• No results found

Measuring Optical and Thermal Properties of High Temperature Receivers

N/A
N/A
Protected

Academic year: 2021

Share "Measuring Optical and Thermal Properties of High Temperature Receivers"

Copied!
33
0
0

Loading.... (view fulltext now)

Full text

(1)

Measuring Optical and Thermal Properties of High

Temperature Receivers

Johannes Pernpeintner, Thomas Fend

(2)

Part I:

Thermal properties of receivers for 

SOLAR TOWER TECHNOLOGY

 Thomas Fend

Part II:

Optical and thermal properties of tube receivers for 

PARABOLIC TROUGH TECHNOLOGY

(3)

Why Solar Tower Technology?

• Higher losses at higher temperatures

• Higher concentration ratio

• Efficiency limited by thermal engine

• Higher temperatures – higher

(4)
(5)

Receivers for Solar Tower Technology

• volumetric receivers

• tube receivers

• direct medium receivers

• …

(6)

Tube Receivers

• absorption on outer tube surface

• transport of heat through tube wall to a  medium

• media: liquid salt, liquid metal, water, air

‐ thermal resistance

‐ non homogeneous heating

‐ tube surface temperature is higher than medium temperature

(7)

Tube Receivers

Solar Two

• absorption on outer tube surface

• transport of heat through tube wall to a  medium

• media: liquid salt, liquid metal, water, air

‐ thermal resistance

‐ non homogeneous heating

‐ tube surface temperature is higher than medium temperature

(8)

Tube Receivers

Source: torresolenergy

Gemasolar

• absorption on outer tube surface

• transport of heat through tube wall to a  medium

• media: liquid salt, liquid metal, water, air

‐ thermal resistance

‐ non homogeneous heating

‐ tube surface temperature is higher than medium temperature

(9)

Tube Receivers

PS10/PS20

Source: desertec UK

• absorption on outer tube surface

• transport of heat through tube wall to a  medium

• media: liquid salt, liquid metal, water, air

‐ thermal resistance

‐ non homogeneous heating

‐ tube surface temperature is higher than medium temperature

(10)

Volumetric Receivers

• Radiation absorbed in the porous volume of the receiver

• Front temperature lower than medium  temperature

(11)

Volumetric Receivers

0.8 mm 2 mm

• Radiation absorbed in the porous volume of the receiver

• Front temperature lower than medium  temperature

(12)

Volumetric Receivers

Solar Tower Jülich Tower: 60m 2153 Heliostats (8.2 m²) 22.7 m² receiver aperture 1 h thermal storage 500°C/ 30 bar 1.5 MWelturbine

• Radiation absorbed in the porous volume of the receiver

• Front temperature lower than medium  temperature

(13)
(14)

Thermal Performance Prediction

(15)

Thermal Performance Prediction

• Absorption

(16)

Thermal Performance Prediction

• Absorption

• Conductive resistance in tube wall • Convective resistance

(17)

Thermal Performance Prediction

• Absorption

• Conductive resistance in tube wall • Convective resistance

 tables

 standard techniques

 optimization of process by

geometry and thermal properties of  the employed material

(18)

Thermal Performance Prediction: Heat

Transfer Enhancing Concepts

• Increased heat transfer surface

• Enhanced heat transfer by gradation in radial direction

• Thermal properties of porous material needed

• Proposed in Korean/Swiss/German  project CMC4CSP

(19)

Thermal Performance Prediction:

Volumetric Receiver

• Conductive resistance and

• Convective resistance in porous

volume

 Advanced experimental techniques necessary if non uniform pore

(20)

Thermal Performance Prediction

• Conductive resistance and

• Convective resistance in porous

volume

 Advanced experimental techniques necessary if non uniform pore

(21)

Thermal Performance Prediction

• Conductive resistance and

• Convective resistance in porous

volume

 Advanced experimental techniques necessary if non uniform pore

(22)

Thermal Conductivity of Porous Materials

• Transient Plane Source Technique + Measurement of characteristic  volumes + mesurement yields ‐ effective thermal conductivity ‐ effective thermal diffusivity ‐ heat capacity

(23)

