• No results found

[μ8 η4 2,5 Bis­(oct 1 ynyl)­thio­phene]­bis­­[octa­carbonyl­bis­(η5 methyl­cyclo­penta­dienyl) tetrahedro diiridium­dimolybdenum] di­chloro­methane hemisolvate

N/A
N/A
Protected

Academic year: 2020

Share "[μ8 η4 2,5 Bis­(oct 1 ynyl)­thio­phene]­bis­­[octa­carbonyl­bis­(η5 methyl­cyclo­penta­dienyl) tetrahedro diiridium­dimolybdenum] di­chloro­methane hemisolvate"

Copied!
16
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[

l

8

-

g

4

-2,5-Bis(oct-1-ynyl)thiophene]bis[octacarbonyl-bis(

g

5

-methylcyclopentadienyl)-

tetrahedro

-diiridium-dimolybdenum] dichloromethane hemisolvate

Nigel T. Lucas,aMark G. Humphreya* and Anthony C. Willisb

aDepartment of Chemistry, Australian National

University, Canberra ACT 0200, Australia, and

bResearch School of Chemistry, Australian

National University, Canberra ACT 0200, Australia

Correspondence e-mail: mark.humphrey@anu.edu.au

Key indicators Single-crystal X-ray study

T= 473 K

Mean(C±C) = 0.011 AÊ Disorder in solvent or counterion

Rfactor= 0.026

wRfactor= 0.034

Data-to-parameter ratio = 11.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, [Mo4Ir4(5-C6H7)4(C20H28S)(CO)16]

-0.5CH2Cl2, is a mixed-metal dicluster compound in which

the cluster modules are linked by a bridging 2,5-bis(oct-1-ynyl)thiophene ligand. The cluster units each have butter¯y metal core geometries, with Mo atoms at the wing-tip sites and Ir atoms at the hinge positions.

Comment

The alkyne chemistry of group 6-iridium mixed-metal clusters has attracted signi®cant recent interest (Lucas et al., 1997; Notaraset al., 2001; Daltonet al., 2004). The4-2

-coordina-tion mode of the alkyne ligand at theM2Ir2cluster cores (M=

group 6 metal) is very robust, and organic di- and triynes can be readily prepared; we have recently reported di- and tricluster compounds in which the individual clusters are linked by di- or triynes (Lucas, Notaras, Cifuentes & Humphrey, 2003; Lucas, Notaras, Petrieet al., 2003; Notaraset al., 2003). The title compound, (I), is an example of such a species, and it has now been structurally characterized.

As expected, the alkyne units formally insert into the MoÐMo bonds of the precursor tetrahedral cluster Mo2Ir2(CO)10(5±C5H4Me)2 to afford closo-octahedral

Mo2Ir2C2 cluster units bridged by a 2,5-disubstituted

thio-phenyl group (Fig. 1). The diyne ligand is4-2-coordinated at

each cluster, with the alkyne CÐC bonds parallel to the IrÐIr vectors, completing pseudo-octahedral Mo2Ir2C2 units. The

Mo atoms are each ligated by a methylcyclopentadienyl ligand, and the Ir atoms are each ligated by two terminal carbonyls, with the coordination completed by four bridging carbonyls, each of which lies across an MoÐIr linkage. The Mo2Ir2C2 core bond distances in (I) are essentially identical

to those of the tungsten-containing analogue [W Ir(CO)

(2)

(Notaraset al., 2003), with the exception of the IrÐIr vectors, which are shorter in (I) [2.6960 (4) ± 2.6963 (4) AÊ (M= Mo)

versus2.718 (1) ± 2.7621 (9) AÊ (M= W)].

Experimental

The synthesis of (I) was carried out according to the procedure of Notaraset al.(2003). The crystal used in this study was grown by slow diffusion of a layer of methanol into a dichloromethane solution of (I) at 276 K.

Crystal data

[Mo4Ir4(C6H7)4(C20H28

S)-(CO)16]0.5CH2Cl2 Mr= 2260.26

Monoclinic,P21=c a= 9.9141 (2) AÊ b= 43.1674 (8) AÊ c= 15.7682 (3) AÊ

= 104.6701 (5) V= 6528.3 (2) AÊ3 Z= 4

Dx= 2.300 Mg m 3

Mo Kradiation

Cell parameters from 138 312 re¯ections

= 4.1±25.0

= 9.02 mm 1 T= 473.2 K Block, red±brown 0.180.110.04 mm

Data collection

Nonius KappaCCD diffractometer

'and!scans

Absorption correction: by integra-tion [Gaussian (Coppens, 1970) implemented inmaXus(Mackay et al., 1999)]

Tmin= 0.315,Tmax= 0.702

73 643 measured re¯ections

11 612 independent re¯ections 9300 re¯ections withI> 2(I) Rint= 0.057

max= 25.0 h= 11!11 k= 50!51 l= 18!18

Refinement

Re®nement onF R= 0.026 wR= 0.034 S= 1.00 9300 re¯ections 793 parameters

H-atom parameters constrained w= 1/[2(F

o) + 0.0001|Fo|2]

