of β-halo-carboxaldehyde derivatives, which are useful precursors in the construction of different heterocyclic

compounds by means of numerous

transformations150-151. We have

concentrated much of our recent work on the preparation of bioactive nitrogen-containing heterocycles.

By considering the importance of formyl

pyridines different researchers have

developed the various methods for the synthesis of chloroformylation of pyridines and dihydropyridines as described in the following schemes.

1. Method due to Kvitko I. Y. et al.15

N Ph

O O

N Ph HOC CHO

Cl Cl DMF / POCl3

(Scheme-42)

2. Method due to Maddox M. L. et al.153

N O

O R

H

POCl3 or (COCl)2

H Cl CH= R

Cl

HC NaOAc

N R

Cl Cl HOC

NMe2

R

Cl

HOC CHO

Cl N

H

(NH4)2Ce(NO3)6

R

Cl

HOC CHO

Cl N

+ +

-DMF NMe

2

Cl Me2N =

H2O

H3O

+

(Scheme-43)

a, R= C6H5

b, R= 3-ClC6H4

c, R= 3-NO2C6H4

d, R= 3-CF3C6H4

e, R= H

Cl

3. Method due to Pan W. et al.69

DMF/POCl3 NHPhCl

O O

N

Cl

CH2CH2Cl O PhCl OHC

800C, 1 h

- 4 (10.0 equiv)

- 4

(Scheme-44)

4. Method due to Tabuchi Y. et al.73

O COCH3

O N

CHO

Cl R1

R2

NHCOR3

R1

R2

POCl3, DMF, 24 0C

(Scheme-45)

5. Method due to Quiroga J. et al.154

N N N

H Ph

O Ar

DMF / POCl3

N N N Ph

Ar CHO

Cl

(Scheme-46)

Rajput A. P.155 have synthesized 1,4-diazepine type compounds and reported their useful

biological activities, pharmaceutical

properties and therapeutic applications.

Rajput A. P.156 have formylated 2-

Aryliminothiazolid-4-ones using V-H

reagent. The formylated synthones were

used to synthesize various fused

heterocyclic ring systems containing

thiazole moiety and some heterocyclic Schiff bases to get some compounds of interesting biological activities

Rajput A. P. and Rajput S. S.157 have reported that, the condensation of 4-chlorophenyl carboxylic acid hydrazide

with different acetophenones and

acetaldehydes afforded the corresponding

acetophenones/acetaldehydes

4-chlorophenyl carbonyl hydrazones which on V-H reaction formylated the compound

1-(3-aryl/alkyl-4-formyl

pyrazole-1-carbonyl)-4-chlorobenzenes.

Cl C NH

O

N C

CH3

N N

CHO

Cl C

O

Scheme-47

DMF / POCl3

00C

O

N H O

O O

O H

( 1 0 9 )

N O

P1 O

( 1 1 0 )

(12)

They158 have also prepared various dichloro, diformyl derivatives of pyrrole on formylation using V-H reagent from various succinimide derivatives.

N O O

R

N Cl Cl

HOC CHO

R

R: a =H, b = 2-Cl, c = 3-Cl, d = 4-Cl, e = 4-CH3, f = 4-OCH3 DMF / POCl3

0-50C

111a-f 112a-f

(Scheme-48)

Rajput A. P. and Rajput S. S.159 have

formylated benzaldehyde substituted

phenyl carbonyl hydrazones by using V-H reaction.

Rajput A. P. and Bhadane S. J.160 have carried out formylation of N-substituted

phenyl succinimides. From these

compounds various heterocyclic

compounds have been synthesized.

Rajput A. P. and Girase P. D.161-166 have reported the synthesis, characterization and microbial screening of various nitrogen,

oxygen and sulphur heterocyclic

compounds from 2,6-dichloro 3,5-diformyl (N-substituted Phenyl)-4-hydropyridines.

HOOC COOH

N

O O

R

N

Cl Cl

CHO OHC

R SOCl2

DMF, POCl3

NH2

R

(Scheme-49)

113 114 a-d 115 a-d Reflux

0-50C

R, a = -H, b = -4Me, c = -4Cl, d = -2Me

O H C

N a2S

D M F , R1

O H C

N N

C l C l

C H O O H C

R

N

R1S S R1

C H O

R

N

C H O N3 N3

R

N

C l C l

R

N

1 1 5 a - g

R , a = - H , b = - 4 C H3

d = - 4 C l , g = - 2 C H3

1 1 6 a - g

1 1 7 a - g

1 1 8 a - f

R , a = - H , b = -4 C H3

d = -4 C l , g = - 2 C H3

R , a = - H , b = - 4 C H3

d = - 4 C l , f = - 4 O C H3

C A N

N H3,00C

N a N3

P T S A , E t O H

S c h e m e - 5 0

R1 , a = - C2H5

b = - C2H5

d = - C2H5

g = - C2H5

C C

(13)

