• No results found

Tri­aqua(4 hy­droxy­pyridine 2,6 di­carboxyl­ato κ3N,O,O′)­zinc(II)–aceto­nitrile–water(1/0 25/1)

N/A
N/A
Protected

Academic year: 2020

Share "Tri­aqua(4 hy­droxy­pyridine 2,6 di­carboxyl­ato κ3N,O,O′)­zinc(II)–aceto­nitrile–water(1/0 25/1)"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m926

Guo-Wei Zhouet al. [Zn(C7H2NO5)(H2O)3]0.25C2H3NH2O DOI: 10.1107/S1600536803019846Acta Cryst.(2003). E59, m926±m928 Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

Triaqua(4-hydroxypyridine-2,6-dicarboxylato-j

3

N,O,O

000

)zinc(II)±acetonitrile±water(1/0.25/1)

Guo-Wei Zhou,a,bGuo-Cong

Guo,a* Bing Liu,a,bMing-Sheng

Wang,aLi-Zhen Cai,a

Guang-Hua Guoaand Jin-Shun

Huanga*

aState Key Laboratory of Structural Chemistry,

Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China, and

bGraduate School of Chinese Academy of

Sciences, Beijing 100039, People's Republic of China

Correspondence e-mail: gcguo@ms.fjirsm.ac.cn

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.002 AÊ H-atom completeness 38% Disorder in solvent or counterion

Rfactor = 0.052

wRfactor = 0.154

Data-to-parameter ratio = 11.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, [Zn(C7H2NO5)(H2O)3]0.25CH3CN

-H2O, was synthesized by the reaction of Zn(CH3COO)22H2O

and chelidamic acid. The coordination geometry of the Zn atom is a distorted octahedron, with one N and two O atoms from the chelidamate ligand and three water O atoms. A

three-dimensional network is formed by the OÐH O

hydrogen bonds between the O atoms of the chelidamate ligand and the aqua ligands and water molecule of crystal-lization.

Comment

Research on the behavior of metal chelation, which has been one of the most active areas in the ®elds of chemistry and material sciences, shows promising prospects in applications (Schnebecket al., 1999; Abrahamset al., 1998; Goodgameet

al., 1999; Albrecht, 1985). Chelidamic acid

(4-hydroxy-pyridine-2,6-dicarboxylic acid), an polydentate ligand, is of considerable interest in coordination chemistry. It is also important in biochemistry, organic chemistry, and medical chemistry, even in HIV investigations (Berl et al., 2001; Ng, 1999; Nakatsuji et al., 1985; Boger et al., 1999; Fessmann & Kilburn, 1999; Bridgeret al., 1999; Searceyet al., 1998). Metal complexes containing the chelidamate ligand have been reported for FeIII, CrIII, SnIV, GdIIIand VV(Ng, 1998, 1999;

Riegel, 1926; Hallet al., 2000; Cline et al., 1979; Yanget al., 2002; Thich et al., 1976). Here we report the synthesis and crystal structure of a new ZnII compound, (I), with a

cheli-damate ligand.

As shown in Fig. 1, the ZnIIatom is chelated by two O atoms

[average ZnÐO 2.216 (2) AÊ] and one N atom from the chelidamate ligand, and coordinated by three water molecules [mean ZnÐO = 2.101 (2) AÊ]. The ZnÐN distance of 2.0232 (13) AÊ in (I) is slightly shorter than that of 2.089 (3) AÊ in a related compound, tetraaqua(uracil-6-carboxylato)-zinc(II) monohydrate (Karipides & Thomas, 1986). The coordination geometry of the Zn atom can be described as a distorted octahedron (Table 1). The largest distortion from

(2)

octahedral symmetry is seen in the O13ÐZn1ÐO11 bond angle of 151.80 (4); this is due to the tridentate chelation.

Atom Zn1 and the chelidamate ligand are coplanar, with a mean deviation of 0.021 AÊ. The C13ÐO15 bond distance of 1.3428 (19) AÊ, which is close to 1.36 AÊ characteristic of CÐO bonds in aromatic alcohols (Sutton, 1965; Penfold, 1953), indicates that the pyridine ring exhibits the enolic form upon coordination (Gasparet al., 2001).

