• No results found

Conformation of (–) membrenone C

N/A
N/A
Protected

Academic year: 2020

Share "Conformation of (–) membrenone C"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2003). E59, o1867±o1868 DOI: 10.1107/S1600536803024796 Rebecca A. Sampsonet al. C20H30O4

o1867

organic papers

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Conformation of (±)-membrenone-C

Rebecca A. Sampson, Michael V. Perkins and Max R. Taylor*

School of Chemistry, Physics and Earth Sciences, The Flinders University of South Australia, GPO Box 2100, Adelaide, SA 5001, Australia

Correspondence e-mail: max.taylor@flinders.edu.au

Key indicators Single-crystal X-ray study T= 123 K

Mean(C±C) = 0.003 AÊ Rfactor = 0.040 wRfactor = 0.079

Data-to-parameter ratio = 10.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The conformation of (ÿ)-membrenone-C, (2S,20R,3S,30S

)-(1S)-2,20

-ethane-1,1-diylbis(6-ethyl-3,5-dimethyl-2,3-dihydro-4H-pyran-4-one), C20H30O4, in the solid state is found to be the same as that predicted in solution by1H NMR spectros-copy and nOe (nuclear Overhauser effect) correlations.

Comment

Membrenone-C was ®rst isolated as a natural product, along

with membrenone-A and membrenone-B, from a

Mediterranean mollusc Pleurobranchus membranaceus by Ciavatta et al. (1993). Subsequent synthesis of (ÿ )-membrenone-A and (ÿ)-membrenone-B by Sampson & Perkins (2002) indicated an apparent error in the sign of the optical rotation reported for natural membrenone-C in the original isolation paper (Ciavatta et al., 1993). It was thus concluded by Sampson & Perkins (2002) that the structure of natural membrenone-C is enantiomeric to that reported here for (ÿ)-membrenone-C. Both (+)- and (ÿ)-membrenone-C have since been synthesized by Marshall & Ellis (2003) and their stereochemical results are consistent with ours (Perkins & Sampson, 2001; Sampson & Perkins, 2002).

The crystal structure of (ÿ)-membrenone-C, (I), reveals that the two dihydropyran-4-one rings each have pseudo-equatorial and axial substituents at their two tetrahedral centres (Fig. 1). For the (2S,3S)-dihydropyran ring, both the methyl substituent and the larger alkyl group are in pseudo-equatorial positions. The (20R,30S)-dihydropyran ring,

however, has the large alkyl group in a pseudo-equatorial orientation but the methyl group is in a pseudo-axial position. The conformation about the central C1ÐC2 and C1ÐC20

bonds is shown to be such that the A 1,3 strain is minimized. The 1,3-syn pentane interactions present all involve at least one H atom and are thus expected to be small. All other possible staggered conformations about the C1ÐC2 and C1Ð C20bonds lead to 1,3-synpentane interactions of large

(non-H) groups. The interplanar angle between the dihydropyran rings is approximately 62. The above conformation is the

same as that determined in solution by1H NMR spectroscopy and nOe (nuclear Overhauser effect) correlations (Perkins & Sampson, 2001; Sampson, 2001). The observed coupling H3Ð H2 ofJ= 13.8 Hz is consistent with a dihedral angle close to

(2)

180, as expected for pseudo-diaxial H atoms

(pseudo-diequatorial alkyl groups). Similarly, the observed coupling H30ÐH20ofJ= 2.1 Hz is consistent with a dihedral angle close

to 60, as expected for a pseudo-axial to equatorial coupling

(pseudo-axial methyl and pseudo-equatorial alkyl group). The couplings H1ÐH2,J= 3.0 Hz and H1ÐH20,J= 10.2 Hz are

consistent with HCÐCH dihedral angles of 60 and

180, respectively. Corresponding values from the crystal

structure are listed in Table 1. Further evidence for this conformation in solution comes from the strong nOe correl-ation between H30and H2, showing that these two protons are

close in space (H30 H2 = 2.240 AÊ in the crystal). Other nOe

correlations consistent with this conformation were observed. This conformation is also predicted, by molecular modelling studies, to be the low energy conformer in solution (Sampson, 2001).

