• No results found

DL Valine DL valinium picrate

N/A
N/A
Protected

Academic year: 2020

Share "DL Valine DL valinium picrate"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1722

K. Anithaet al. C5H12NO2+C6H2N3O7ÿC5H11NO2 DOI: 10.1107/S1600536804021877 Acta Cryst.(2004). E60, o1722±o1724 Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

DL

-Valine

DL

-valinium picrate

K. Anitha, S. Annavenus, B. Sridhar and R. K. Rajaram*

Department of Physics, Madurai Kamaraj University, Madurai 625 021, India.

Correspondence e-mail: sshiya@yahoo.com

Key indicators Single-crystal X-ray study T= 293 K

Mean(C±C) = 0.006 AÊ Disorder in main residue Rfactor = 0.058 wRfactor = 0.181

Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C5H12NO2+C6H2N3O7ÿC5H11NO2,

crys-tallizes in the monoclinic system with one valinium cation, one valine molecule and one picrate anion in the asymmetric unit. In the crystal structure, the valinium cation is linked to the picrate anionviaOÐH O hydrogen bonds.

Comment

Valine is one of the branched chain amino acids. It plays an important role in tissue repair. The crystal structures of

dl-valine (Mallikarjunan & Rao, 1969; Dalhus & Gorbitz, 1996), dl-valine hydrochloride (Di Blasio et al., 1977),

dl-valinium nitrate (Srinivasan et al., 2002) and dl-valinium perchlorate (Sridhar et al., 2003) have been reported. The crystal structure of picric acid (Soriano-Garcia et al., 1978; Duesler et al., 1978) has also been reported. In the present work, the product, (I), of the reaction ofdl-valine with picric acid was investigated in order to study hydrogen bonding between the amino acid and the organic acid.

The asymmetric unit contains one valine molecule, one valinium cation and one picrate anion (Table 1). For both valine residues, the backbone conformation angle 1(O1AÐ

C1ÐC2ÐN1) represents acisform, and 2(O1BÐC1ÐC2Ð

N1) represents atransform. Of the three possible rotamers, only two are observed for the valine residues in the present study (Torii & Iitaka, 1970). Residue I (cation) istranssince the amino and carboxyl groups are trans to the terminal methyl groups (C4 and C5), while residue II (neutral) has a

gauche-II conformation since only the amino group istransto C50, while the carboxyl group is gauche-II to C40 (Torii &

Iitaka, 1970).

The picrate anion plays a vital role in hydrogen bonding with thedl-valinium cation. Of the three nitro groups, two are twisted out of the benzene plane. This property is not corre-lated with the CÐN bond distances (Soriano-Garcia et al., 1978). The picrate anion forms an asymmetric O1B0Ð

H10 O11iihydrogen bond with valine residue II, since the H

atom is closer to that of the O atoms (Olovssonet al., 2001). In residue I, a straight (S2) head-to-tail in®nite chain is observed

(2)

along the a axis (N1ÐH1B O1Bii). Atom O1B links two

crystallographically independent valine residues (N1Ð H1C O1Bii and N10ÐH1B' O1Bvi) and O1A links two

symmetry-related valine residues (N10ÐH1A0 O1Av and

N10ÐH1C0 O1Avii). For valine residue I there are two

two-centered hydrogen bonds (N1ÐH1A O12i and N1Ð

H1B O1Bii) and one chelated three-centered hydrogen

bond (N1ÐH1C O13iii and N1ÐH1C O11iii). This leads

to class II hydrogen bonding (Jeffrey & Saenger, 1991). For residue II, three two-centered hydrogen bonds (N10Ð

H1A0 O1Av, N10ÐH1B0 O1Bvi and N10ÐH1C0 O1Avii)

are observed, leading to class I hydrogen bonding. In they=1 4

planes, there are no hydrogen bonds, leading to a hydrophobic zone, while across the y = 0 planes, hydrophilic zones are observed (Fig. 2). In the picrate anion, two O atoms of one nitro group link two valine residues and form an in®nite chain along the a axis (O12i H1AÐN1ÐH1C O13iii). (For

symmetry codes, see Table 2.)

