• No results found

(1,3 Di­amino­propane κ2N,N′)[tris­­(2 amino­ethyl)amine κ4N,N′,N′′,N′′′]nickel(II) bis­­(perchlorate)

N/A
N/A
Protected

Academic year: 2020

Share "(1,3 Di­amino­propane κ2N,N′)[tris­­(2 amino­ethyl)amine κ4N,N′,N′′,N′′′]nickel(II) bis­­(perchlorate)"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m1757–m1759 doi:10.1107/S1600536805025225 Linet al. [Ni(C

3H10N2)(C6H18N4)](ClO4)2

m1757

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(1,3-Diaminopropane-

j

2

N

,

N

000

)[tris(2-aminoethyl)-amine-

j

4

N

,

N

000

,

N

000000

,

N

000000000

]nickel(II) bis(perchlorate)

Yung-Chan Lin,aTian-Huey Lu,b* Chang-Yao Li,cFen-Ling Liaoc

and Chung-Sun Chungc

aUnion Chemical Laboratories, Industrial

Technology Research Institute, Hsinchu, Taiwan 300,bDepartment of Physics, National Tsing

Hua University, Hsinchu, Taiwan 300, and

cDepartment of Chemistry, National Tsing Hua

University, Hsinchu, Taiwan 300

Correspondence e-mail: thlu@phys.nthu.edu.tw

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C–C) = 0.004 A˚ Disorder in main residue

Rfactor = 0.025

wRfactor = 0.062

Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, [Ni(C3H10N2)(C6H18N4)](ClO4)2, the

NiIIatom has a distorted octahedral coordination, formed by

four N atoms of the tris(2-aminoethyl)amine (tren) ligand and two N atoms of the 1,3-diaminopropane (pn) ligand. The tren ligand consists of three five-membered chelate rings ingauche conformations and the pn ligand consists of a six-membered chelate ring in a chair conformation. In the crystal structure, a two-dimensional network of hydrogen bonds extends parallel to the (100) plane.

Comment

The effects of coordinated ligands on the thermodynamics and kinetics of ternary complex formation have received much attention because of their importance in studying catalytic reactions of enzymes, including a wide range of metal enzyme

reactions (Hague et al., 1993). In the present study, the

synthesis and X-ray crystallographic structure analysis of the title compound, [Ni(pn)(tren)](ClO4)2 [tren is

tris(2-amino-ethyl)amine and pn is 1,3-diaminopropane], (I), is reported.

The Ni atom is six-coordinated by three primary amine groups and one tertiary amine group of the tren ligand, and by two primary amine groups of the pn ligand in a distorted octahedral geometry (Fig. 1). The tren ligand consists of three

five-membered chelate rings ingaucheconformations and the

pn ligand consists of a six-membered chelate ring in a chair conformation. Atoms N1/N2/N4/N5 constitute the equatorial plane of the octahedron. The longer bond lengths of Ni—N3 [2.164 (2) A˚ ] and Ni—N6 [2.148 (3) A˚] are consistent with the fac that atoms N3 and N6 of the tren ligand are in the axial positions of the octahedron. The Ni—N(tren) bond lengths in

(I) are almost equivalent to the reported values in

[Ni(tren)(en)] (ClO4)2 (en is ethylenediamine; Misra et al.,

(2)

2002), [Ni(tren)(acetato)](ClO4)2 (Fun et al., 1996),

[Ni(tren)2(C2O4)2](ClO4)2 (Castro et al., 1997),

[Ni(tren)-(phen)](ClO4)2 (phen is 1,10-phenanthroline; Misra et al.,

2002), and [Ni(tren)(bpy)](ClO4)2 (bpy is bypyridine; Lin et al., 2003). In (I), one of the chelate rings of the tren ligand shows conformational disorder, similar to that observed in

[Ni(tren)(2-Mepn)](ClO4)2 (2-Mepn is

2-methylpropane-1,2-diamine; Linet al., 2005).

For the pn ligand, the Ni—N1 bond length is significantly longer than Ni—N2, suggesting the steric effect caused by the

tertiary tren N groupcisto the N1 atom. The chelate bite angle of the pn ligand in (I) [86.73 (8)] is comparable to those in

[Ni(pn)3](NO3)2 (87.62–88.45; Vezzosi et al., 1985) and

[Ni(pn)3](BF4)2[86.57 (18)–88.6 (2); Willettet al., 2002]. The

molecular packing (Fig. 2) exhibits a two-dimensional network of hydrogen bonds (Table 2) between perchlorate ions and amino groups extending parallel to the (100) plane.