Atoms O14 and O11 act as hydrogen-bond acceptors,

forming intermolecular hydrogen bonds with atoms O2Wand

O15 [O2W O14 2.833 (2), O15 O11 2.6427 (16) AÊ]. These hydrogen bonds link the zinc complex, forming an in®nite chain in the [110] direction. Neighboring chains are connected into an in®nite layer in the [010] direction through the

hydrogen bonds between O1W, O3W, O4W and O12

[O1W O4W = 2.814 (2), O1W O12 = 2.719 (2),

O3W O4W = 2.862 (2), O3W O12 = 2.818 (2) AÊ]. The

layers are inter-linked through the O4W O14 and

O2W O13 hydrogen bonds [O14 O4W = 2.747 (2),

O2W O13 = 2.662 (2) AÊ], forming a three-dimensional

framework along the [001] direction, as shown in Fig. 2. Positionally disordered acetonitrile molecules are located between the layers.

Experimental

A mixture of Zn(CH3COO)22H2O (64 mg, 0.29 mmol) and cheli-damic acid (50 mg, 0.25 mmol) was dissolved in a 1:1 mixture of water and acetonitrile (20 ml). After adding 1±2 drops of KOH (0.1 mmol, 1 mol/l) to the solution and stirring for about 4 h, the mixed solution was ®ltered. The ®ltrate was allowed to stand at room temperature. Yellow crystals of (I) were formed over a period of 4±5 d, in a yield of 63%.

Crystal data

[Zn(C7H2NO5)(H2O)3

]-0.25C2H3NH2O

Mr= 327.79

Monoclinic,C2=c a= 14.6504 (3) AÊ b= 7.0380 (2) AÊ c= 22.6423 (5) AÊ

= 91.866 (1) V= 2333.4 (1) AÊ3

Z= 8

Dx= 1.866 Mg mÿ3

MoKradiation Cell parameters from 2863

re¯ections

= 2.8±25.0

= 2.15 mmÿ1

T= 293 (2) K Prism, pale yellow 0.640.400.38 mm

Data collection

Siemens SMART CCD diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.296,Tmax= 0.442

3823 measured re¯ections

2059 independent re¯ections 1759 re¯ections withI> 2(I) Rint= 0.021

max= 25.0

h=ÿ13!17 k=ÿ5!8 l=ÿ26!26

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.052

wR(F2) = 0.154

S= 1.00 2059 re¯ections 185 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.1023P)2

+ 10.2923P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.003

max= 0.95 e AÊÿ3

min=ÿ1.05 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Zn1ÐO2W 2.0081 (12) Zn1ÐN1 2.0232 (13) Zn1ÐO3W 2.1409 (13) Zn1ÐO1W 2.1541 (14)

Zn1ÐO13 2.1854 (13) Zn1ÐO11 2.2473 (12) O15ÐC13 1.3428 (19)

O2WÐZn1ÐN1 172.22 (5) O2WÐZn1ÐO3W 86.46 (5) N1ÐZn1ÐO3W 96.78 (5) O2WÐZn1ÐO1W 84.25 (5) N1ÐZn1ÐO1W 93.41 (5) O3WÐZn1ÐO1W 167.90 (5) O2WÐZn1ÐO13 96.27 (5) N1ÐZn1ÐO13 76.46 (5)

O3WÐZn1ÐO13 94.75 (5) O1WÐZn1ÐO13 93.95 (5) O2WÐZn1ÐO11 111.92 (5) N1ÐZn1ÐO11 75.35 (5) O3WÐZn1ÐO11 87.92 (5) O1WÐZn1ÐO11 88.38 (5) O13ÐZn1ÐO11 151.80 (4)

Acta Cryst.(2003). E59, m926±m928 Guo-Wei Zhouet al. [Zn(C7H2NO5)(H2O)3]0.25C2H3NH2O

m927

metal-organic papers

Figure 2

Packing diagram of (I). Dashed lines represent the hydrogen bonds. Thick dashed lines indicate the interlayer hydrogen bonds.

Figure 1

(3)

metal-organic papers

m928

Guo-Wei Zhouet al. [Zn(C7H2NO5)(H2O)3]0.25C2H3NH2O Acta Cryst.(2003). E59, m926±m928

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O15ÐH15 O11i 0.83 (3) 1.82 (3) 2.6427 (16) 175 (3)

O4WÐH4W O14ii 0.95 (2) 1.91 (2) 2.747 (2) 145.9 (19)

Symmetry codes: (i)xÿ1

2;yÿ12;z; (ii)12ÿx;yÿ12;32ÿz.

C-bound H atoms, except for those of the acetonitrile molecule, were placed at calculated positions, riding on their parent atoms. One of the H atoms of O4Wand the H atom bonded to O15 were located in difference Fourier maps and re®ned isotropically. The other H atoms of the water molecules were not included in the calculation. The acetonitrile molecule lies on a site of symmetry 2, and its occu-pancy was re®ned toca0.25 and ®nally set to 0.25. The minimum peak in ®nal difference map isÿ1.05 AÊÿ3from the Zn1 atom.