Experimental

The title compound was crystallized by slow evaporation, at room temperature, of an equimolar solution ofdl-valine and picric acid. Crystal data

C5H12NO2+C6H2N3O7ÿC5H11NO2 Mr= 463.41

Monoclinic,P21=n a= 5.3822 (4) AÊ

b= 23.221 (2) AÊ

c= 16.579 (2) AÊ

= 94.695 (7)

V= 2065.0 (3) AÊ3 Z= 4

Dx= 1.491 Mg mÿ3

Dm= 1.489 Mg mÿ3

Dmmeasured by ¯otation using

mixture of carbon tetracholride and xylene

MoKradiation Cell parameters from 25

re¯ections

= 9.8±14.1

= 0.13 mmÿ1 T= 293 (2) K Block, yellow 0.300.200.15 mm

Data collection

Nonius MACH3 four-circle diffractometer

!±2scans

Absorption correction: scan (Northet al., 1968)

Tmin= 0.970,Tmax= 0.981

4297 measured re¯ections 3642 independent re¯ections 2219 re¯ections withI> 2(I)

Rint= 0.030

max= 25.0 h= 0!6

k=ÿ1!27

l=ÿ19!19 3 standard re¯ections

frequency: 60 min intensity decay: none

Re®nement Re®nement onF2 R[F2> 2(F2)] = 0.058 wR(F2) = 0.181 S= 1.03 3642 re¯ections 293 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.0782P)2

+ 2.0601P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.65 e AÊÿ3

min=ÿ0.34 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

O1AÐC1 1.251 (4) O1BÐC1 1.245 (4) O1A

0ÐC10 1.194 (5)

O1B0ÐC10 1.311 (4)

O1BÐC1ÐO1A 124.7 (3) O1BÐC1ÐC2 118.0 (3) O1AÐC1ÐC2 117.2 (3)

O1A0ÐC10ÐO1B0 126.2 (3)

O1A0ÐC10ÐC20 123.2 (3)

O1B0ÐC10ÐC20 110.6 (3)

O1AÐC1ÐC2ÐN1 ÿ32.3 (4) O1BÐC1ÐC2ÐN1 148.5 (3) N1ÐC2ÐC3ÐC4 179.8 (3) C1ÐC2ÐC3ÐC4 59.0 (4) N1ÐC2ÐC3ÐC5 ÿ56.7 (4) C1ÐC2ÐC3ÐC5 ÿ177.5 (3) O1A0ÐC10ÐC20ÐN10 ÿ1.5 (5)

O1B0ÐC10ÐC20ÐN10 178.6 (3)

N10ÐC20ÐC30ÐC50 ÿ153.4 (4)

C10ÐC20ÐC30ÐC50 84.6 (5)

N10ÐC20ÐC30ÐC40 75.6 (5)

C10ÐC20ÐC30ÐC40 ÿ46.4 (5)

C12ÐC11ÐN11ÐO13 11.2 (5) C12ÐC13ÐN12ÐO15 ÿ24.9 (6) C14ÐC15ÐN13ÐO17 ÿ0.3 (6)

organic papers

Acta Cryst.(2004). E60, o1722±o1724 K. Anithaet al. C5H12NO2+C6H2N3O7ÿC5H11NO2

o1723

Figure 2

Packing diagram of the crystal structure, viewed down thebaxis.

Figure 1

(3)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N1ÐH1A O12i 0.89 2.37 3.014 (4) 129

N1ÐH1B O1Bii 0.89 2.16 2.887 (4) 138

N1ÐH1C O13iii 0.89 2.20 2.890 (4) 134

N1ÐH1C O11iii 0.89 2.43 3.261 (4) 155

O1B0ÐH10 O11iv 0.83 (5) 1.86 (5) 2.684 (4) 168 (5)

N10ÐH1C0 O1Av 0.89 2.00 2.805 (4) 151

N10ÐH1B0 O1Bvi 0.89 2.13 2.940 (4) 150

N10ÐH1A0 O1Avii 0.89 1.93 2.763 (4) 155

Symmetry codes: (i) 1‡x;1‡y;z; (ii) 1‡x;y;z; (iii)x;1‡y;z; (iv) 2ÿx;1ÿy;1ÿz; (v) 1ÿx;2ÿy;1ÿz; (vi)x;y;zÿ1; (vii)xÿ1;y;zÿ1.

The H atom of the carboxyl O atom was re®ned isotropically and all other H atoms were placed in calculated positions (CÐH = 0.93± 0.98 AÊ and NÐH = 0.89 AÊ) and included in the re®nement in a riding-model approximation, with Uiso(H) values of 1.2Ueq of the carrier atom. Even after re®ning the methyl groups with a disordered model, the methyl groups of valine residue II have largeUisovalues, resulting in the highest peak and deepest hole having relatively large electron density values. An intermolecular short contact between C12 of the valine residue and O3 of the picrate anion is observed, the C12 O3 distance being 2.935 (4) AÊ and the CÐH O angle being 100.