Experimental

Compound (I) was prepared according to the literature method of Linet al.(2003). A solution of Ni(tren)(ClO4)2(0.80 g, 2.4 mmol in

dry ethanol, 50 ml) was added dropwise to a solution of pn (0.20 g, 3.0 mmol in dry ethanol, 50 ml) with stirring at room temperature. The color of the mixture changed from blue to violet and the solution was stirred continuously for 3 h. The solution was then evaporated slowly and the violet crystals of (I) that precipitated out were filtered off and recrystallized from methanol.

Crystal data

[Ni(C3H10N2)(C6H18N4)](ClO4)2 Mr= 477.98

Orthorhombic,Pna21 a= 16.876 (2) A˚

b= 8.2937 (9) A˚

c= 13.6237 (16) A˚

V= 1906.9 (4) A˚3

Z= 4

Dx= 1.665 Mg m3

MoKradiation Cell parameters from 3745

reflections

= 2.4–28.3

= 1.35 mm1 T= 295 (2) K Block, purple 0.300.250.20 mm

Data collection

Bruker CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin= 0.692,Tmax= 0.764

11557 measured reflections

3745 independent reflections 3575 reflections withI> 2(I)

Rint= 0.025

max= 28.3 h=22!21

k=10!11

l=18!13

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.025 wR(F2) = 0.062

S= 0.95 3745 reflections 245 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0371P)2

+ 0.65P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.026

max= 0.44 e A˚3

min=0.21 e A˚3

Absolute structure: Flack (1983), 1285 Friedel pairs

Flack parameter: 0.010 (12)

Table 1

Selected geometric parameters (A˚ ,).

Ni—N2 2.103 (2) Ni—N4 2.122 (2) Ni—N5 2.131 (2)

Ni—N6 2.148 (3) Ni—N3 2.164 (2) Ni—N1 2.169 (2) N2—Ni—N4 89.62 (9)

N2—Ni—N5 170.99 (8) N4—Ni—N5 81.39 (9) N2—Ni—N6 100.11 (9) N4—Ni—N6 94.20 (9) N5—Ni—N6 81.37 (8) N2—Ni—N3 98.01 (9) N4—Ni—N3 91.17 (9)

N5—Ni—N3 81.56 (9) N6—Ni—N3 161.12 (8) N2—Ni—N1 86.73 (8) N4—Ni—N1 175.91 (10) N5—Ni—N1 102.23 (8) N6—Ni—N1 88.28 (9) N3—Ni—N1 87.50 (9)

metal-organic papers

m1758

Linet al. [Ni(C

[image:2.610.90.240.76.276.2]

3H10N2)(C6H18N4)](ClO4)2 Acta Cryst.(2005). E61, m1757–m1759

Figure 1

View of the complex cation in (I), showing the atom-labelling scheme and 30% probability displacement ellipsoids. H atoms have been omitted for

[image:2.610.46.294.332.560.2]

clarity. Atom C8 is disordered over two sites (C8Aand C8B).

Figure 2

(3)
[image:3.610.44.296.111.226.2]

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N1—H1A O1i

0.90 2.53 3.357 (5) 154 N1—H1B O2ii

0.90 2.56 3.356 (4) 148 N2—H2B O3 0.90 2.43 3.144 (4) 137 N3—H3A O6 0.90 2.32 3.162 (4) 156 N3—H3B O7i 0.90 2.55 3.196 (4) 129 N4—H4AA O1 0.90 2.28 3.100 (4) 152 N4—H4AB O6 0.89 2.38 3.224 (4) 158 N4—H4BA O1 0.89 2.28 3.100 (4) 153 N4—H4BB O5 0.90 2.44 3.232 (5) 147 N6—H6A O8iii

0.90 2.51 3.172 (4) 131 N6—H6B O2 0.90 2.24 3.138 (4) 176

Symmetry codes: (i)x;y1;z; (ii)xþ1 2;y

1 2;z

1 2; (iii)xþ

1 2;y

1 2;zþ

1 2.