IJPCBS 2012, 3(1), 25-43 Rajputet al. ISSN: 2249-9504

R' C O

CH3 NH2-NH2.H2O

N Cl

R' O R'

O

Cl N C l

N N

C l N N

H H

R' R'

N Cl

CHO OHC

Cl

R a = - H b = - 4 CH3 c = - 2 C l d = - 4 C l e = - 3 C l f = - 4 OCH3

R', (i) = -Ph (ii) = -4OH-Ph

R R

119a-f(i) 119a-f(ii)

120a-f(i) 120a-f(ii)

(Scheme-51) R

115 a-f

N C l

C l

C H O O H C

R

N C l

C l

CH =N N =H C

R N H2

N C l

C l

N S S

N

R

O O

H S C H2C O O H

R1

2m oles

R1

R1

R1 R1

2 m oles

Sch em e -5 3 R , a = -H , b = - 4 M e, c = - 2C l, d = - 4 C l, e = - 3C l, f = - 4 O M e

R1, (i) = - 4 M e (ii) = - 4 C l

1 1 5 a-f 1 2 2 a-f ( i ), ( ii )

1 2 3 a-f ( i ), ( ii )

O H C

N

C l C l

C H O O H C

R

N

C H O

N3 N3

R

O H C

N

C H O

N H2 N

H2

R

N N

N N H2

N H2

R

N N

N a2S2O4 C H2( C N )2

1 1 5 a - d 1 2 4 a - d

R , a = -H , b = - 4 C H3

c = - 4 C l, d = - 2 C H3

N a N3

P T S A , E tO H

C C

1 2 5 a - d

2 2

( S c h e m e - 5 4 )

1 2 6 a - d N

Cl

R' O R'

O

Cl

N Cl O

N

Cl O N

R' R'

NH2OH.HCl

CH3COONa in CH3COOH

R a = - H b = - 4 CH3 c = - 2 C l d = - 4 C l e = - 3 C l f = - 4 OCH3

R', (i) = -Ph (ii) = -4OH-Ph

(Scheme-52) R

119a-f (i) 119a-f(ii)

(14)

CONCLUSIONS

This review has attempted to summarize the synthetic methods and reactions of glutarimides and dihydropyridines. Many biologically active heterocyclic compounds

have been synthesized from that

heterocycle. These reactions greatly

extended synthetic possibilities in organic chemistry.

REFERENCES

1. Jones, G.; Stanforth, S. P. Org. React. 2001, 49, 1.

2. (a) Meth-Cohn, O.; Narine, A. B. Tetrahedron Lett. 1978, 23, 2045. (b) Khan, A. K.; Shoeb, A. Indian J. Chem. Sect. B, 1985, 24, 62

3. (a) Sreenivasulu, M.; Rao, K. G. S. Indian J. Chem. Sect. B, 1989, 28,

584.(b) Mahata, P. K.;

Venkatesh, C.; Syam Kumar, U. K.; Ila, H.; Junjappa, H. J. Org. Chem. 2003, 68, 3966.(c) Chupp, J. P.; Metz, S. J. Heterocycl. Chem. 1979, 16, 65; (d) Katrtizky, A.R.; Arend, M. J. Org. Chem. 1998, 63, 9989

4. Vilsmeier, A. and Haack, A. Che. Ber. 1927, 60, 199

5. (a) Lilienkampf, A.; Johansson, M. P.; Wähälä, K. Org. Lett. 2003, 5, 3387; (b) Perumal, P. T. Indian J. Heterocycl. Chem. 2001, 11, 1;(c) Wang, K.-W.; Xiang, D.-X.; Dong, D.-W. Org. Lett. 2008, 10, 1691; (d) Jones, G.; Stanforth, S. P. Org. React. 2000, 56, 355; (e) Chen, L.; Zhao, Y.-L.; Liu, Q.; Cheng, C.; Piao, C.-R. J. Org. Chem. 2007, 72, 9259; (f) Zhang, R.; Zhang, D.; Guo, Y.; Zhou, G.; Jiang, Z.; Dong, D. J. Org. Chem. 2008, 73, 9504;(g) Wuts, P. G. M.; Northuis, J. M.; Kwan, T. A. J.Org. Chem. 2000, 65, 9223. 6. (a) Campaigne, E.; Archer, W. L.