Data collection: CAD-4 EXPRESS (Enraf±Nonius, 1994); cell re®nement: CAD-4 EXPRESS; data reduction:XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:PLATON(Spek, 2003); soft-ware used to prepare material for publication:SHELXL97.

The authors thank the Department of Science and Tech-nology, Government of India, for establishing the single-crystal diffractometer facility at the School of Physics, Madurai Kamaraj University, Madurai, through the FIST program. BS thanks the Council of Scienti®c and Industrial Research (CSIR), Government of India.

References

Dalhus, B. & Gorbitz, C. H. (1996).Acta Cryst.C52, 1759±1761.

Di Blasio, B., Napolitano, G. & Pedone, C. (1977).Acta Cryst.B33, 542±545. Duesler, E. N., Engelmann, J. H., Curtin, D. Y. & Paul, I. C. (1978).Cryst.

Struct. Commun.7, 449±453.

Enraf±Nonius (1994).CAD-4Software.Version 5.0. Enraf±Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995).XCAD4. University of Marburg, Germany. Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological

Structures.Berlin/Heidelberg/New York: Springer-Verlag.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Mallikarjunan, M. & Rao, S. T. (1969).Acta Cryst.B25, 296±303.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351± 359.

Olovsson, I., Ptasiewicz-Bak, H., Gustafsson, T. & Majerz, I. (2001).Acta Cryst.B57, 311±316.

Sheldrick, G. M. (1990).Acta Cryst.A46, 467±473.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Spek, A. L. (2003).J. Appl. Cryst..36, 7±13.

Sridhar, B., Srinivasan, N., Dalhus, B. & Rajaram. R. K. (2003).Acta Cryst.

E59, o28±o30.

Srinivasan, N., Sridhar, B. & Rajaram, R. K. (2002).Acta Cryst.E58, o95±o897. Soriano-Garcia, M., Srikrishnan, T. & Parthasarathy, R. (1978).Acta Cryst.

A34, S114.

Torii, K. & Iitaka, Y. (1970).Acta Cryst.B26, 1317±1326.

organic papers

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, o1722–o1724

supporting information

Acta Cryst. (2004). E60, o1722–o1724 [https://doi.org/10.1107/S1600536804021877]

DL

-Valine

DL

-valinium picrate

K. Anitha, S. Annavenus, B. Sridhar and R. K. Rajaram

′DL-valine DL-valinium picrate ′

Crystal data

C5H12NO2+·C6H2N3O7−·C5H11NO2 Mr = 463.41

Monoclinic, P21/n a = 5.3822 (4) Å b = 23.221 (2) Å c = 16.579 (2) Å β = 94.695 (7)° V = 2065.0 (3) Å3 Z = 4

F(000) = 976

Dx = 1.491 Mg m−3 Dm = 1.489 Mg m−3

Dm measured by Flotation technique using mixture of carbon tetracholride and xylene Mo radiation, λ = 0.71073 Å

Cell parameters from 25 reflections θ = 9.8–14.1°

µ = 0.13 mm−1 T = 293 K Block, yellow 0.3 × 0.2 × 0.15 mm

Data collection

MACH3 Nonius sealed tube diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω–2θ scans

Absorption correction: psi scan (North et al., 1968)

Tmin = 0.970, Tmax = 0.981 4297 measured reflections

3642 independent reflections 2219 reflections with I > 2σ(I) Rint = 0.030

θmax = 25.0°, θmin = 2.1° h = 0→6

k = −1→27 l = −19→19

3 standard reflections every 60 min intensity decay: none

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.058 wR(F2) = 0.181 S = 1.03 3642 reflections 293 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0782P)2 + 2.0601P] where P = (Fo2 + 2Fc2)/3

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, o1722–o1724

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

O1A 0.8489 (5) 0.94681 (12) 0.92220 (15) 0.0402 (7)

O1B 0.5010 (4) 0.90248 (12) 0.87728 (16) 0.0403 (7)

C1 0.7240 (6) 0.91537 (15) 0.8728 (2) 0.0284 (8)

C2 0.8573 (6) 0.89051 (15) 0.8027 (2) 0.0291 (8)

H2 0.7352 0.8858 0.7560 0.035*

N1 1.0493 (6) 0.93352 (14) 0.78120 (19) 0.0379 (8)