There is a positional disorder of atom C8 of the tren ligand. The site-occupancy factors of C8Aand C8Bwere estimated to be 0.60 and 0.40, respectively, based on theirUeqvalues. The positional disorder

of the H atoms bonded to C9 and N4 was also considered (restrained distances for C9—H and N4—H were 0.97 and 0.90 A˚ , respectively). The H atoms bonded to C8Aor C8Bwere positioned geometrically and their bond distances restrained (restrained distances for C8A—H and C8B—H were both 0.97 A˚ ). The other H atoms were placed in geometrically calculated positions (N—H = 0.87–0.90 A˚ and C—H = 0.95–0.98 A˚ ) and refined as riding [Uiso(H) = 1.2Ueq(parent atom)].

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine

structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEP3 (Farrugia, 1997); software used to prepare material for publication:SHELXL97.

The authors thank the National Science Council of Taiwan

for support under grants NSC 92–2113-M-007–045 and

NSC93–2511-S-007–004.

References

Bruker (1998).SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2000).SADABS(Version 2.03) andSAINT(Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.

Castro, I., Calatayud, M. L., Sletten, J., Lloret, F. & Julve, M. (1997).J. Chem. Soc. Dalton Trans.pp. 811–817.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Fun, H.-K., Yip, B.-C., Lu, Z.-L., Duan, C.-Y., Tian, Y.-P. & You, X.-Z. (1996).

Acta Cryst.C52, 509–512.

Hague, D. N. & White, A. R. (1993).J. Chem. Soc. Dalton Trans.pp. 1337– 1341.

Lin, Y.-C., Lu, T.-H., Liao, F.-L. & Chung, C.-S. (2003).Anal. Sci.19, 641–642. Lin, Y.-C., Lu, T.-H., Liao, F.-L. & Chung, C.-S. (2005).Acta Cryst.E61,

m1398–m1400.

Misra, T. K., Chen, L.-H., Lin, Y.-J. & Chung, C.-S. (2002).Polyhedron,21, 2045–2053.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.

Vezzosi, I. M., Benedetti, A., Saladini, M., Battaglia, L. P. & Corradi, A. B. (1985).Inorg. Chem. Acta,97, 195–199.

Willett, R. D. & Awwadi, F. F. (2002).Acta Cryst.E58, m471–m472.

metal-organic papers

Acta Cryst.(2005). E61, m1757–m1759 Linet al. [Ni(C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m1757–m1759

supporting information

Acta Cryst. (2005). E61, m1757–m1759 [https://doi.org/10.1107/S1600536805025225]

(1,3-Diaminopropane-

κ

2

N

,

N

)[tris(2-aminoethyl)amine-κ

4

N

,

N

,

N

′′

,

N

′′′

]nickel(II) bis(perchlorate)

Yung-Chan Lin, Tian-Huey Lu, Chang-Yao Li, Fen-Ling Liao and Chung-Sun Chung

(1,3-Diaminopropane-κ2N,N)[tris(2-aminoethyl)amine- κ4N,N,N′′,N′′′]nickel(II) bis(perchlorate)

Crystal data

[Ni(C3H10N2)(C6H18N4)](ClO4)2

Mr = 477.98

Orthorhombic, Pna21

a = 16.876 (2) Å b = 8.2937 (9) Å c = 13.6237 (16) Å V = 1906.9 (4) Å3

Z = 4

F(000) = 1000

Dx = 1.665 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3745 reflections θ = 2.4–28.3°

µ = 1.35 mm−1

T = 295 K Plate, purple

0.30 × 0.25 × 0.20 mm

Data collection

Bruker CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin = 0.692, Tmax = 0.764

11557 measured reflections 3745 independent reflections 3575 reflections with I > 2σ(I) Rint = 0.025

θmax = 28.3°, θmin = 2.4°

h = −22→21 k = −10→11 l = −18→13

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.025

wR(F2) = 0.062

S = 0.95 3745 reflections 245 parameters 11 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0371P)2 + 0.65P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.026 Δρmax = 0.44 e Å−3 Δρmin = −0.21 e Å−3

Absolute structure: Flack (1983), 1285 Friedel pairs

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, m1757–m1759 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Ni 0.163947 (14) 0.04588 (3) 0.50329 (3) 0.02898 (7)

Cl1 0.28938 (4) 0.48797 (7) 0.65057 (6) 0.04334 (14)

Cl2 0.08591 (4) 0.49047 (7) 0.29324 (5) 0.04136 (14)