J. Am. Chem. Soc. 1953, 75, 989; (b) Treihs, W.; Neupert, H. J.; Hiebsch J. Chem. Ber. 1959, 92, 141

7. (a) Procopiou, P. A.; Brodie, A. C.; Deal, M. J.; Hayman, D. F.

Tetrahedron Lett.1993, 34,

7483; (b) Procopiou, P. A.; Brodie, A. C.; Deal, M. J.; Hayman, D. F. J. Chem. Soc. Perkin Trans. 1 1996, 2249.

8. Zaoral, M.; Arnold, Z.

Tetrahedron Lett. 1960, 1, 9 9. Eilingsfeld, H.; Seefelder, M.;

Weidinger, H. Angew. Chem. 1960, 72, 836.

10.Hepburn, D. R.; Hudson, H. R. J. Chem. Soc., Perkin Trans. 1 1976, 754

11.(a) Barrett, A. G. M.; Braddock, D. C.; James, R. A.; Koike, N.; Procopiou, P. A. J. Org. Chem. 1998, 63, 6273;(b) Barrett, A. G. M.; Koike, N.; Procopiou, P. A. Chem. Commun. 1995, 1403.

12. Kawano, Y.; Kaneko, N.;

Mukaiyama, T. Chem. Lett. 2005, 34, 1612.

13. Barrett, A. G. M.; Braddock, D. C.; James, R. A.; Procopiou, A. Chem. Commun. 1997, 433. 14.(a) Vovk, M. V.; Mel’nichenko, N.

V.; Sukach, V. A.; Chubaruk, N. G. Chem. Heterocycl. Compd. 2004, 40, 1485; (b) Lipson, V. V.; Desenko, S. M.; Shirobokova, M. G.; Borodina, V. V.; Musatov, V. I. Chem. Heterocycl. Comp. 2005, 41, 492.

15.Girreser, U.; Heber, D.; Schu¨tt, M. Tetrahedron 2004, 60, 11511 16.(a) Ali, M. M.; Tasneem; Rajanna, K. C.; Saiprakash, P. K. Synlett 2001, 251;(b) Rajanna, K. C.; Ali, M. M.; Sana, S.; Tasneem; Saiprakash, P. K. Synth.Commun. 2002, 32, 1351; (c) J. Disp. Sci.Tech. 2004, 25, 17.

17.Quiroga, J.; Trilleras, J.; Insuasty, B.; Abonı´a, R.; Nogueras, M.; Marchal, A.; Cobo, J. Tetrahedron Lett. 2008, 49, 2689.

18.Marson, C. M.; Giles, P. R.

Synthesis Using Vilsmeier

Reagents. CRC Press: Boca Raton, FL, 1994.

(15)

IJPCBS 2012, 3(1), 25-43 Rajputet al. ISSN: 2249-9504

20. Friedel, M. C. Bull. Soc. Chim. Fr. 1896, 11, 1028.

21. Fischer, O; Miller, A; Vilsmeier, A. J. Prakt. Chem. 1925, 69, 109 22. Vilsmeier A. and Haack A. Ber.

1927, 60B, 119.

23. (a) Minkin, V. I. and

Dorrofeebko, G. N. Russ. Chem.

Review 1960, 29, 599.(b)

Demeheas, M. Bull. Soc. Chim. Fr. 1962, 1989.(c) Burn D. Chem. Ind; 1973, 870.

24. Sheshadri, S. J. Sci. Ind. Res; 1973, 32, 128

25. Minkin, V. I. and Dorofenco, G. N. Ospkihm 1960, 29, 25

26. Martin, G. S. and Martin, M. Bull. Soc. Chem. Fr; 1963,1637

27. Filleux-Blanchard, M. L.;

Quemneur, M.T. and Martin, G. J. Chem. Commun. 1968, 83 28. Martin, G. J.; Poignant, S.;

Filleux-Blanchard, M. L. and Quemneur, M.T. Tetrahedron lett. 1970, 58, 5061.

29. Challis, B. C. and Challis, J. A. cited in chemistry of amides. The chemistry of functional group series, edited by S. Patai, Interscience Publishers Inc; New York, 1970, 731.

30. Nenitzescu, C. D. and Suceseu, D. I. Chem. Abstr. 1930, 24, 2442 . 31. King, W. J. and Nord, F. F. J. Org.

Chem. 1949, 14, 405.