H1A 1.1293 0.9201 0.7402 0.057*

H1B 1.1577 0.9394 0.8239 0.057*

H1C 0.9746 0.9666 0.7668 0.057*

C3 0.9840 (7) 0.83231 (16) 0.8209 (2) 0.0360 (9)

H3 1.1069 0.8375 0.8673 0.043*

C4 0.7984 (9) 0.78699 (19) 0.8434 (3) 0.0605 (13)

H4A 0.7138 0.8003 0.8887 0.091* 0.50

H4B 0.8851 0.7518 0.8576 0.091* 0.50

H4C 0.6790 0.7802 0.7981 0.091* 0.50

H4D 0.8048 0.7546 0.8076 0.091* 0.50

H4E 0.6335 0.8030 0.8387 0.091* 0.50

H4F 0.8396 0.7746 0.8981 0.091* 0.50

C5 1.1216 (8) 0.8119 (2) 0.7496 (3) 0.0521 (11)

H5A 1.2656 0.8357 0.7448 0.078* 0.50

H5B 1.0130 0.8145 0.7009 0.078* 0.50

H5C 1.1730 0.7726 0.7582 0.078* 0.50

H5D 1.0355 0.7796 0.7244 0.078* 0.50

H5E 1.2880 0.8007 0.7684 0.078* 0.50

H5F 1.1281 0.8426 0.7110 0.078* 0.50

O1A′ 0.7186 (5) 0.95903 (13) 0.10851 (17) 0.0493 (8)

O1B′ 0.6262 (5) 0.89988 (13) 0.20810 (17) 0.0469 (8)

H1′ 0.763 (10) 0.913 (2) 0.227 (3) 0.070*

C1′ 0.5811 (7) 0.92669 (16) 0.1389 (2) 0.0330 (9)

C2′ 0.3226 (6) 0.91095 (16) 0.1001 (2) 0.0332 (8)

H2′ 0.1993 0.9242 0.1363 0.040*

N1′ 0.2827 (5) 0.94380 (14) 0.02351 (17) 0.0349 (7)

H1A′ 0.1325 0.9357 −0.0003 0.052*

H1B′ 0.3988 0.9341 −0.0093 0.052*

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, o1722–o1724

C3′ 0.2794 (9) 0.84625 (19) 0.0850 (3) 0.0545 (12)

H3′ 0.1358 0.8439 0.0448 0.065*

C4′ 0.4902 (12) 0.8173 (2) 0.0464 (3) 0.0812 (18)

H4A′ 0.5229 0.8375 −0.0021 0.122* 0.50

H4B′ 0.4452 0.7782 0.0333 0.122* 0.50

H4C′ 0.6370 0.8177 0.0835 0.122* 0.50

H4D′ 0.5472 0.7848 0.0786 0.122* 0.50

H4E′ 0.6248 0.8441 0.0431 0.122* 0.50

H4F′ 0.4330 0.8046 −0.0070 0.122* 0.50

C5′ 0.2011 (12) 0.8161 (3) 0.1580 (4) 0.0835 (18)

H5A′ 0.0680 0.8372 0.1796 0.125* 0.50

H5B′ 0.3400 0.8138 0.1981 0.125* 0.50

H5C′ 0.1449 0.7780 0.1435 0.125* 0.50

H5D′ 0.3006 0.7822 0.1679 0.125* 0.50

H5E′ 0.0286 0.8055 0.1494 0.125* 0.50

H5F′ 0.2237 0.8413 0.2040 0.125* 0.50

C11 0.5836 (7) 0.04758 (16) 0.6224 (2) 0.0331 (8)

N11 0.4938 (6) 0.00098 (14) 0.66911 (19) 0.0398 (8)

O12 0.3206 (6) −0.02879 (14) 0.63823 (18) 0.0581 (8)

O13 0.5832 (6) −0.00796 (13) 0.73837 (17) 0.0546 (8)

C12 0.8106 (7) 0.07873 (16) 0.6496 (2) 0.0343 (9)

O11 0.9528 (5) 0.06328 (12) 0.71012 (16) 0.0479 (7)

C13 0.8561 (7) 0.12585 (17) 0.5970 (2) 0.0384 (9)

N12 1.0650 (7) 0.16568 (15) 0.6155 (3) 0.0505 (9)

O14 1.1427 (6) 0.19394 (16) 0.5611 (2) 0.0742 (10)

O15 1.1428 (9) 0.17084 (17) 0.6854 (3) 0.1037 (17)

C14 0.7164 (7) 0.13858 (18) 0.5265 (2) 0.0400 (10)