O1 0.21079 (17) 0.5422 (4) 0.6403 (3) 0.0966 (11)

O2 0.29246 (19) 0.3534 (3) 0.7158 (2) 0.0836 (8)

O3 0.3161 (2) 0.4398 (3) 0.5563 (2) 0.0815 (8)

O4 0.33789 (18) 0.6132 (4) 0.6876 (2) 0.0873 (9)

O5 0.16199 (14) 0.4704 (4) 0.3390 (2) 0.0772 (8)

O6 0.03330 (14) 0.3666 (3) 0.3284 (2) 0.0685 (7)

O7 0.05395 (17) 0.6440 (3) 0.3183 (2) 0.0837 (8)

O8 0.09492 (15) 0.4796 (3) 0.1893 (2) 0.0715 (7)

N1 0.21820 (12) −0.1808 (3) 0.46090 (19) 0.0438 (5)

H1A 0.1995 −0.2577 0.5013 0.053*

H1B 0.2011 −0.2050 0.4001 0.053*

N2 0.25376 (11) 0.1594 (2) 0.42163 (17) 0.0393 (5)

H2A 0.2407 0.1513 0.3578 0.047*

H2B 0.2528 0.2650 0.4369 0.047*

N3 0.08024 (12) 0.0094 (3) 0.38505 (17) 0.0386 (5)

H3A 0.0736 0.1022 0.3517 0.046*

H3B 0.0991 −0.0652 0.3432 0.046*

N4 0.11423 (13) 0.2748 (3) 0.53542 (18) 0.0434 (5)

H4AA 0.148 (3) 0.358 (6) 0.544 (5) 0.052* 0.60

H4AB 0.079 (2) 0.291 (6) 0.487 (3) 0.052* 0.60

H4BA 0.143 (5) 0.326 (10) 0.581 (5) 0.052* 0.40

H4BB 0.125 (5) 0.363 (7) 0.499 (6) 0.052* 0.40

N5 0.06528 (12) −0.0321 (3) 0.58856 (16) 0.0365 (5)

N6 0.22223 (13) 0.0243 (3) 0.64281 (19) 0.0432 (5)

H6A 0.2630 −0.0452 0.6377 0.052*

H6B 0.2417 0.1208 0.6609 0.052*

C1 0.30636 (16) −0.1933 (3) 0.4607 (3) 0.0527 (7)

H1C 0.3254 −0.1835 0.5276 0.063*

H1D 0.3212 −0.2993 0.4369 0.063*

C2 0.34628 (16) −0.0691 (4) 0.3992 (3) 0.0586 (8)

H2C 0.3262 −0.0783 0.3327 0.070*

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, m1757–m1759

C3 0.33653 (14) 0.1033 (4) 0.4320 (3) 0.0532 (7)

H3C 0.3526 0.1127 0.5001 0.064*

H3D 0.3710 0.1719 0.3932 0.064*

C4 0.00327 (15) −0.0447 (4) 0.4256 (2) 0.0464 (6)

H4C −0.0226 −0.1161 0.3792 0.056*

H4D −0.0309 0.0478 0.4362 0.056*

C5 0.01642 (14) −0.1319 (3) 0.5216 (2) 0.0463 (7)

H5C −0.0343 −0.1547 0.5521 0.056*

H5D 0.0429 −0.2337 0.5093 0.056*

C6 0.09859 (16) −0.1261 (4) 0.6702 (2) 0.0510 (7)

H6C 0.1180 −0.2287 0.6458 0.061*

H6D 0.0576 −0.1476 0.7183 0.061*

C7 0.16588 (18) −0.0341 (4) 0.7181 (2) 0.0565 (8)

H7C 0.1447 0.0569 0.7544 0.068*

H7D 0.1933 −0.1038 0.7641 0.068*

C8A 0.0671 (3) 0.2648 (6) 0.6251 (4) 0.0478 (11) 0.60

H8AC 0.034 (3) 0.358 (6) 0.631 (5) 0.057* 0.60

H8AD 0.105 (3) 0.262 (6) 0.677 (3) 0.057* 0.60

C8B 0.0313 (5) 0.2584 (9) 0.5647 (7) 0.0527 (18) 0.40

H8BC 0.003 (4) 0.243 (10) 0.503 (3) 0.063* 0.40

H8BD 0.018 (6) 0.352 (9) 0.604 (7) 0.063* 0.40

C9 0.01946 (15) 0.1097 (4) 0.6260 (2) 0.0472 (6)