Data collection: SMART (Siemens, 1996); cell re®nement:

SMART; data reduction:SAINT(Siemens, 1994); program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to re®ne structure: SHELXTL; molecular graphics: SHELXTL; soft-ware used to prepare material for publication:SHELXTL.

We gratefully acknowledge the ®nancial support of the National Natural Science Foundation of China (No. 20001007, 20131020), the Natural Sciences Foundation of the Chinese Academy of Sciences (KJCX2-H3) and Fujian Province (2000F006).

References

Abrahams, B. F., Jackson, P. A. & Robson, R. (1998).Angew. Chem. Int. Ed.

37, 2656±2659.

Albrecht, R. (1985).Angew. Chem. Int. Ed. Engl.24, 1026±1040.

Berl, V., Hue, I., Khoury, R. G. & Lehn, J.-M. (2001).Chem. Eur. J.7, 2798± 2809.

Boger, D. L., Hong, J., Hikota, M. & Ishida, M. (1999).J. Am. Chem. Soc.121, 2471±2477.

Bridger, G. J., Skerlj, R. T., Padmanabhan, S., Martellucci, S. A., Henson, G. W., Struyf, S., Witvrouw, M., Schols, D. & Clercq, E. D. (1999).J. Med. Chem.

42, 3971±3981.

Cline, S. J., Kallesoe, S., Pedersen, E. & Hodgson, D. J. (1979).Inorg. Chem.18, 796±801.

Fessmann, T. & Kilburn, J. D. (1999).Angew. Chem. Int. Ed.38, 1993±1996. Gaspar, A. B., MunÃoz, C. M., Niel, V. & Real, J. A. (2001).Inorg. Chem.40, 9±

10.

Goodgame, D. D. L., Grachvogel, D. A. & Williams, D. J. (1999). Angew. Chem. Int. Ed.38, 153±156.

Hall, A. K., Harrow®eld, J. M., Skelton, B. W. & White, A. H. (2000).Acta Cryst.C56, 448±450.

Karipides, A. & Thomas, B. (1986).Acta Cryst.C42, 1705±1707.

Nakatsuji, Y., Bradshaw, J. S., Tse, P.-K., Arena, G., Wilson, B. E., Wilson, N. K., Dalley, N. K. & Izatt, R. M. (1985).Chem. Commun.pp. 749±751. Ng, S. W. (1998).Z. Kristallogr.213, 421±426.

Ng, S. W. (1999).J. Organomet. Chem.585, 12±17. Penfold, B. R. (1953).Acta Cryst.6, 591±600. Riegel, R. (1926).J. Am. Chem. Soc.48, 1334±1345.

Schnebeck, R.-D., Freisinger, E. & Lippert, B. (1999).Angew. Chem. Int. Ed.

38, 168±171.

Searcey, M., MeClean, S., Madden, B., McGown, A. T. & Wakelin, L. P. G. (1998).Anti-Cancer Drug Des.13, 837±855.

Siemens (1994).SAINT andSHELXTL. Siemens Analytical X-ray Instru-ments Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996).SADABS. University of GoÈttingen, Germany. Sutton, L. E. (1965).Chem. Soc. Special Publ.18, S16s±S21s.

Thich, J. A., Ou, C. C., Powers, D., Vasiliou, B., Mastropaolo, D., Potenza, J. A. & Schugar, H. J. (1976).J. Am. Chem. Soc.98, 1425±1433.

(4)

supporting information

sup-1 Acta Cryst. (2003). E59, m926–m928

supporting information

Acta Cryst. (2003). E59, m926–m928 [https://doi.org/10.1107/S1600536803019846]

Triaqua(4-hydroxypyridine-2,6-dicarboxylato-

κ

3

N,O,O

)zinc(II)

acetonitrile

water(1/0.25/1)

Guo-Wei Zhou, Guo-Cong Guo, Bing Liu, Ming-Sheng Wang, Li-Zhen Cai, Guang-Hua Guo and

Jin-Shun Huang

(I)

Crystal data

[Zn(C7H2NO5)(H2O)3].0.25(C2H3N).(H2O) Mr = 327.79

Monoclinic, C2/c a = 14.6504 (3) Å

b = 7.0380 (2) Å

c = 22.6423 (5) Å

β = 91.866 (1)°

V = 2333.4 (1) Å3 Z = 8

F(000) = 1332

Dx = 1.866 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2863 reflections

θ = 2.8–25.0°

µ = 2.15 mm−1 T = 293 K

Prism, pale yellow 0.64 × 0.40 × 0.38 mm

Data collection

Siemens SMART CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.296, Tmax = 0.442