32. Clark, B. A. J.; Parrick, J.; West, P. J. and Kelly, A. H. J. Chem. Soc. 1970, 498.

33. Jutz, C. and Muller, W. Chem. Ber. 1967, 100, 1536.

34. Brasshard, N. and Zollinger, H. Angew. Chem. 1959, 71, 375.

35. Ermili, A.; Castro, A. and

Westfall, P. J. Org. Chem. 1965, 30, 339.

36. King, W. J. and Nord, F. F. J. Org. Chem. 1948,13, 635.

37. Scott, F. L. and Barry, J. A. Tetrahedron Lett. 1968, 2457. 38. Cohous, G. Chem. Ber. 1967,

100, 2719.

39. Brown, M. D. and Giner, A. S. J. Chem. Soc. 1971, 128

40.Vilsmeier, A. Chem. Ztg. 1951, 75, 133.

41.Bayer, O. in Methoden der

Organischem Chemic (Houben-weyl) Thieme, Stuttgart 1954 42.Bredereck, H.; Gompper, R.; Van

Schuh, H.G.; Theiling, G. Agnew. Chem.1959, 71, 753.

43.Eilingsfeld, H.; Seefelder, M.; Weidinger, H. Angew Chem. 1960, 72, 830.

44. Minkin, V. I.; Dorofeenko, G. N.; Ospekhi, Khim. 1960, 29, 1301. (Chem. Abstr. 55,12265h, 1961) 45.Oda, R.; Yamamoto, K.; Kagaku

(Kyoto). 1960, 15, 384. (Chem. Abstr. 54, 24325c, 1960). 46.De Maheas, M.R. Bull. Soc. Chim.

Fr. 1962,1989.

47. Hofner, K.; Hafner, K. H.; Konig, C.; Kreuder, M.; Ploss, G.; Sehulz, G.; Strum, E.; Vopel, K. H. Angew Chem. Int. Ed. Engl. 1963, 2, 123. 48.Gore, P. H. in Friedel Crafts and related reactions ed. Vol. III, Wiley, New York 1964.

49.Hazebroucq, G. Ann. Pharm. Fr. 1966, 24, 793.

50. Jutz, C. Chem. Lab. Betrieb 1968, 19, 289 and 337

51.Ulrich, H. In the Chemistry of Imidoyl Halides, Plenum press, New York 1968

52.Kuehne, M. E. in Emanines,

synthesis, structure and

reactions, Cook, A.G. Edt.

Dekker, New York 1969

53.Jutz, C. in advances in organic chemistry, methods and results, Taylor, E. C; Ed Bochme. H;

Vieche, H.G. Eds. Vol. 9.

Interscience, New York, P. 225, 1976.

54.Meth-Cohn, O; Tarnowski, B.

Adv. Heterocycl. Chem. 1982, 31, 207

55.Simchen, G. in Methoden Der Organischen Chemic (Houben-Weyl) Thieme, Stuttgart 1983.

56.Marson, C. M. Tetrahedron.

1992, 48, 3659.

57.Meth-Cohn, O.; Stanforth, S. P. in

comprehensive organic

(16)

I. Eds. Vol. 2, Heathcock, C. H. Vol. Ed. Pergamon, Oxford, P. 777, 199

58. Meth-Cohn, O. Heterocycles

1993, 35, 539

59. Arumugam, S. Ph.D. thesis, I.I.T. Banglore, 1994

60. Duduzile, M. M. Ph.D. thesis, Rhodes University, 2007.

61. Borek, C. Ph.D. thesis, University of Southern California, 2008. 62. Jones, G.; Stanforth, S. P. Organic

reaction Vol. 49 edited by Leo, A.; Paquette et al. Organic reactions Inc. published by John Wiley and sons Inc.

63. Kantlehner, W. in Advances in organic chemistry, methods and results, Taylor, E. C. Ed. Vol. 9 Boecheme, H.; Viehe, H.G. Vol. Eds. Interscience, New York, Pp. 5 and 65 ,1976.

64. Liebscher, J.; Hartmann, H.

Synthesis 1979, 241

65. Gupton, J. T.; Banner, E. J.; Sartin, M. D.; Coppock, M. B.; Hempel, J. E.;Kharlamova, A.; Fisher, D. C.; Giglio, B. C.; Smith, K. L.; Keough, M. J.; Smith, T. M.; Kanters, R. P. F.; Dominey, R. N.; Sikorski, J. A. Tetrahedron 2008, 64, 5246. 66. Pfefferkorn, J. A.; Bowles, D. M.;

Kissel, W.; Boyles, D. C.; Choi, C.; Larsen, S. D.; Song, Y.; Sun, K. L.; Miller, S. R.; Trivedi, B. K. Tetrahedron, 2007, 63, 8124. 67. Cho, T. P.; Jun, F.; Li, H.; Zhe, X.;

Ling, C.; Xu, Z.; Lei, Z.; Bing, H.