H9AC −0.005 (3) 0.110 (8) 0.689 (2) 0.057* 0.60

H9AD −0.025 (3) 0.115 (7) 0.582 (4) 0.057* 0.60

H9BC −0.033 (2) 0.066 (10) 0.630 (8) 0.057* 0.40

H9BD 0.031 (5) 0.112 (12) 0.6948 (19) 0.057* 0.40

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Ni 0.02662 (11) 0.03236 (12) 0.02796 (13) 0.00083 (9) 0.00135 (12) 0.00104 (13)

Cl1 0.0471 (3) 0.0383 (3) 0.0446 (3) −0.0023 (2) −0.0057 (3) 0.0000 (3)

Cl2 0.0413 (3) 0.0392 (3) 0.0436 (3) 0.0054 (2) 0.0034 (3) 0.0042 (3)

O1 0.0582 (14) 0.093 (2) 0.138 (3) 0.0204 (14) −0.0058 (17) 0.018 (2)

O2 0.128 (2) 0.0509 (14) 0.0721 (19) 0.0054 (14) −0.0105 (17) 0.0173 (13)

O3 0.109 (2) 0.0793 (18) 0.0561 (19) −0.0054 (16) 0.0054 (15) −0.0177 (13)

O4 0.117 (2) 0.0747 (17) 0.0700 (19) −0.0396 (16) −0.0225 (16) −0.0083 (15)

O5 0.0519 (13) 0.106 (2) 0.073 (2) −0.0015 (12) −0.0136 (11) 0.0234 (16)

O6 0.0599 (12) 0.0585 (13) 0.0871 (19) −0.0121 (10) 0.0004 (12) 0.0161 (12)

O7 0.0987 (19) 0.0483 (13) 0.104 (2) 0.0157 (12) 0.0226 (16) −0.0069 (14)

O8 0.0740 (15) 0.0958 (18) 0.0447 (14) 0.0178 (13) 0.0033 (12) 0.0012 (12)

N1 0.0422 (11) 0.0395 (11) 0.0496 (13) 0.0031 (8) 0.0021 (9) −0.0001 (9)

N2 0.0365 (10) 0.0392 (10) 0.0422 (12) −0.0018 (8) 0.0042 (9) 0.0052 (9)

N3 0.0394 (10) 0.0455 (11) 0.0310 (11) 0.0016 (9) −0.0010 (9) −0.0006 (9)

N4 0.0451 (11) 0.0382 (11) 0.0470 (13) 0.0038 (9) −0.0004 (10) −0.0022 (10)

N5 0.0315 (9) 0.0461 (12) 0.0318 (12) 0.0005 (8) 0.0048 (8) 0.0004 (9)

N6 0.0383 (11) 0.0554 (13) 0.0359 (12) 0.0006 (9) −0.0025 (9) 0.0039 (10)

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, m1757–m1759

C2 0.0369 (13) 0.070 (2) 0.069 (2) 0.0133 (13) 0.0144 (13) 0.0034 (17)

C3 0.0338 (12) 0.0610 (17) 0.065 (2) −0.0052 (11) 0.0049 (12) 0.0105 (16)

C4 0.0329 (12) 0.0607 (17) 0.0458 (17) −0.0030 (11) −0.0030 (11) −0.0110 (13)

C5 0.0374 (11) 0.0534 (14) 0.0480 (18) −0.0130 (10) 0.0076 (10) −0.0045 (12)

C6 0.0468 (14) 0.0627 (17) 0.0434 (16) −0.0028 (12) 0.0082 (11) 0.0174 (14)

C7 0.0514 (16) 0.085 (2) 0.0332 (16) 0.0004 (14) −0.0028 (12) 0.0135 (15)

C8A 0.046 (2) 0.050 (3) 0.048 (3) 0.002 (2) 0.005 (2) −0.017 (2)

C8B 0.047 (4) 0.049 (4) 0.063 (5) 0.018 (3) 0.006 (4) −0.012 (4)

C9 0.0376 (12) 0.0615 (17) 0.0424 (16) 0.0060 (12) 0.0105 (11) −0.0093 (13)

Geometric parameters (Å, º)

Ni—N2 2.103 (2) N6—C7 1.480 (4)