Experimental

The (ÿ)-membrenone-C used in this study was obtainedviaa short enantiocontrolled synthesis (Perkins & Sampson, 2001) and crystal-lized from ether.

Crystal data

C20H30O4

Mr= 334.46

Orthorhombic,P212121

a= 9.836 (3) AÊ b= 13.065 (4) AÊ c= 14.391 (4) AÊ V= 1849.3 (10) AÊ3

Z= 4

Dx= 1.201 Mg mÿ3

MoKradiation Cell parameters from 3123

re¯ections

= 2.6±25.1 = 0.08 mmÿ1

T= 123 (2) K Needle, colourless 0.750.120.11 mm

Data collection

BrukerP4/SMART CCD area-detector diffractometer

!scans

Absorption correction: none 12757 measured re¯ections 2294 independent re¯ections

1648 re¯ections withF2> 2(F2)

Rint= 0.07

max= 27.7

h=ÿ12!12 k=ÿ16!17 l=ÿ18!6

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.040

wR(F2) = 0.079

S= 1.20 2177 re¯ections 217 parameters

H-atom parameters not re®ned w= 1/[2(F

o2) + (0.02Fo2)2]1/2

(/)max< 0.001

max= 0.26 e AÊÿ3

min=ÿ0.33 e AÊÿ3

Table 1

Selected torsion angles ().

H2ÐC2ÐC3ÐH3 177

H2ÐC2ÐC1ÐH1 ÿ58 H2

0ÐC20ÐC30ÐH30 ÿ52

H20ÐC20ÐC1ÐH1 178

All re¯ections with F2 > 0 were included in the least-squares

re®nement. Friedel pairs (1725 pairs) were averaged owing to the lack of signi®cant anomalous scattering. H atom peaks were observed in a difference map but these atoms were placed at calculated positions (CÐH = 0.946±0.968 AÊ). Their coordinates were not re®ned but were recalculated several times during the re®nement.

Data collection:SMART(Bruker, 1999); cell re®nement:SMART; data reduction: SAINT(Bruker, 1999) and Xtal3.7ADDREF and

SORTRF (Hall et al., 2000); program(s) used to solve structure:

SIR97 (Altomareet al., 1999); program(s) used to re®ne structure:

Xtal3.7 CRYLSQ; molecular graphics: Xtal3.7; software used to prepare material for publication:Xtal3.7BONDLAandCIFIO.

We thank Dr Jan Wikaira of the University of Canterbury, Christchurch, New Zealand, for collecting the data, and the Australian Research Council for ®nancial support.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999).J. Appl. Cryst.32, 115±119.

Bruker (1999).SMARTandSAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Ciavatta, M. L., Trivellone, E., Villani, G. & Cimino, G. (1993).Tetrahedron Lett.34, 6791±6794.

Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (2000). Editors.Xtal3.7 System. University of Western Australia, Perth: Lamb.

Marshall, J. A. & Ellis, K. C. (2003).Org. Lett.5, 1729±1732. Perkins, M. V. & Sampson, R. A. (2001).Org. Lett.3, 123±126.

Sampson, R. A. (2001). PhD thesis, The Flinders University of South Australia, Adelaide, Australia.