Bioorg. Med. Chem. Lett.

2009,19, 6437.

68. Xiang, D.; Yang, Y.; Zhang, R.; Liang, Y.; Pan, W.; Huang, J. and Dong, D. J. Org. Chem. 2007, 72, 8593.

69. Pan, W.; Dong, D.; Wang, K.; Zhang, J.; Wu, R.; Xiang, D. and Liu, Q. Org. Lett. 2007, 9, 12, 2421.

70. Jones, G. Comprehensive

Heterocylclic Chemistry II;

Mckillop.A; Ed: pergamon press: Oxford,1996, Vol.5, P.167. 71. Jaysinghe, L.; Abbas, H. K.; Jacob,

M. R.; Herath, W.H.M.W.;

Nanayakkara, N. P. D. J. Nat. Prod. 2006, 69, 439.

72.Asokan, C. V.; Anabha , E. R.; Thomas, A. D.; Jose, A. M.; Lethesh, K. C.;Prasanth, M. and Krishanraj, K. U. Tetrahedron Letters 2007, 48, 5641.

73. Tabuchi, Y.; Ando, Y.; Kanemura, H.; Kawasaki, I.; Ohishi, T.; Koida, M.; Fukuyama, R.; Nakamuta, H.; Ohta, S.; Nishide, K.; Ohishi, Y. Bioorg. Med. Chem. 2009, 17, 3959.

74.Quiroga, J.; Trilleras, J.; Insuasty, B.; Abonia, R.; Nogueras, M.; Marchal, A.Cobo, J. Tetrahedron Lett. 2008, 49, 3257

75. ArunaKumar, D. B.; Prakash, G.

K.; kumaraswamy, M. N.;

Nandeshwarappa, B. P.;

Sherigara, B. S. and Mahadevan , K. M. Indian J. Chem. 2007, 46B, 336.

76.Elgemeie, G. H. and Metwally, N. H. J. Chem. Res(5), 1999, 6, 384.

77.Goudarshivannanavar, B. C.;

Jayadevappa H. and Mahadevan, K. M. Indian J. Chem. 2009, 48B, 1419.

78. Damljanovic, I.; Vukicevic, M.; Radulovic, N.; Palic, R.; Ellmerer, E.; Ratkovic, Z.; Joksovic, M. D.; Vukicevic, R. D. Bioorg. Med. Chem. Lett. 2009, 19, 1093 79.Joksovic, M.; Ratkovic, Z.;

Vukicevic, M. Vukicevic, R. D. Synlett 2006, 2581.

80.Vera-DiVaio, M. A. F.; Freitas

A.C.C.; Castro, H. C.;

Albuquerque, S. D.; Cabral, L. M.; Rodrigues, C. R.; Albuquerque, M. G.; Martins R. C. A.; Henriques, M. G. M. O.; Dias, L. R. S. Bioorg. Med. Chem. 2009, 17, 295.

81. Some, S.; Ray, J. K.; Barwell,

M.G. and Jones, M. T.

Tetrahedron Lett. 2007,48,

3609.

82.Banwell, M. G.; Lupton, D. W.; Ma, X.; Renner, J.; Sydnes, M. O.; Org. Lett. 2004, 6, 2741.

(17)

IJPCBS 2012, 3(1), 25-43 Rajputet al. ISSN: 2249-9504

A.; Dattolo, G.;Gia, O.; Via, L. D. and Cirrincione, G. Bioorg. Med. Chem. Lett. 2007, 17, 2342. 84. Popowycz, F.; et al, Tetrahedron

2007, 63, 1031.

85. Barraja, P.; Diana, P.;

Montalbano, A.; Carbone, A.;

Cirrincione, G.; Viola, G.;

Salvador, A.; Vedaldi, D.;

Dallacqua, F. Bioorg. Med. Chem. 2008, 16, 9668.