Ni—N4 2.122 (2) N6—H6A 0.9000

Ni—N5 2.131 (2) N6—H6B 0.9000

Ni—N6 2.148 (3) C1—C2 1.488 (4)

Ni—N3 2.164 (2) C1—H1C 0.9700

Ni—N1 2.169 (2) C1—H1D 0.9700

Cl1—O1 1.407 (3) C2—C3 1.507 (5)

Cl1—O4 1.416 (3) C2—H2C 0.9700

Cl1—O3 1.418 (3) C2—H2D 0.9700

Cl1—O2 1.428 (3) C3—H3C 0.9700

Cl2—O7 1.424 (2) C3—H3D 0.9700

Cl2—O8 1.428 (3) C4—C5 1.511 (4)

Cl2—O5 1.437 (2) C4—H4C 0.9700

Cl2—O6 1.440 (2) C4—H4D 0.9700

N1—C1 1.491 (3) C5—H5C 0.9700

N1—H1A 0.9000 C5—H5D 0.9700

N1—H1B 0.9000 C6—C7 1.516 (4)

N2—C3 1.479 (3) C6—H6C 0.9700

N2—H2A 0.9000 C6—H6D 0.9700

N2—H2B 0.9000 C7—H7C 0.9700

N3—C4 1.481 (3) C7—H7D 0.9700

N3—H3A 0.9000 C8A—C9 1.518 (6)

N3—H3B 0.9000 C8A—H8AC 0.96 (2)

N4—C8A 1.460 (6) C8A—H8AD 0.96 (2)

N4—C8B 1.462 (8) C8B—C9 1.502 (9)

N4—H4AA 0.90 (2) C8B—H8BC 0.97 (2)

N4—H4AB 0.894 (19) C8B—H8BD 0.97 (2)

N4—H4BA 0.89 (2) C9—H9AC 0.96 (2)

N4—H4BB 0.90 (2) C9—H9AD 0.96 (2)

N5—C6 1.470 (4) C9—H9BC 0.96 (2)

N5—C5 1.482 (3) C9—H9BD 0.96 (2)

N5—C9 1.497 (3)

N2—Ni—N4 89.62 (9) H6A—N6—H6B 108.1

N2—Ni—N5 170.99 (8) C2—C1—N1 113.9 (2)

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, m1757–m1759

N2—Ni—N6 100.11 (9) N1—C1—H1C 108.8

N4—Ni—N6 94.20 (9) C2—C1—H1D 108.8

N5—Ni—N6 81.37 (8) N1—C1—H1D 108.8

N2—Ni—N3 98.01 (9) H1C—C1—H1D 107.7

N4—Ni—N3 91.17 (9) C1—C2—C3 116.1 (3)

N5—Ni—N3 81.56 (9) C1—C2—H2C 108.3

N6—Ni—N3 161.12 (8) C3—C2—H2C 108.3

N2—Ni—N1 86.73 (8) C1—C2—H2D 108.3

N4—Ni—N1 175.91 (10) C3—C2—H2D 108.3

N5—Ni—N1 102.23 (8) H2C—C2—H2D 107.4

N6—Ni—N1 88.28 (9) N2—C3—C2 111.9 (2)

N3—Ni—N1 87.50 (9) N2—C3—H3C 109.2

O1—Cl1—O4 110.3 (2) C2—C3—H3C 109.2

O1—Cl1—O3 107.4 (2) N2—C3—H3D 109.2

O4—Cl1—O3 110.20 (19) C2—C3—H3D 109.2

O1—Cl1—O2 110.2 (2) H3C—C3—H3D 107.9

O4—Cl1—O2 109.30 (19) N3—C4—C5 109.8 (2)

O3—Cl1—O2 109.39 (19) N3—C4—H4C 109.7

O7—Cl2—O8 109.53 (17) C5—C4—H4C 109.7

O7—Cl2—O5 109.77 (19) N3—C4—H4D 109.7

O8—Cl2—O5 109.14 (17) C5—C4—H4D 109.7

O7—Cl2—O6 108.95 (16) H4C—C4—H4D 108.2

O8—Cl2—O6 110.54 (16) N5—C5—C4 110.3 (2)

O5—Cl2—O6 108.90 (15) N5—C5—H5C 109.6

C1—N1—Ni 118.79 (17) C4—C5—H5C 109.6

C1—N1—H1A 107.6 N5—C5—H5D 109.6

Ni—N1—H1A 107.6 C4—C5—H5D 109.6

C1—N1—H1B 107.6 H5C—C5—H5D 108.1

Ni—N1—H1B 107.6 N5—C6—C7 110.2 (2)