Sampson, R. A. & Perkins, M. V. (2002).Org. Lett.4, 1655±1658.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2003). E59, o1867–o1868

supporting information

Acta Cryst. (2003). E59, o1867–o1868 [https://doi.org/10.1107/S1600536803024796]

Conformation of (

)-membrenone-C

Rebecca A. Sampson, Michael V. Perkins and Max R. Taylor

(2S,2′R,3S,3′S)-(1S)-2,2′-ethane-1,1-diylbis(6-ethyl-3,5-dimethyl-2,3-dihydro- 4H-pyran-4-one)

Crystal data

C20H30O4 Mr = 334.46

Orthorhombic, P212121 Hall symbol: p_2ac_2ab

a = 9.836 (3) Å

b = 13.065 (4) Å

c = 14.391 (4) Å

V = 1849.3 (10) Å3 Z = 4

F(000) = 728

Dx = 1.201 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3123 reflections

θ = 2.6–25.1°

µ = 0.08 mm−1 T = 123 K Needle, colourless 0.75 × 0.12 × 0.11 mm

Data collection

Bruker P4 CCD area-detector diffractometer

Radiation source: sealed tube Graphite monochromator

ω scans

12757 measured reflections 2294 independent reflections

1648 reflections with F2 > 2σ(F2) Rint = 0.07

θmax = 27.7° h = −12→12

k = −16→17

l = −18→6

Refinement

Refinement on F2 R[F2 > 2σ(F2)] = 0.040 wR(F2) = 0.079 S = 1.20 2177 reflections 217 parameters

H-atom parameters not refined

w = 1/[σ2(F

o2) + (0.02Fo2)2]1/2 (Δ/σ)max = 0.0003

Δρmax = 0.26 e Å−3 Δρmin = −0.33 e Å−3

Special details

Experimental. A 1 mm diameter collimator was used.

Refinement. Refinement of F2 against reflections with F2>0. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement Friedel related data were averaged because an attempt to refine a Flack parameter was unsuccessful.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.7737 (3) 0.97960 (17) 0.70830 (14) 0.0241 (13)

(4)

C2′ 0.7483 (3) 0.89901 (17) 0.63256 (14) 0.0226 (13)

C3 0.7927 (2) 1.17478 (18) 0.73629 (14) 0.0248 (14)

C3′ 0.6243 (3) 0.91530 (17) 0.57182 (13) 0.0221 (13)

C4 0.8026 (3) 1.2748 (2) 0.68225 (15) 0.0255 (14)

C4′ 0.6040 (3) 0.82316 (19) 0.50883 (14) 0.0260 (14)

C5 0.8773 (3) 1.26960 (18) 0.59387 (14) 0.0239 (14)

C5′ 0.6524 (3) 0.72541 (19) 0.54290 (14) 0.0252 (14)

C6 0.9264 (2) 1.17911 (19) 0.56446 (13) 0.0244 (14)

C6′ 0.7073 (3) 0.71902 (19) 0.62872 (15) 0.0247 (14)

C7 0.6755 (3) 1.1768 (2) 0.80563 (15) 0.0348 (16)

C7′ 0.4931 (3) 0.93527 (19) 0.62545 (15) 0.0306 (15)

C8 0.9024 (3) 1.36845 (18) 0.54250 (16) 0.0349 (16)

C8′ 0.6251 (3) 0.63131 (19) 0.48516 (16) 0.0360 (16)

C9 1.0178 (3) 1.16186 (19) 0.48291 (15) 0.0300 (15)

C9′ 0.7450 (3) 0.62110 (17) 0.67683 (15) 0.0305 (15)

C10 0.9428 (3) 1.1174 (2) 0.39987 (16) 0.0407 (17)

C10′ 0.7649 (3) 0.62845 (18) 0.78042 (17) 0.0388 (16)

C11 0.8992 (3) 0.95350 (18) 0.76603 (15) 0.0315 (15)

O1 0.89603 (17) 1.08727 (12) 0.60472 (9) 0.0239 (9)

O1′ 0.73589 (17) 0.80256 (11) 0.68176 (9) 0.0246 (9)

O4 0.7559 (2) 1.35533 (12) 0.71207 (11) 0.0355 (11)

O4′ 0.54170 (18) 0.83307 (14) 0.43506 (10) 0.0369 (11)