86. Xiang-Ying Tang and Min shi, J. Org. Chem. 2008, 73, 8317.

87. Damodiran, M.; Panneer,

Selvam. and Perumal, P.T. Tetrahedron Lett. 2009, 50, 5474

88. Wang, B. D.; Yang, Z.Y.; Qin, D. D.; Chen, Z. N. J. Photochem. Photobiol. A Chem. 2008,194, 49.

89. Herbivo, C.; Comel, A.; Kirsch, G.; Raposo, M. M. M. Tetrahedron 2009, 65, 2079.

90. Bhatti, H. S. and Seshadri, S. Dyes and Pigments 2004, 62, 83. 91. Mogilaiah, K.; Prasad, R. S. and Kumar, K. S. Indian J. Chem. 2010, 49B, 1417

92. Dutta, B.; Some, S. and Ray, J. K. Tetrahedron Lett. 2006, 47, 377. 93. Becker, C.; Roshchupkina, G.;

Rybalova, T.; Gatilov, Y. and Reznikov, V. Tetrahedron 2008, 64, 9191.

94. Singh, I. P.; Bharate, S. B. Nat. Prod. Rep. 2006, 23, 558.

95. Bharate, S. B.; Khan, S. I.; Yunus, N. A. M.; Chauthe, S. K.; Jacob, M. R.;Tekwani, B. L.; Khan, I. A. and Singh, I. P. Bioorg. Med. Chem. 2007, 15, 87.

96. Gandhi, V.; Thompson, M. L. and Lash, T. D. Tetrahedron 2010, 66, 1787.

97. Banerji, S.; Hyland, M. A. and Bruckner, C. Tetrahedron Lett. 2010, 51, 4505.

98. Bera, R.; Swamy, N. K.;

Dhananjaya, G.; Babu, J. M.; Kumar, P. R.; MukkantiK. and Pal, M. Tetrahedron 2007, 63, 13018.

99.Bubenyak, M.; Palfi, M.; Takacs, M.; Beni, S.; Szoko, E.; Noszal, B.; Kokosi, J. Tetrahedron Lett. 2008, 49, 4937.

100.(a) Park, M.; Lee, J.; Choi, J. Bioorg. Med. Chem. Lett. 1996, 6, 1297.(b) Moreia, A. L.; Corral, L. G.; Ye, W.; Johnson, B. A.; Stirling, D.; Muller, G. W.; Freedman, V. H.; Kaplan, G. AIDS Res. Hum. Retoviruses 1997, 13, 857. 101.Burzynski, S. R. Adv. Exp. Clin.

Chemother. 1988, 6, 45.

102.Tsuda, H.; Sugihara, S.; Nishida, H.; Hara, H.; Eriguchi, N.; Ishii, K.; Sasaki, K.; Yoshimura, S.; Tanaka, N. Jpn. J. Cancer Res. 1992, 86, 527

103.Victory, P.; Borrell, J. I. Trends Heterocycl. Chem. 1993, 3, 235.

104. Oesterle, T.; Simchen, G.

Synthesis 1985, 403.

105.Chang, M. Y.; Chen, C. Y.; Chen, S. T.; Chang, N. C. Tetrahedron 2003, 59, 7547.

106.Chang, M. Y.; Chen, C. Y.; Chen, S. T.; Chang, N. C. Tetrahedron Lett.2000,41,10273

107.Chen, C. Y.; Chang, M. Y.; Hsu, R. T.; Chen, S. T.; Chang, N. C. Tetrahedron Lett. 2003, 44, 8627.

108.Aitken, R. A.; Buchanan, G. M.; Karodia, N.; Massil, T.; Young, R. J. Tetrahedron Lett. 2001, 42, 141.

109.Kiyota, H.; Shimizu, Y.; Oritani, T. Tetrahedron Lett. 2000, 41, 5887.

110.Popovic Dordevic, J. B.; Ivanovic,

M. D.; Kiricojevic, V. D.

Tetrahedron Lett. 2005, 46, 2611.

111.Chang, B. R.; Chen, C. Y.; Chang, N. C. Tetrahedron Lett. 2002, 43, 3233.

112.Wanner, M. J.; Koomen, G. J. Synthesis 1988, 325.

113.The Merk Index, 13th ed.; Merk & Co.: NJ, 2001.

(18)

115.Leonardi, A.; Barlocco, D.; Montesano, F.; Cignarella, G.; Motta, G.; Testa, R.; Poggesi, E.; Seeber, M.; De Benedetti, P. G.; Fanelli, F. J. Med. Chem. 2004, 47, 1900.

116.Paluchowska, M. H.; Bugno, R.; Duszynska, B.; Tatarczynska, E.; Nikiforuk,A.; Lenda, T. and Wojcik, E. C. Bioorg. Med. Chem. 2007, 15, 7116

117.Shaabani, A.; Soleimani, E.; Khavasi, H. R.; Hoffmann, R. D.; Rodewald, U. C. and Pottgen, R. Tetrahedron Lett. 2006, 47, 5493.