H1A—N1—H1B 107.0 N5—C6—H6C 109.6

C3—N2—Ni 119.29 (18) C7—C6—H6C 109.6

C3—N2—H2A 107.5 N5—C6—H6D 109.6

Ni—N2—H2A 107.5 C7—C6—H6D 109.6

C3—N2—H2B 107.5 H6C—C6—H6D 108.1

Ni—N2—H2B 107.5 N6—C7—C6 110.3 (3)

H2A—N2—H2B 107.0 N6—C7—H7C 109.6

C4—N3—Ni 109.73 (17) C6—C7—H7C 109.6

C4—N3—H3A 109.7 N6—C7—H7D 109.6

Ni—N3—H3A 109.7 C6—C7—H7D 109.6

C4—N3—H3B 109.7 H7C—C7—H7D 108.1

Ni—N3—H3B 109.7 N4—C8A—C9 110.1 (3)

H3A—N3—H3B 108.2 N4—C8A—H8AC 110 (5)

C8A—N4—Ni 109.7 (2) C9—C8A—H8AC 112 (4)

C8B—N4—Ni 110.6 (3) H4BA—C8A—H8AC 105 (6)

C8A—N4—H4AA 106 (4) N4—C8A—H8AD 105 (3)

Ni—N4—H4AA 118 (4) C9—C8A—H8AD 109 (3)

C8A—N4—H4AB 106 (3) H8AC—C8A—H8AD 111 (5)

(9)

supporting information

sup-6

Acta Cryst. (2005). E61, m1757–m1759

H4AA—N4—H4AB 113 (5) N4—C8B—H8BC 104 (5)

C8B—N4—H4BA 112 (6) C9—C8B—H8BC 108 (5)

Ni—N4—H4BA 111 (6) N4—C8B—H8BD 107 (7)

C8B—N4—H4BB 115 (5) C9—C8B—H8BD 109 (7)

Ni—N4—H4BB 122 (6) H8BC—C8B—H8BD 118 (7)

H4BA—N4—H4BB 84 (8) N5—C9—C8B 112.8 (3)

C6—N5—C5 112.5 (2) N5—C9—C8A 112.9 (2)

C6—N5—C9 110.9 (2) N5—C9—H9AC 122 (4)

C5—N5—C9 111.2 (2) C8A—C9—H9AC 104 (4)

C6—N5—Ni 105.94 (15) N5—C9—H9AD 103 (4)

C5—N5—Ni 105.57 (15) C8A—C9—H9AD 112 (4)

C9—N5—Ni 110.53 (16) H9AC—C9—H9AD 103 (5)

C7—N6—Ni 110.28 (18) N5—C9—H9BC 101 (5)

C7—N6—H6A 109.6 C8B—C9—H9BC 118 (6)

Ni—N6—H6A 109.6 N5—C9—H9BD 104 (6)

C7—N6—H6B 109.6 C8B—C9—H9BD 120 (6)

Ni—N6—H6B 109.6 H9BC—C9—H9BD 98 (8)

N2—Ni—N1—C1 40.9 (2) N2—Ni—N6—C7 172.4 (2)

N5—Ni—N1—C1 −140.2 (2) N4—Ni—N6—C7 82.0 (2)

N6—Ni—N1—C1 −59.4 (2) N5—Ni—N6—C7 1.4 (2)

N3—Ni—N1—C1 139.0 (2) N3—Ni—N6—C7 −24.1 (4)

N4—Ni—N2—C3 137.1 (2) N1—Ni—N6—C7 −101.3 (2)

N6—Ni—N2—C3 42.9 (2) Ni—N1—C1—C2 −55.5 (3)

N3—Ni—N2—C3 −131.8 (2) N1—C1—C2—C3 64.5 (4)

N1—Ni—N2—C3 −44.8 (2) Ni—N2—C3—C2 62.6 (3)

N2—Ni—N3—C4 −170.02 (17) C1—C2—C3—N2 −67.4 (4)

N4—Ni—N3—C4 −80.24 (18) Ni—N3—C4—C5 −27.2 (3)

N5—Ni—N3—C4 0.88 (17) C6—N5—C5—C4 −163.8 (2)