H2 0.69634 1.10126 0.63704 0.02900*

H2′ 0.82189 0.90175 0.58980 0.02900*

H3 0.87252 1.16517 0.77258 0.03200*

H3′ 0.64284 0.97538 0.53690 0.02800*

H7a 0.68755 1.23257 0.84726 0.05200*

H7b 0.67375 1.11461 0.83928 0.05200*

H7c 0.59224 1.18522 0.77289 0.05200*

H7'a 0.42032 0.94509 0.58291 0.04600*

H7'b 0.50349 0.99545 0.66228 0.04600*

H7'c 0.47368 0.87888 0.66462 0.04600*

H9a 1.08761 1.11532 0.50063 0.03700*

H9b 1.05719 1.22521 0.46548 0.03700*

H9'a 0.82733 0.59700 0.65037 0.03800*

H9'b 0.67459 0.57270 0.66575 0.03800*

H10a 1.00447 1.10793 0.34993 0.06200*

H10b 0.87291 1.16360 0.38124 0.06200*

H10c 0.90333 1.05371 0.41639 0.06200*

H10'a 0.78858 0.56316 0.80435 0.05900*

H10'b 0.68328 0.65144 0.80868 0.05900*

H10'c 0.83602 0.67575 0.79330 0.05900*

H1 0.69787 0.97880 0.74954 0.03000*

H11a 0.89020 0.88609 0.79014 0.04800*

H11b 0.90722 1.00071 0.81578 0.04800*

H11c 0.97757 0.95717 0.72777 0.04800*

H8a 0.86329 1.36752 0.48239 0.05300*

(5)

supporting information

sup-3 Acta Cryst. (2003). E59, o1867–o1868

H8c 0.86381 1.42533 0.57655 0.05300*

H8'a 0.69304 0.57924 0.49619 0.05200*

H8'b 0.62681 0.64629 0.41960 0.05200*

H8'c 0.53836 0.60220 0.49937 0.05200*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.0325 (16) 0.0227 (13) 0.0170 (11) −0.0013 (12) −0.0022 (11) 0.0019 (10)

C2 0.0226 (15) 0.0225 (13) 0.0234 (12) 0.0007 (12) 0.0019 (11) 0.0026 (10)

C2′ 0.0284 (15) 0.0186 (13) 0.0209 (11) −0.0030 (12) 0.0020 (11) 0.0036 (10)

C3 0.0300 (15) 0.0244 (14) 0.0200 (11) −0.0009 (12) −0.0008 (10) −0.0015 (11)

C3′ 0.0281 (15) 0.0175 (13) 0.0207 (11) −0.0034 (12) −0.0005 (11) 0.0070 (10)

C4 0.0250 (16) 0.0250 (15) 0.0265 (12) −0.0020 (12) −0.0063 (11) 0.0001 (11)

C4′ 0.0250 (15) 0.0309 (15) 0.0222 (12) −0.0059 (13) 0.0023 (11) −0.0000 (11)

C5 0.0296 (15) 0.0209 (14) 0.0213 (11) −0.0014 (12) −0.0069 (11) 0.0020 (10)

C5′ 0.0274 (16) 0.0235 (15) 0.0247 (12) −0.0045 (12) 0.0006 (11) −0.0042 (11)

C6 0.0240 (14) 0.0284 (15) 0.0208 (12) −0.0048 (13) −0.0037 (10) 0.0024 (11)

C6′ 0.0234 (15) 0.0225 (14) 0.0282 (13) −0.0031 (12) 0.0045 (10) 0.0005 (11)

C7 0.0431 (18) 0.0277 (15) 0.0335 (14) 0.0001 (13) 0.0107 (12) −0.0012 (13)

C7′ 0.0302 (16) 0.0316 (16) 0.0300 (13) 0.0005 (13) −0.0028 (12) 0.0034 (12)

C8 0.0457 (19) 0.0313 (17) 0.0276 (13) −0.0063 (14) −0.0015 (13) 0.0007 (11)