H14 0.7599 0.1692 0.4943 0.048*

C15 0.5094 (7) 0.10511 (18) 0.5039 (2) 0.0375 (9)

N13 0.3614 (7) 0.11846 (17) 0.4293 (2) 0.0487 (9)

O16 0.1805 (6) 0.08680 (15) 0.40975 (18) 0.0603 (9)

O17 0.4229 (7) 0.15872 (16) 0.38899 (19) 0.0707 (10)

C16 0.4430 (7) 0.06018 (17) 0.5515 (2) 0.0366 (9)

H16 0.3027 0.0382 0.5359 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1A 0.0315 (14) 0.0493 (16) 0.0378 (15) −0.0017 (12) −0.0079 (12) −0.0118 (13)

O1B 0.0191 (13) 0.0581 (18) 0.0440 (15) −0.0066 (12) 0.0054 (11) 0.0015 (13)

C1 0.0243 (18) 0.0314 (19) 0.0284 (18) 0.0007 (15) −0.0049 (15) 0.0058 (15)

C2 0.0192 (16) 0.039 (2) 0.0279 (18) −0.0041 (15) −0.0023 (14) −0.0020 (16)

N1 0.0280 (16) 0.048 (2) 0.0383 (18) −0.0027 (14) 0.0060 (13) 0.0056 (15)

C3 0.0263 (18) 0.041 (2) 0.040 (2) 0.0004 (17) −0.0024 (16) −0.0009 (18)

C4 0.054 (3) 0.045 (3) 0.084 (4) −0.004 (2) 0.017 (3) 0.004 (2)

C5 0.040 (2) 0.057 (3) 0.059 (3) 0.013 (2) 0.006 (2) −0.008 (2)

O1A′ 0.0303 (14) 0.068 (2) 0.0478 (17) −0.0141 (14) −0.0067 (13) 0.0129 (15)

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, o1722–o1724

C1′ 0.0275 (19) 0.037 (2) 0.033 (2) 0.0028 (17) −0.0033 (16) 0.0001 (17)

C2′ 0.0252 (18) 0.042 (2) 0.0322 (19) −0.0011 (16) −0.0020 (15) −0.0015 (17)

N1′ 0.0268 (15) 0.0411 (18) 0.0352 (17) 0.0001 (14) −0.0074 (13) −0.0017 (14)

C3′ 0.059 (3) 0.045 (3) 0.058 (3) −0.008 (2) −0.003 (2) −0.001 (2)

C4′ 0.125 (5) 0.050 (3) 0.072 (4) 0.010 (3) 0.029 (4) −0.011 (3)

C5′ 0.082 (4) 0.072 (4) 0.097 (4) −0.004 (3) 0.006 (3) 0.024 (3)

C11 0.0326 (19) 0.037 (2) 0.0292 (19) 0.0068 (17) 0.0003 (16) 0.0013 (16)

N11 0.0393 (19) 0.0431 (19) 0.0373 (19) 0.0073 (16) 0.0050 (15) 0.0016 (16)

O12 0.0572 (19) 0.067 (2) 0.0504 (18) −0.0209 (17) 0.0080 (15) 0.0036 (16)

O13 0.0629 (19) 0.0580 (19) 0.0415 (17) 0.0083 (16) −0.0039 (15) 0.0182 (15)

C12 0.0310 (19) 0.039 (2) 0.0323 (19) 0.0113 (17) −0.0044 (16) 0.0002 (17)

O11 0.0437 (16) 0.0541 (18) 0.0422 (16) 0.0025 (14) −0.0190 (13) 0.0077 (13)

C13 0.0297 (19) 0.043 (2) 0.041 (2) 0.0050 (18) −0.0042 (17) −0.0019 (18)

N12 0.042 (2) 0.041 (2) 0.065 (3) 0.0047 (17) −0.0169 (19) 0.0060 (19)

O14 0.060 (2) 0.073 (2) 0.090 (3) −0.0223 (19) 0.0076 (19) 0.014 (2)

O15 0.128 (4) 0.080 (3) 0.090 (3) −0.047 (3) −0.067 (3) 0.028 (2)

C14 0.039 (2) 0.047 (2) 0.033 (2) 0.0031 (19) 0.0012 (18) 0.0037 (18)

C15 0.036 (2) 0.051 (2) 0.0247 (18) 0.0089 (19) −0.0053 (15) 0.0014 (18)

N13 0.048 (2) 0.066 (3) 0.0305 (18) 0.007 (2) −0.0082 (16) 0.0057 (18)