Thermal Conductivity of Porous Materials

• Transient Plane Source Technique + Measurement of characteristic  volumes + mesurement yields ‐ effective thermal conductivity ‐ effective thermal diffusivity ‐ heat capacity

(24)

Effective Thermal Conductivity of Porous

Materials: Metal Foams

(25)

Convective Resistance in Porous Volume

0

)

(

2

S v S F eff

T

A

T

T

0

)

(

v S F F P

A

T

T

dx

dT

C

m

• two phase approach in  continuum model

• Additional term in energy equations of solid and fluid phase

Av: volumetric convective heat transfer coefficient

(26)

Experimental Set-Up for Volumetric

Convective Heat Transfer Coefficient

Av: AAF-method

1 x=0 x=L Absorber sample Insulation Air T(t,0) T(t,L) Heat Element DT(t,0) DT(t,L) Df t t

‐ Air flow with alternating temperature profile induced

‐ Porous sample causes phase shift and amplitude attenuation

‐ Av determined

1. ) Alternating Air flow method after Younis

(27)

Experimental Set-Up for Volumetric

Convective Heat Transfer Coefficient

Av: AAF-method

x=0 x=L Absorber sample Insulation Air T(t,0) T(t,L) Heat Element DT(t,0) DT(t,L) Df t t 10 mm Cordierite 20 ppi CB SiC 45 ppi

(28)

Experimental Set-Up for Volumetric

Convective Heat Transfer Coefficient

Av: AAF-method

x=0 x=L Absorber sample Insulation Air T(t,0) T(t,L) Heat Element DT(t,0) DT(t,L) Df t t y = 0,15x0,62 y = 0,42x0,62 y = 0,08x0,62 0 2 4 6 8 10 0 50 100 150 200 Re Nu 76 all 45 76 all 20 76 all 10

(29)

Experimental Set-Up for Volumetric

Convective Heat Transfer Coefficient

Av: AAF-method

x=0 x=L Absorber sample Insulation Air T(t,0) T(t,L) Heat Element DT(t,0) DT(t,L) Df t t y = 0,15x0,62 y = 0,42x0,62 y = 0,08x0,62 0 2 4 6 8 10 0 50 100 150 200 Re Nu 76 all 45 76 all 20 76 all 10 62 . 0 1 . 1

Re

8

.

4

PPI

n

Nu

(30)

Experimental Set-Up for Volumetric

Convective Heat Transfer Coefficient

Av: AlAv-method

1 1. ) AlphaAv‐method after Brendelberger et  al. blower mass flow measurement sample beamer IR camera

(31)

Experimental Set-Up for Volumetric

Convective Heat Transfer Coefficient

(32)

The AlAv-method: Results on Metal

(33)

Conclusions

• For the prediction of the thermal performance of high  temperature components characteristic quantities are needed

• Transient plane Source Technique for thermal conductivity measurement

• AAF and AlAV method for volumetric convective heat transfer properties

References

Related documents

To determine whether our proposed model describes customer responses better than do alternative model specifications, we estimate three benchmark customer response models (Models

Ugotovili smo, da vsi zaposleni, tako tisti, ki so deležnih mobinga, in tisti, ki mobinga niso bili deležni, menijo, da v največji meri mobing spodbujajo naslednji kontekstualni

and its subsidiaries as of December 31, 2006 and 2005 and the related statements of income, of changes in shareholders’ equity and of changes in financial position of

Higher TNF- α intracellular expression in classical and non- classical peripheral blood monocytes, after TLR4 ligand stimulation in the presence of sera from SLE patients with

Rev I 15/2/11 Project Type Procedures Organisat- ion Systems Users Leadership Ownership Element Definition Mainten- ance Scope Definition Project Understand- ing

This all means that the internationalization process in the retail sector in Slovakia had very little effect on the ongoing globalization processes which manifested themselves

a) Tesseract OCR engine: Tesseract is a free software optical character recognition engine for various operating systems. Tesseract is probably the most accurate open

Code N° pedido Numero ordine Bezeichnung Article Description Descripción Descrizione Inhalt l Volume (fl. oz.) Contenance Contenido Contenuto Höhe ƒ /ƒƒ Stück mm Height ƒ