C8′ 0.0419 (19) 0.0326 (17) 0.0335 (14) −0.0065 (14) −0.0008 (13) −0.0094 (11)

C9 0.0360 (17) 0.0291 (15) 0.0250 (12) −0.0074 (13) 0.0046 (11) −0.0016 (11)

C9′ 0.0342 (17) 0.0225 (14) 0.0347 (13) −0.0014 (13) 0.0035 (13) 0.0025 (11)

C10 0.055 (2) 0.0424 (18) 0.0251 (12) −0.0006 (15) 0.0001 (13) −0.0043 (12)

C10′ 0.055 (2) 0.0273 (15) 0.0340 (13) 0.0028 (15) −0.0055 (14) 0.0092 (11)

C11 0.0410 (18) 0.0259 (15) 0.0277 (13) −0.0002 (13) −0.0092 (13) 0.0021 (11)

O1 0.0302 (11) 0.0203 (9) 0.0213 (8) 0.0006 (8) 0.0043 (7) 0.0018 (7)

O1′ 0.0355 (11) 0.0177 (9) 0.0207 (8) −0.0001 (8) −0.0021 (7) 0.0022 (6)

O4 0.0465 (12) 0.0196 (10) 0.0402 (10) 0.0049 (10) 0.0059 (10) −0.0036 (8)

O4′ 0.0452 (12) 0.0415 (11) 0.0239 (9) −0.0006 (10) −0.0091 (8) −0.0004 (8)

Geometric parameters (Å, º)

C2—C3 1.520 (3) C7—H7c 0.951

C2—C1 1.532 (3) C7′—H7'a 0.951

C2—O1 1.447 (3) C7′—H7'b 0.954

C2—H2 0.950 C7′—H7'c 0.947

C2′—C3′ 1.516 (3) C8—H8a 0.947

C2′—C1 1.536 (3) C8—H8b 0.959

C2′—O1′ 1.451 (3) C8—H8c 0.968

C2′—H2′ 0.950 C8′—H8'a 0.967

C3—C4 1.524 (3) C8′—H8'b 0.964

C3—C7 1.525 (3) C8′—H8'c 0.956

C3—H3 0.952 C9—C10 1.520 (3)

C3′—C4′ 1.520 (3) C9—H9a 0.952

(6)

C3′—H3′ 0.950 C9′—C10′ 1.507 (3)

C4—C5 1.470 (3) C9′—H9'a 0.948

C4—O4 1.226 (3) C9′—H9'b 0.952

C4′—C5′ 1.448 (3) C10—H10a 0.948

C4′—O4′ 1.233 (3) C10—H10b 0.954

C5—C6 1.346 (3) C10—H10c 0.948

C5—C8 1.508 (3) C10′—H10'a 0.949

C5′—C6′ 1.351 (3) C10′—H10'b 0.949

C5′—C8′ 1.508 (3) C10′—H10'c 0.952

C6—C9 1.495 (3) C1—C11 1.527 (4)

C6—O1 1.366 (3) C1—H1 0.953

C6′—C9′ 1.501 (3) C11—H11a 0.951

C6′—O1′ 1.361 (3) C11—H11b 0.948

C7—H7a 0.951 C11—H11c 0.948

C7—H7b 0.946

C3—C2—C1 116.01 (17) H7'a—C7′—H7'c 109.7

C3—C2—O1 110.25 (19) H7'b—C7′—H7'c 109.4

C3—C2—H2 103.0 C5—C8—H8a 111.7

C1—C2—O1 105.81 (18) C5—C8—H8b 110.4

C1—C2—H2 108.2 C5—C8—H8c 110.2

O1—C2—H2 113.87 H8a—C8—H8b 109.0

C3′—C2′—C1 116.3 (2) H8a—C8—H8c 108.2

C3′—C2′—O1′ 109.6 (2) H8b—C8—H8c 107.2

C3′—C2′—H2′ 103.53 C5′—C8′—H8'a 111.1

C1—C2′—O1′ 105.24 (16) C5′—C8′—H8'b 111.8

C1—C2′—H2′ 108.1 C5′—C8′—H8'c 111.4

O1′—C2′—H2′ 114.4 H8'a—C8′—H8'b 107.0

C2—C3—C4 108.24 (17) H8'a—C8′—H8'c 107.6

C2—C3—C7 112.5 (2) H8'b—C8′—H8'c 107.8

C2—C3—H3 109.1 C6—C9—C10 112.5 (2)