O16 0.0472 (18) 0.084 (2) 0.0466 (17) −0.0053 (17) −0.0176 (15) 0.0033 (17)

O17 0.077 (2) 0.086 (3) 0.0456 (19) −0.004 (2) −0.0169 (17) 0.0303 (19)

C16 0.032 (2) 0.048 (2) 0.0289 (19) 0.0028 (18) −0.0026 (16) −0.0046 (17)

Geometric parameters (Å, º)

O1A—C1 1.251 (4) C3′—C5′ 1.489 (7)

O1B—C1 1.245 (4) C3′—C4′ 1.505 (7)

C1—C2 1.528 (5) C3′—H3′ 0.9800

C2—N1 1.501 (4) C4′—H4A′ 0.9600

C2—C3 1.533 (5) C4′—H4B′ 0.9600

C2—H2 0.9800 C4′—H4C′ 0.9600

N1—H1A 0.8900 C4′—H4D′ 0.9600

N1—H1B 0.8900 C4′—H4E′ 0.9600

N1—H1C 0.8900 C4′—H4F′ 0.9600

C3—C4 1.518 (6) C5′—H5A′ 0.9600

C3—C5 1.521 (6) C5′—H5B′ 0.9600

C3—H3 0.9800 C5′—H5C′ 0.9600

C4—H4A 0.9600 C5′—H5D′ 0.9600

C4—H4B 0.9600 C5′—H5E′ 0.9600

C4—H4C 0.9600 C5′—H5F′ 0.9600

C4—H4D 0.9600 C11—C16 1.375 (5)

C4—H4E 0.9600 C11—N11 1.438 (5)

C4—H4F 0.9600 C11—C12 1.460 (5)

C5—H5A 0.9600 N11—O13 1.226 (4)

C5—H5B 0.9600 N11—O12 1.237 (4)

C5—H5C 0.9600 C12—O11 1.263 (4)

C5—H5D 0.9600 C12—C13 1.433 (5)

(8)

supporting information

sup-5

Acta Cryst. (2004). E60, o1722–o1724

C5—H5F 0.9600 C13—N12 1.468 (5)

O1A′—C1′ 1.194 (5) N12—O15 1.205 (5)

O1B′—C1′ 1.311 (4) N12—O14 1.217 (5)

O1B′—H1′ 0.83 (5) C14—C15 1.385 (6)

C1′—C2′ 1.528 (5) C14—H14 0.9300

C2′—N1′ 1.482 (4) C15—C16 1.373 (6)

C2′—C3′ 1.538 (6) C15—N13 1.449 (5)

C2′—H2′ 0.9800 N13—O17 1.211 (5)

N1′—H1A′ 0.8900 N13—O16 1.242 (5)

N1′—H1B′ 0.8900 C16—H16 0.9300

N1′—H1C′ 0.8900

O1B—C1—O1A 124.7 (3) H1A′—N1′—H1C′ 109.5

O1B—C1—C2 118.0 (3) H1B′—N1′—H1C′ 109.5

O1A—C1—C2 117.2 (3) C5′—C3′—C4′ 114.1 (4)

N1—C2—C1 107.7 (3) C5′—C3′—C2′ 112.1 (4)

N1—C2—C3 109.3 (3) C4′—C3′—C2′ 113.4 (4)