3823 measured reflections 2059 independent reflections 1759 reflections with I > 2σ(I)

Rint = 0.021

θmax = 25.0°, θmin = 2.8° h = −13→17

k = −5→8

l = −26→26

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.052 wR(F2) = 0.154 S = 1.00 2059 reflections 185 parameters 13 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.1023P)2 + 10.2923P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.003

Δρmax = 0.95 e Å−3

(5)

supporting information

sup-2 Acta Cryst. (2003). E59, m926–m928

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Zn1 0.484546 (13) 0.75804 (3) 0.638008 (8) 0.02755 (6) O11 0.52753 (8) 0.79294 (17) 0.54425 (5) 0.0271 (3) O12 0.48014 (9) 0.73097 (17) 0.45117 (6) 0.0311 (3) O13 0.38768 (8) 0.6649 (2) 0.70344 (5) 0.0387 (4) O14 0.25846 (12) 0.5052 (3) 0.71115 (8) 0.0855 (5) O15 0.17042 (7) 0.42029 (17) 0.48796 (5) 0.0308 (3) N1 0.38201 (8) 0.64013 (19) 0.58848 (6) 0.0232 (3) C11 0.38537 (10) 0.6371 (2) 0.52955 (6) 0.0188 (4) C12 0.31516 (10) 0.5608 (2) 0.49423 (7) 0.0224 (4)

H12A 0.3185 0.5581 0.4533 0.027*

C13 0.23905 (10) 0.4880 (2) 0.52263 (7) 0.0219 (4) C14 0.23687 (11) 0.4900 (2) 0.58407 (7) 0.0270 (4)

H14A 0.1871 0.4409 0.6035 0.032*

C15 0.31013 (11) 0.5663 (2) 0.61535 (7) 0.0287 (4) C16 0.47032 (11) 0.7275 (2) 0.50569 (7) 0.0218 (4) C17 0.31849 (13) 0.5795 (3) 0.68227 (8) 0.0426 (5)

C21 0.5000 0.2375 (8) 0.7500 0.064 (3) 0.50

C22 0.5821 (3) 0.2308 (8) 0.7263 (3) 0.0885 (11) 0.25 N22 0.5821 (3) 0.2308 (8) 0.7263 (3) 0.0885 (11) 0.25 O1W 0.56234 (9) 0.4984 (2) 0.64235 (6) 0.0440 (4)

O2W 0.57996 (8) 0.85417 (19) 0.69628 (5) 0.0381 (4) O3W 0.43495 (9) 1.04405 (18) 0.63413 (5) 0.0357 (3) O4W 0.24901 (11) 0.0591 (3) 0.66895 (7) 0.0723 (6) H4W 0.2613 (14) 0.000 (3) 0.7059 (9) 0.047 (6)* H15 0.1276 (17) 0.376 (4) 0.5063 (11) 0.068 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3 Acta Cryst. (2003). E59, m926–m928

C11 0.0171 (6) 0.0211 (6) 0.0184 (7) −0.0017 (6) 0.0002 (5) −0.0003 (6) C12 0.0217 (7) 0.0251 (7) 0.0203 (7) −0.0031 (6) −0.0007 (6) −0.0017 (6) C13 0.0158 (6) 0.0206 (7) 0.0292 (8) −0.0021 (6) −0.0001 (6) −0.0023 (7) C14 0.0209 (7) 0.0320 (8) 0.0285 (8) −0.0085 (6) 0.0059 (6) −0.0005 (7) C15 0.0282 (7) 0.0334 (8) 0.0246 (7) −0.0087 (7) 0.0053 (6) −0.0008 (7) C16 0.0185 (7) 0.0236 (7) 0.0236 (8) −0.0002 (6) 0.0061 (6) −0.0008 (6) C17 0.0474 (9) 0.0556 (11) 0.0254 (8) −0.0300 (8) 0.0077 (8) −0.0043 (8) C21 0.096 (6) 0.034 (3) 0.062 (5) 0.000 −0.002 (4) 0.000 C22 0.0903 (18) 0.0831 (18) 0.0918 (19) −0.0015 (14) −0.0031 (15) −0.0048 (15) N22 0.0903 (18) 0.0831 (18) 0.0918 (19) −0.0015 (14) −0.0031 (15) −0.0048 (15) O1W 0.0386 (7) 0.0441 (7) 0.0488 (8) 0.0041 (6) −0.0076 (6) −0.0078 (7) O2W 0.0362 (6) 0.0478 (7) 0.0300 (6) −0.0141 (6) −0.0066 (5) 0.0050 (6) O3W 0.0397 (6) 0.0343 (6) 0.0332 (6) −0.0014 (6) 0.0005 (5) 0.0016 (6) O4W 0.0547 (9) 0.1227 (15) 0.0396 (8) 0.0119 (10) 0.0029 (7) 0.0222 (9)