C4—C3—C7 111.6 (2) C6—C9—H9a 108.6

C4—C3—H3 109.9 C6—C9—H9b 108.8

C7—C3—H3 105.49 C10—C9—H9a 108.4

C2′—C3′—C4′ 109.8 (2) C10—C9—H9b 108.9

C2′—C3′—C7′ 114.40 (17) H9a—C9—H9b 109.5

C2′—C3′—H3′ 105.5 C6′—C9′—C10′ 115.7 (2)

C4′—C3′—C7′ 109.0 (2) C6′—C9′—H9'a 108.0

C4′—C3′—H3′ 111.36 C6′—C9′—H9'b 108.0

C7′—C3′—H3′ 106.8 C10′—C9′—H9'a 107.9

C3—C4—C5 115.7 (2) C10′—C9′—H9'b 107.6

C3—C4—O4 122.2 (2) H9'a—C9′—H9'b 109.5

C5—C4—O4 122.0 (2) C9—C10—H10a 109.6

C3′—C4′—C5′ 116.95 (18) C9—C10—H10b 109.2

C3′—C4′—O4′ 119.7 (2) C9—C10—H10c 109.7

C5′—C4′—O4′ 123.2 (2) H10a—C10—H10b 109.3

C4—C5—C6 119.5 (2) H10a—C10—H10c 109.8

(7)

supporting information

sup-5 Acta Cryst. (2003). E59, o1867–o1868

C6—C5—C8 122.6 (2) C9′—C10′—H10'a 109.5

C4′—C5′—C6′ 119.7 (2) C9′—C10′—H10'b 109.5

C4′—C5′—C8′ 118.3 (2) C9′—C10′—H10'c 109.2

C6′—C5′—C8′ 121.6 (2) H10'a—C10′—H10'b 109.7

C5—C6—C9 126.5 (2) H10'a—C10′—H10'c 109.4

C5—C6—O1 124.0 (2) H10'b—C10′—H10'c 109.4

C9—C6—O1 109.4 (2) C2—C1—C2′ 111.24 (17)

C5′—C6′—C9′ 125.0 (2) C2—C1—C11 112.4 (2)

C5′—C6′—O1′ 123.1 (2) C2—C1—H1 106.6

C9′—C6′—O1′ 111.95 (18) C2′—C1—C11 111.4 (2)

C3—C7—H7a 109.3 C2′—C1—H1 107.9

C3—C7—H7b 109.5 C11—C1—H1 106.95

C3—C7—H7c 109.2 C1—C11—H11a 109.3

H7a—C7—H7b 109.8 C1—C11—H11b 109.4

H7a—C7—H7c 109.3 C1—C11—H11c 109.3

H7b—C7—H7c 109.7 H11a—C11—H11b 109.6

C3′—C7′—H7'a 109.5 H11a—C11—H11c 109.6

C3′—C7′—H7'b 109.3 H11b—C11—H11c 109.8

C3′—C7′—H7'c 109.8 C2—O1—C6 115.63 (17)

H7'a—C7′—H7'b 109.1 C2′—O1′—C6′ 116.12 (16)

C1—C2—C3—C4 178.2 (2) C3—C4—C5—C6 2.6 (3)

C1—C2—C3—C7 −58.0 (3) C3—C4—C5—C8 −173.9 (2)

C1—C2—C3—H3 58.6 O4—C4—C5—C6 180.0 (2)

O1—C2—C3—C4 58.0 (2) O4—C4—C5—C8 3.5 (4)