C1—C2—C3 114.3 (3) C5′—C3′—H3′ 105.4

N1—C2—H2 108.5 C4′—C3′—H3′ 105.4

C1—C2—H2 108.5 C2′—C3′—H3′ 105.4

C3—C2—H2 108.5 C3′—C4′—H4A′ 109.5

C2—N1—H1A 109.5 C3′—C4′—H4B′ 109.5

C2—N1—H1B 109.5 H4A′—C4′—H4B′ 109.5

H1A—N1—H1B 109.5 C3′—C4′—H4C′ 109.5

C2—N1—H1C 109.5 H4A′—C4′—H4C′ 109.5

H1A—N1—H1C 109.5 H4B′—C4′—H4C′ 109.5

H1B—N1—H1C 109.5 C3′—C4′—H4D′ 109.5

C4—C3—C5 110.3 (4) H4A′—C4′—H4D′ 141.1

C4—C3—C2 111.6 (3) H4B′—C4′—H4D′ 56.3

C5—C3—C2 111.0 (3) H4C′—C4′—H4D′ 56.3

C4—C3—H3 107.9 C3′—C4′—H4E′ 109.5

C5—C3—H3 107.9 H4A′—C4′—H4E′ 56.3

C2—C3—H3 107.9 H4B′—C4′—H4E′ 141.1

C3—C4—H4A 109.5 H4C′—C4′—H4E′ 56.3

C3—C4—H4B 109.5 H4D′—C4′—H4E′ 109.5

H4A—C4—H4B 109.5 C3′—C4′—H4F′ 109.5

C3—C4—H4C 109.5 H4A′—C4′—H4F′ 56.3

H4A—C4—H4C 109.5 H4B′—C4′—H4F′ 56.3

H4B—C4—H4C 109.5 H4C′—C4′—H4F′ 141.1

C3—C4—H4D 109.5 H4D′—C4′—H4F′ 109.5

H4A—C4—H4D 141.1 H4E′—C4′—H4F′ 109.5

H4B—C4—H4D 56.3 C3′—C5′—H5A′ 109.5

H4C—C4—H4D 56.3 C3′—C5′—H5B′ 109.5

C3—C4—H4E 109.5 H5A′—C5′—H5B′ 109.5

H4A—C4—H4E 56.3 C3′—C5′—H5C′ 109.5

H4B—C4—H4E 141.1 H5A′—C5′—H5C′ 109.5

H4C—C4—H4E 56.3 H5B′—C5′—H5C′ 109.5

(9)

supporting information

sup-6

Acta Cryst. (2004). E60, o1722–o1724

C3—C4—H4F 109.5 H5A′—C5′—H5D′ 141.1

H4A—C4—H4F 56.3 H5B′—C5′—H5D′ 56.3

H4B—C4—H4F 56.3 H5C′—C5′—H5D′ 56.3

H4C—C4—H4F 141.1 C3′—C5′—H5E′ 109.5

H4D—C4—H4F 109.5 H5A′—C5′—H5E′ 56.3

H4E—C4—H4F 109.5 H5B′—C5′—H5E′ 141.1

C3—C5—H5A 109.5 H5C′—C5′—H5E′ 56.3

C3—C5—H5B 109.5 H5D′—C5′—H5E′ 109.5

H5A—C5—H5B 109.5 C3′—C5′—H5F′ 109.5

C3—C5—H5C 109.5 H5A′—C5′—H5F′ 56.3

H5A—C5—H5C 109.5 H5B′—C5′—H5F′ 56.3

H5B—C5—H5C 109.5 H5C′—C5′—H5F′ 141.1

C3—C5—H5D 109.5 H5D′—C5′—H5F′ 109.5

H5A—C5—H5D 141.1 H5E′—C5′—H5F′ 109.5

H5B—C5—H5D 56.3 C16—C11—N11 115.8 (3)

H5C—C5—H5D 56.3 C16—C11—C12 123.2 (3)

C3—C5—H5E 109.5 N11—C11—C12 121.1 (3)

H5A—C5—H5E 56.3 O13—N11—O12 121.2 (3)

H5B—C5—H5E 141.1 O13—N11—C11 120.6 (3)

H5C—C5—H5E 56.3 O12—N11—C11 118.2 (3)

H5D—C5—H5E 109.5 O11—C12—C13 125.3 (4)

C3—C5—H5F 109.5 O11—C12—C11 122.9 (3)

H5A—C5—H5F 56.3 C13—C12—C11 111.7 (3)

H5B—C5—H5F 56.3 C14—C13—C12 125.1 (4)

H5C—C5—H5F 141.1 C14—C13—N12 113.6 (4)

H5D—C5—H5F 109.5 C12—C13—N12 121.3 (3)

H5E—C5—H5F 109.5 O15—N12—O14 123.0 (4)

C1′—O1B′—H1′ 105 (4) O15—N12—C13 117.6 (4)

O1A′—C1′—O1B′ 126.2 (3) O14—N12—C13 119.2 (4)

O1A′—C1′—C2′ 123.2 (3) C13—C14—C15 118.9 (4)

O1B′—C1′—C2′ 110.6 (3) C13—C14—H14 120.6

N1′—C2′—C1′ 107.5 (3) C15—C14—H14 120.6

N1′—C2′—C3′ 110.7 (3) C16—C15—C14 120.9 (3)

C1′—C2′—C3′ 115.0 (3) C16—C15—N13 120.2 (4)

N1′—C2′—H2′ 107.8 C14—C15—N13 119.0 (4)

C1′—C2′—H2′ 107.8 O17—N13—O16 123.9 (3)

C3′—C2′—H2′ 107.8 O17—N13—C15 118.7 (4)