N6—Ni—N3—C4 26.4 (4) C9—N5—C5—C4 71.1 (3)

N1—Ni—N3—C4 103.64 (18) Ni—N5—C5—C4 −48.7 (2)

N2—Ni—N4—C8A −156.4 (3) N3—C4—C5—N5 51.8 (3)

N5—Ni—N4—C8A 24.3 (3) C5—N5—C6—C7 163.4 (2)

N6—Ni—N4—C8A −56.3 (3) C9—N5—C6—C7 −71.5 (3)

N3—Ni—N4—C8A 105.6 (3) Ni—N5—C6—C7 48.5 (3)

N2—Ni—N4—C8B 159.8 (4) Ni—N6—C7—C6 24.2 (3)

N5—Ni—N4—C8B −19.5 (4) N5—C6—C7—N6 −49.5 (3)

N6—Ni—N4—C8B −100.1 (4) Ni—N4—C8A—C8B −99.0 (5)

N3—Ni—N4—C8B 61.8 (4) C8B—N4—C8A—C9 57.6 (5)

N4—Ni—N5—C6 −122.52 (19) Ni—N4—C8A—C9 −41.4 (4)

N6—Ni—N5—C6 −26.90 (18) Ni—N4—C8B—C8A 96.7 (5)

N3—Ni—N5—C6 145.00 (19) Ni—N4—C8B—C9 37.7 (7)

N1—Ni—N5—C6 59.44 (19) C6—N5—C9—C8B 140.7 (4)

N4—Ni—N5—C5 117.97 (17) C5—N5—C9—C8B −93.3 (4)

N6—Ni—N5—C5 −146.41 (17) Ni—N5—C9—C8B 23.6 (5)

N3—Ni—N5—C5 25.49 (15) C6—N5—C9—C8A 97.6 (3)

N1—Ni—N5—C5 −60.07 (17) C5—N5—C9—C8A −136.4 (3)

(10)

supporting information

sup-7

Acta Cryst. (2005). E61, m1757–m1759

N6—Ni—N5—C9 93.29 (18) N4—C8B—C9—N5 −40.9 (7)

N3—Ni—N5—C9 −94.81 (19) N4—C8A—C9—N5 40.7 (5)

N1—Ni—N5—C9 179.63 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1A···O1i 0.90 2.53 3.357 (5) 154

N1—H1B···O2ii 0.90 2.56 3.356 (4) 148

N2—H2B···O3 0.90 2.43 3.144 (4) 137

N2—H2B···O5 0.90 2.65 3.212 (4) 121

N3—H3A···O6 0.90 2.32 3.162 (4) 156

N3—H3B···O7i 0.90 2.55 3.196 (4) 129

N3—H3B···O2ii 0.90 2.61 3.407 (4) 148

N4—H4AA···O1 0.90 2.28 3.100 (4) 152

N4—H4AB···O6 0.89 2.38 3.224 (4) 158

N4—H4BA···O1 0.89 2.28 3.100 (4) 153

N4—H4BB···O5 0.90 2.44 3.232 (5) 147

N6—H6A···O8iii 0.90 2.51 3.172 (4) 131

N6—H6B···O2 0.90 2.24 3.138 (4) 176

Figure

Figure 1
Table 2Hydrogen-bond geometry (A˚ , �).

References

Related documents

In our study, we found that the proportion of RBC composition in retrieved clots was higher in patients with cardioembolism compared with those with large- artery

In this paper, current distribution on Al pipe is measured to investigate the proximity effect. The experimental re- sults are not interpret proximity phenomena accurately because

Our study investigated both the short-term reproducibility and intersubject variability of hypercapnia BOLD fMRI in a group of young healthy volunteers and compared

This paper estimates heterogeneous agent New Keynesian (HANK) model for US and Japan through three aggregate observations: real GDP, inflation and interest rate, by adopting

Produzione di altri laminati mercantili Produzione di nastri e bande per tubi a caldo Produzione di coils (prodotti finiti). Produzione di lamiere a caldo di spessore grosso e medio

By means of present study cum educational program, postgraduate students can be sensitised about Publication Ethics, Publication Misconduct and Guidelines from various

In this work, we present a study to show how learning distributed representations of the logical forms from data annotated in different languages can be used for improving

For human settlements to expand freely with minimal hindrance, we need to provide open atmospheric conditions similar to that on Earth.. This will allow increased