O1—C2—C3—C7 −178.26 (18) C3′—C4′—C5′—C6′ 2.6 (3)

O1—C2—C3—H3 −61.6 C3′—C4′—C5′—C8′ 175.8 (2)

H2—C2—C3—C4 −63.9 O4′—C4′—C5′—C6′ −173.1 (2)

H2—C2—C3—C7 59.9 O4′—C4′—C5′—C8′ 0.0 (4)

H2—C2—C3—H3 176.6 C4—C5—C6—C9 −172.3 (2)

C3—C2—C1—C2′ 174.8 (2) C4—C5—C6—O1 9.5 (4)

C3—C2—C1—C11 −59.5 (3) C8—C5—C6—C9 4.0 (4)

C3—C2—C1—H1 57.4 C8—C5—C6—O1 −174.2 (2)

O1—C2—C1—C2′ −62.7 (2) C4—C5—C8—H8a −120.4

O1—C2—C1—C11 63.0 (2) C4—C5—C8—H8b 118.2

O1—C2—C1—H1 179.94 C4—C5—C8—H8c −0.0

H2—C2—C1—C2′ 59.7 C6—C5—C8—H8a 63.3

H2—C2—C1—C11 −174.58 C6—C5—C8—H8b −58.1

H2—C2—C1—H1 −57.7 C6—C5—C8—H8c −176.4

C3—C2—O1—C6 −49.7 (2) C4′—C5′—C6′—C9′ 171.9 (2)

C1—C2—O1—C6 −175.86 (17) C4′—C5′—C6′—O1′ −8.6 (4)

H2—C2—O1—C6 65.5 C8′—C5′—C6′—C9′ −1.0 (4)

C1—C2′—C3′—C4′ −173.15 (19) C8′—C5′—C6′—O1′ 178.6 (2)

C1—C2′—C3′—C7′ −50.2 (3) C4′—C5′—C8′—H8'a 153.1

C1—C2′—C3′—H3′ 66.8 C4′—C5′—C8′—H8'b 33.7

O1′—C2′—C3′—C4′ −54.0 (2) C4′—C5′—C8′—H8'c −87.0

O1′—C2′—C3′—C7′ 68.9 (2) C6′—C5′—C8′—H8'a −33.9

(8)

H2′—C2′—C3′—C4′ 68.5 C6′—C5′—C8′—H8'c 86.0

H2′—C2′—C3′—C7′ −168.6 C5—C6—C9—C10 −104.1 (3)

H2′—C2′—C3′—H3′ −51.6 C5—C6—C9—H9a 135.8

C3′—C2′—C1—C2 −55.0 (3) C5—C6—C9—H9b 16.7

C3′—C2′—C1—C11 178.7 (2) O1—C6—C9—C10 74.3 (2)

C3′—C2′—C1—H1 61.6 O1—C6—C9—H9a −45.8

O1′—C2′—C1—C2 −176.5 (2) O1—C6—C9—H9b −164.9

O1′—C2′—C1—C11 57.2 (2) C5—C6—O1—C2 15.2 (3)

O1′—C2′—C1—H1 −59.9 C9—C6—O1—C2 −163.29 (18)

H2′—C2′—C1—C2 60.8 C5′—C6′—C9′—C10′ −162.5 (3)

H2′—C2′—C1—C11 −65.4 C5′—C6′—C9′—H9'a 76.5

H2′—C2′—C1—H1 177.5 C5′—C6′—C9′—H9'b −41.8

C3′—C2′—O1′—C6′ 51.7 (2) O1′—C6′—C9′—C10′ 18.0 (3)

C1—C2′—O1′—C6′ 177.5 (2) O1′—C6′—C9′—H9'a −103.1

H2′—C2′—O1′—C6′ −64.1 O1′—C6′—C9′—H9'b 138.6

C2—C3—C4—C5 −35.2 (3) C5′—C6′—O1′—C2′ −20.1 (3)