Geometric parameters (Å, º)

Zn1—O2W 2.0081 (12) N1—C15 1.338 (2)

Zn1—N1 2.0232 (13) C11—C12 1.390 (2)

Zn1—O3W 2.1409 (13) C11—C16 1.513 (2)

Zn1—O1W 2.1541 (14) C12—C13 1.402 (2)

Zn1—O13 2.1854 (13) C12—H12A 0.9300

Zn1—O11 2.2473 (12) C13—C14 1.393 (2)

O11—C16 1.276 (2) C14—C15 1.376 (2)

O12—C16 1.248 (2) C14—H14A 0.9300

O13—C17 1.260 (2) C15—C17 1.519 (2)

O14—C17 1.230 (3) C21—C22 1.333 (4)

O15—C13 1.3428 (19) C21—N22i 1.333 (4)

O15—H15 0.83 (3) C21—C22i 1.333 (4)

N1—C11 1.337 (2) O4W—H4W 0.95 (2)

O2W—Zn1—N1 172.22 (5) N1—C11—C16 114.03 (13)

O2W—Zn1—O3W 86.46 (5) C12—C11—C16 123.98 (14)

N1—Zn1—O3W 96.78 (5) C11—C12—C13 117.52 (14)

O2W—Zn1—O1W 84.25 (5) C11—C12—H12A 121.2

N1—Zn1—O1W 93.41 (5) C13—C12—H12A 121.2

O3W—Zn1—O1W 167.90 (5) O15—C13—C14 123.13 (14)

O2W—Zn1—O13 96.27 (5) O15—C13—C12 116.94 (14)

N1—Zn1—O13 76.46 (5) C14—C13—C12 119.93 (14)

O3W—Zn1—O13 94.75 (5) C15—C14—C13 118.38 (15)

O1W—Zn1—O13 93.95 (5) C15—C14—H14A 120.8

O2W—Zn1—O11 111.92 (5) C13—C14—H14A 120.8

N1—Zn1—O11 75.35 (5) N1—C15—C14 122.00 (15)

O3W—Zn1—O11 87.92 (5) N1—C15—C17 112.98 (14)

O1W—Zn1—O11 88.38 (5) C14—C15—C17 125.02 (16)

O13—Zn1—O11 151.80 (4) O12—C16—O11 125.12 (15)

C16—O11—Zn1 114.13 (10) O12—C16—C11 118.96 (14)

(7)

supporting information

sup-4 Acta Cryst. (2003). E59, m926–m928

C13—O15—H15 114.0 (17) O14—C17—O13 125.52 (18)

C11—N1—C15 120.18 (13) O14—C17—C15 117.93 (17)

C11—N1—Zn1 120.58 (10) O13—C17—C15 116.54 (16)

C15—N1—Zn1 119.24 (11) C22—C21—N22i 175.9 (7)

N1—C11—C12 121.97 (14)

Symmetry code: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O15—H15···O11ii 0.83 (3) 1.82 (3) 2.6427 (16) 175 (3)

O4W—H4W···O14iii 0.95 (2) 1.91 (2) 2.747 (2) 145.9 (19)

References

Related documents

In this paper, we extend this work to pro- pose a more efficient and accurate unsupervised word segmentation that will optimize the per- formance of the word n -gram Pitman-Yor

Furthermore, in a TT-MCTAG derivation the argument trees must either adjoin directly to their head tree, or they must be linked in the derivation tree to an elemen- tary tree

In the first case of Nash equilibrium, we find that the establishment of cyclical strategies, during the game between the agents in charge and the regulator,

We propose a language model based on a precise, linguistically motivated grammar (a hand-crafted Head-driven Phrase Structure Grammar) and a statistical model estimating the

We follow the method used by Kazama and Torisawa (2007), which encodes the matching with a gazetteer entity using IOB tags, with the modification for Japanese.. They describe using

A multi-centric-prospective observational study conducted by ART adherence study group across 30 ART centres in India revealed suboptimal compliance in 24.5% of

Radiologist involved in cardiac imaging should have a thorough understanding about the contribution and limitations of echocardiography. Gathering and analysing

In this invitro study the stress distribution was evaluated and compared between two different crown heights, retained on implants by using different screw