C2′—N1′—H1A′ 109.5 O16—N13—C15 117.4 (4)

C2′—N1′—H1B′ 109.5 C15—C16—C11 120.1 (4)

H1A′—N1′—H1B′ 109.5 C15—C16—H16 119.9

C2′—N1′—H1C′ 109.5 C11—C16—H16 119.9

O1A—C1—C2—N1 −32.3 (4) C16—C11—C12—C13 4.2 (5)

O1B—C1—C2—N1 148.5 (3) N11—C11—C12—C13 −176.0 (3)

O1A—C1—C2—C3 89.3 (4) O11—C12—C13—C14 172.3 (4)

O1B—C1—C2—C3 −89.9 (4) C11—C12—C13—C14 −4.2 (5)

N1—C2—C3—C4 179.8 (3) O11—C12—C13—N12 −7.7 (6)

(10)

supporting information

sup-7

Acta Cryst. (2004). E60, o1722–o1724

N1—C2—C3—C5 −56.7 (4) C14—C13—N12—O15 155.2 (4)

C1—C2—C3—C5 −177.5 (3) C12—C13—N12—O15 −24.9 (6)

O1A′—C1′—C2′—N1′ −1.5 (5) C14—C13—N12—O14 −21.1 (5)

O1B′—C1′—C2′—N1′ 178.6 (3) C12—C13—N12—O14 158.9 (4)

O1A′—C1′—C2′—C3′ 122.3 (4) C12—C13—C14—C15 2.1 (6)

O1B′—C1′—C2′—C3′ −57.6 (4) N12—C13—C14—C15 −178.0 (3)

N1′—C2′—C3′—C5′ −153.4 (4) C13—C14—C15—C16 0.6 (6)

C1′—C2′—C3′—C5′ 84.6 (5) C13—C14—C15—N13 −180.0 (4)

N1′—C2′—C3′—C4′ 75.6 (5) C16—C15—N13—O17 179.2 (4)

C1′—C2′—C3′—C4′ −46.4 (5) C14—C15—N13—O17 −0.3 (6)

C16—C11—N11—O13 −169.0 (3) C16—C15—N13—O16 −2.2 (6)

C12—C11—N11—O13 11.2 (5) C14—C15—N13—O16 178.3 (4)

C16—C11—N11—O12 9.3 (5) C14—C15—C16—C11 −0.5 (6)

C12—C11—N11—O12 −170.5 (3) N13—C15—C16—C11 −180.0 (4)

C16—C11—C12—O11 −172.4 (4) N11—C11—C16—C15 178.0 (3)

N11—C11—C12—O11 7.4 (6) C12—C11—C16—C15 −2.1 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1A···O12i 0.89 2.37 3.014 (4) 129

N1—H1B···O1Bii 0.89 2.16 2.887 (4) 138

N1—H1C···O13iii 0.89 2.20 2.890 (4) 134

N1—H1C···O11iii 0.89 2.43 3.261 (4) 155

O1B′—H1′···O11iv 0.83 (5) 1.86 (5) 2.684 (4) 168 (5)

N1′—H1C′···O1Av 0.89 2.00 2.805 (4) 151

N1′—H1B′···O1Bvi 0.89 2.13 2.940 (4) 150

N1′—H1A′···O1Avii 0.89 1.93 2.763 (4) 155

References

Related documents

Thus, the targeted pulmonary expression of IL-13 causes a mononuclear and eosinophilic inflammatory response, mucus cell metaplasia, the deposition of Charcot-Leyden–like

Clusters: (1a) - process innovation and demand for mixed- skills labour; (2a) - product innovation and demand for mixed-skills labour; (3a) - undifferentiated innovation and demand

Oxford, UK. rization can be conveniently performed on-line. The goal of this paper is to show how these ob- jectives can be achieved through a conceptual indexing

Keywords: experimental economics, software, laboratory experiments , field experiments, online experiments, classroom experiments.. F

In BBN's natural language understanding and generation system (Janus), we have used a hybrid approach to representation, employing an intensional logic for the

The papers have a decided open-economy focus and connect the prosperity-crisis-depression cycle to international capital flows and their impact on domestic and external

Table B2: Counterfactual Experiment 2A - An Experiment that Assumes the Counterfactual Elimination of Intermediate-stop(s) Products Causes Marginal Cost of Nonstop Products

Ten preoperative characteristics for postoperative survival in a series of thirty-nine patients with breast cancer who were operated with decompressive surgery for MSCC