C2—C3—C4—O4 147.5 (2) C9′—C6′—O1′—C2′ 159.5 (2)

C7—C3—C4—C5 −159.5 (2) C6—C9—C10—H10a 179.8

C7—C3—C4—O4 23.1 (3) C6—C9—C10—H10b 60.2

H3—C3—C4—C5 83.8 C6—C9—C10—H10c −59.6

H3—C3—C4—O4 −93.5 H9a—C9—C10—H10a −60.0

C2—C3—C7—H7a −179.9 H9a—C9—C10—H10b −179.7

C2—C3—C7—H7b 59.9 H9a—C9—C10—H10c 60.6

C2—C3—C7—H7c −60.3 H9b—C9—C10—H10a 59.1

C4—C3—C7—H7a −58.0 H9b—C9—C10—H10b −60.6

C4—C3—C7—H7b −178.2 H9b—C9—C10—H10c 179.7

C4—C3—C7—H7c 61.6 C6′—C9′—C10′—H10'a −179.8

H3—C3—C7—H7a 61.3 C6′—C9′—C10′—H10'b 59.8

H3—C3—C7—H7b −58.9 C6′—C9′—C10′—H10'c −60.0

H3—C3—C7—H7c −179.1 H9'a—C9′—C10′—H10'a −58.8

C2′—C3′—C4′—C5′ 28.5 (3) H9'a—C9′—C10′—H10'b −179.1

C2′—C3′—C4′—O4′ −155.5 (2) H9'a—C9′—C10′—H10'c 61.0

C7′—C3′—C4′—C5′ −97.5 (2) H9'b—C9′—C10′—H10'a 59.3

C7′—C3′—C4′—O4′ 78.4 (3) H9'b—C9′—C10′—H10'b −61.0

H3′—C3′—C4′—C5′ 145.0 H9'b—C9′—C10′—H10'c 179.1

H3′—C3′—C4′—O4′ −39.1 C2—C1—C11—H11a 179.9

C2′—C3′—C7′—H7'a 179.7 C2—C1—C11—H11b 60.0

C2′—C3′—C7′—H7'b 60.1 C2—C1—C11—H11c −60.2

C2′—C3′—C7′—H7'c −59.9 C2′—C1—C11—H11a −54.4

C4′—C3′—C7′—H7'a −57.0 C2′—C1—C11—H11b −174.4

C4′—C3′—C7′—H7'b −176.5 C2′—C1—C11—H11c 65.4

C4′—C3′—C7′—H7'c 63.4 H1—C1—C11—H11a 63.2

H3′—C3′—C7′—H7'a 63.4 H1—C1—C11—H11b −56.7

H3′—C3′—C7′—H7'b −56.1 H1—C1—C11—H11c −176.9

References

Related documents

Our ability to detect and classify botnet C&amp;C channels shows that there is an inherent simi- larity in C&amp;C structures for different types of bots and that the

However, scrutiny of the reported structure reveals a number of unexpected features: the refinement was conducted in a non-standard monoclinic cell having &lt; 90 ; the C—C

Data collection: X-AREA (Stoe &amp; Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe &amp; Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick,

The molecular and crystal structure of 3-nitrobenzenesulfonyl chloride has recently been reported (Vembu, Nallu, Spencer &amp; Howard, 2003 c ).. An X-ray study of the title

[19] reported that c-Myc are expressed as a stem cell marker in the ascites cells and tumor tissue of ovarian cancer patients.. Further, our prior study has concluded

Natural resources are not only limited but also cost contribute high in construction cost making C&amp;D waste management a matter to work on... Organized by

However, scrutiny of the reported structure reveals a number of unexpected features: the refinement was conducted in a non-standard monoclinic cell having &lt; 90 ; the C—C

Among these Shewanella cyts c, the solution structure of cyt c (ScyA) of S. putrefaciens in the original paper) has been determined by NMR (Bartalesi et al. 2002), which showed