118.Kiyota, H.; Shimizu, Y. and Oritani, T. Tetrahedron Lett. 2000, 41, 5887

119. Sonoda, T.; Osada, H.; Uzawa, J.; Isono, K. J. Antibiot. 1991, 44, 160.

120.Isono, K.; Osada, H.; Sonoda, T. JPn Kokai Tokkyo Koho 1991

JPO3, 255, 082

(Chem.Abstr.1992, 116,

126985).

121. Fu, R.; Ye, J.; Dai, X.; Ruan, Y. and Huang, P. J. Org. Chem. 2010, 75, 4230.

122.Fu, R.; Du, Yu; Li, Z.-Y.; Xu, W.-X.; Huang, P.- Q. Tetrahedron 2009, 65, 9765.

123.Amat, M.; Brunaccini, E.; Checa, B.; Perez, M.; Llor, N.; Bosch, J. Org. Lett. 2009, 11, 4370.

124.Huang, C. G.; Chang B. R. and Chang, N. C. Tetrahedron Lett. 2002, 43, 2721.

125.Mederski Werner W. K. R.;

Baumgarth, M.; Germann, M.;

Kux, D. and Weitzel, T.

Tetrahedron Lett. 2003, 44, 2133.

126.Chen, B. F.; Tasi, M. R.; Yang, C. Y.; Chang J. K. and Chang, N. C. Tetrahedron 2004, 60, 10223. 127.Stout, D. M.; Meyers, A. Chem.

Rev. 1982, 82, 233.

128.Godfraid,T.; Miller, R.; Wibo, M. Pharmacol. Rev. 1986, 38, 321. 129.Gaudio, A. C.; Korolkovas, A.;

Takahata, Y. J. Pharm. Sci. 1994, 83, 1110.

130.Antman, E.; Muller, J.; Goldberg, S.; MacAlpin, R.; Rubenfire, M.; Tabatznik, B.; Liang, C.; Heupler, F.; Achuff, S.; Reichek, N.; Geltman, E.; Kerin, N. Z.; Neff, R. K.; Braunwald, E. N. Engl. J. Med. 1980, 302, 1269.

131.Guazzi, M.; Olivari, M. T.; Polese, A.; Fiorentini, C.; Margrini, F.; Moruzzi, P. Clin. Pharmacol. Ther. 1977, 22, 528

132.Soldatenkov, A. T.; Kolyadina, N.

M. and Shendrik, I. V.

Fundamentals of the Organic

Chemistry of Medicinal

Substances [in Russian], Khimia, Moscow 2001, 192 pp.

133.Moiseev, V. S. Klin. Farmakol. Ther. 2006, 15 (3), 45.

134.Kappe, C. O. Molecules 1998, 3, 1.

135. Suresh, T.; Swamy, S. K. and Reddy, V. M. Indian J. Chem. 2007, 46B, 115 .

136.Pattan, S. R.; Rasal, V. P.; Venkatramana, N. V.; Khade, A. B.; Butle, S. R.; Jadhav, S. G.; Desai, B. G. and Manvi,F. V. Indian J. Chem. 2007, 46B, 698. 137.Pattan, S. R.; Purohit, S. S.; Rasal,

V. P.; Mallya, S.; Marihal, S. C.; Khade, A. B. and Paschapur, M. S. Indian J. Chem. 2008, 47B, 626.

138.Arumugam, P. and Perumal, P. T. Indian J. Chem. 2008, 47B, 1084 .

139. Das, P. J. and Baruah, A. Indian J. Chem. 2008, 47B, 1568.

140.Desai, B. G. and Sureja, D. Bioorg. Med. Chem. 2001, 9, 1993. 141.Mannhild, R.; Jabolanka, B.;

Voigelt, W.; Schoeuafinger, K. and Schravan, K. Eur. J. Med. Chem. 1992, 27, 229.

142.Subudhi, B. B.; Panda, P. K. and Bhatta, D. Indian J. Chem. 2009, 48B, 725.

143.Skrastyn'sh, I. P.; Kastron, V. V.; Dubur, G. Y. Mazheika, I. B. and

Liepin'sh, E. E. Khim.

(19)

IJPCBS 2012, 3(1), 25-43 Rajputet al. ISSN: 2249-9504

144. Skrastiņš, I.; Kastron, V.; Cekavičus, B.; Sausiņš, A.; Zolotoyabko, R. and Dubur, G. Khim. Geterotsikl. Soedin. 1991, 1230. [Chem. Heterocycl. Comp. 1991, 27, 989.].

145.Skrastinsh, I. P.; Kastron, V. V.; Vitolin’, R. O.; Dubur, G. Y.; Stivrinya, M. I. and Kaidaka, K. A. Khim.-Farm. Zh. 1989, 23, 1323. 146.Vovk, M. V.; Mel’nichenko, N. V.; Sukach, V. A.; Chubaruk, N. G. Chem.Heterocycl. Compd. 2004, 40, 1485.

147.Quiroga, J.; Trilleras, J.; Cobo, J.; Glidewell, C. Acta Crystallogr. Sect. C 2010, 66, 47.

148.Verdecia, Y.; Suarez, M.; Morales, A.; Rodriguez, E.; Ochoa, E.;

Gonzalez, L.; Martin, N.;

Quintero, M.; Seoane, C.; Soto, J. L. J. Chem. Soc. Perkin Trans. 1 1996, 947.

149.De la Torre, J. M.; Trilleras, J.; Cobo, J.; Glidewell, C. Acta Crystallogr. Sect. C 2009, 65, 281.

150.Trilleras, J.; Quiroga, J.; Low, J. N.; Cobo, J.; Glidewell, C. Acta Crystallogr. Sect. C 2008, 64, 341.

151.Zhu, D.-G.; Gunawardana, I. W.; Boyd, S. A.; Melcher, L. M. J. Heterocycl. Chem. 2008, 45, 91. 152.Kvitoko, I. Y.; Panfilova, E. A.

Khim. Geterotsikl. Soedin. 1973, 507, (Engl. Transl. P.467). Chem. Abstr. 1973, 79, 31775s.

153.Maddox, M. L.; Muchowski, J. M. J. Org. Chem. 1990, 55, 5793. 154.Quiroga, J.; Diaz,Y.; Insuasty, B.;

Abonia, R.; Nogueras, M. and Cobo, J. Tetrahedron Lett. 2010, 51, 2928.

155. A. P. Rajput, Asian J. Chem., 14, 2, 2002, 807.

156. A. P. Rajput, Asian J. Chem., 16, 3-4, 2004, 1374

157.A. P. Rajput and S. S. Rajput, Asian J. Chem., 19, 4, 2007, 3265. 158.A. P. Rajput and S. S. Rajput, Asian J. Chem., 19, 6, 2007, 4939.

159.A. P. Rajput and S. S. Rajput, Int. J. PharmTech Res., 1(4), 2009, 1605

160.Rajput A. P. and Bhadane S. J., Int. J. PharmTech Res., 4(2), 2012, 523.

161.A. P. Rajput and P. D. Girase Indian J. Heterocyclic Chem. 2010, Vol. 20, 87.

162.A. P. Rajput and P. D. Girase, Int.

J. Pharm. Pharm. Sci.,

2011,Volume-3, suppl 4, 214. 163.A. P. Rajput and P. D. Girase, Int.

J. Chem. Res., Vol.2, Issue 4, 2011, 38.

164.A. P. Rajput and P. D. Girase, Int. J. Pharm Tech Res. 2011, 3(4), 2111.

165.A. P. Rajput and P. D. Girase, Indian J. Heterocyclic Chem., Vol.21,Jan-March 2012, pp. 201-208.

166.A. P. Rajput and P. D. Girase, Int.

J. Chem Tech Res. .,

Vol.4,No2,April-June 2012,

References

Related documents

HPC International Desks Director Leads One Day Workshop - Michel Davison, HPC International Desk Director, was the primary speaker at a one day NOAA sponsored numerical

The minimal time an investigator has to wait is the time needed to perform the next step. Additionally, if that step is completed outside of working hours,

Oriented psychotherapy (SBOP) 128 Rajah 3.11 Kandungan modul Spiritual Body Oriented psychotherapy (SBOP) 129 Rajah 3.12 Hasil Kajian Rintis Pertama Menggunakan Modul BOP dan SBOP

 Second phase: system analysis using DEMATEL method;  Third phase: selection of key environmental factors figure 1.. 3.1 First Phase:

GEM 2000 shows Denmark to be a middle-ranking nation in terms of its level of entrepreneurial activity. In some areas, e.g. access to the physi- cal infrastructure, level of barriers

While most research concerning VL-CCT assumes the common situation of mastery testing, where the purpose of the test is to classify the examinee as “pass” or “fail,” the

The Campus Activities Program (CAP) must identify relevant and desirable student learning and development outcomes and provide programs and services that encourage the achievement

Model simulations of powdery mildew severity (%) in a scenario of low-intermediate conduciveness (black symbols) and high conduciveness (grey symbols) for the disease according