(/)max= 0.013

max= 1.63 e AÊ 3

min= 1.07 e AÊ 3

Table 1

Selected bond lengths (AÊ). Ir11ÐIr12 2.6963 (4) Ir11ÐMo11 2.8027 (7) Ir11ÐMo12 2.8223 (6) Ir12ÐMo11 2.8386 (7) Ir12ÐMo12 2.8054 (6)

Ir21ÐIr22 2.6960 (4) Ir21ÐMo21 2.8307 (6) Ir21ÐMo22 2.8039 (6) Ir22ÐMo21 2.8161 (6) Ir22ÐMo22 2.8152 (6)

H atoms were placed in idealized positions [CÐH = 0.95 AÊ and

Uiso(H) = 1.2Ueq(C)], which were frequently recalculated. Residual electron density in the region of space adjacent to the cluster mol-ecule was attributed to the dichloromethane solvent, which re®ned initially to an occupancy ofca0.75. To circumvent a short contact between the C atoms of the solvent and its inversion image (2.74 AÊ), the occupancy was reduced to 0.5 as a more reasonable disorder model. Restraints were imposed on the bonding distances and angle of the disordered dichloromethane molecule. Atom C121, at the terminus of a hexyl chain and adjacent to the disordered solvent molecule, exhibits rather large anisotropy, although not suf®ciently large to warrant modelling over multiple sites. The largest residual peaks were found close to the cluster core metal atoms.

Data collection: COLLECT (Nonius, 1997); cell re®nement:

SCALEPACK (Otwinowski & Minor, 1997); data reduction:

DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure:DIRDIF92PATTY(Beurskenset

al., 1992); program(s) used to re®ne structure:TEXSAN(Molecular Structure Corporation, 1997); software used to prepare material for publication:TEXSAN.

The authors thank the Australian Research Council (ARC) for ®nancial support and the funds to purchase the diffract-ometer, and Johnson±Matthey Technology Centre for the generous loan of iridium salts. NTL was an Australian Post-graduate Awardee and MGH holds an ARC Australian Professorial Fellowship.

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992).The DIRDIF program system. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.

Coppens, P. (1970).Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255±270. Copenhagen: Munksgaard.

Dalton, G. T., Willis, A. C. & Humphrey, M. G. (2004).J. Clust. Sci.15, 291± 300.

Lucas, N. T., Humphrey, M. G., Healy, P. C. & Williams, M. L. (1997).J. Organomet. Chem.545±546, 519±530.

Lucas, N. T., Notaras, E. G. A., Cifuentes, M. P. & Humphrey, M. G. (2003). Organometallics,22, 284±301.

Lucas, N. T., Notaras, E. G. A., Petrie, S., Stranger, R. & Humphrey, M. G. (2003).Organometallics,22, 708±721.

Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus.Nonius, The Netherlands, MacScience, Japan, and The University of Glasgow, Scotland.

Molecular Structure Corporation (1997).TEXSAN.Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Nonius (1997).COLLECT.Nonius BV, Delft, The Netherlands.

Notaras, E. G. A., Lucas, N. T., Blitz, J. P. & Humphrey, M. G. (2001).J. Organomet. Chem.631, 143±150.

Notaras, E. G. A., Lucas, N. T., Humphrey, M. G., Willis, A. C. & Rae, A. D. (2003).Organometallics,22, 3659±3670.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307±326. New York: Academic Press.

Figure 1

(3)

supporting information

Acta Cryst. (2005). E61, m463–m464 [https://doi.org/10.1107/S160053680500214X]

[

µ8

-

η

4

-2,5-Bis(oct-1-ynyl)thiophene]bis[octacarbonylbis(

η

5

-methylcyclo-pentadienyl)-

tetrahedro

-diiridiumdimolybdenum] dichloromethane hemisolvate

Nigel T. Lucas, Mark G. Humphrey and Anthony C. Willis

(I)

Crystal data

[Mo4Ir4(C6H7)4(C20H28S)2(CO)16]·0.5CH2Cl2

Mr = 2260.26

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 9.9141 (2) Å

b = 43.1674 (8) Å

c = 15.7682 (3) Å

β = 104.6701 (5)°

V = 6528.3 (2) Å3

Z = 4

F(000) = 4228.00

Dx = 2.300 Mg m−3

Mo radiation, λ = 0.7107 Å

Cell parameters from 138312 reflections

θ = 4.1–25.0°

µ = 9.02 mm−1

T = 473 K Block, red-brown 0.18 × 0.11 × 0.04 mm

Data collection

Nonius KappaCCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: integration

[Gaussian (Coppens, 1970) implemented in maXus (Mackay et al., 1999)]

Tmin = 0.315, Tmax = 0.702

73643 measured reflections 11612 independent reflections 9300 reflections with I > 2σ(I)

Rint = 0.057

θmax = 25.0°, θmin = 4.1°

h = −11→11

k = −50→51

l = −18→18

Refinement

Refinement on F

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.026

wR(F2) = 0.034

S = 0.97 9300 reflections 793 parameters 3 restraints

0 constraints

H-atom parameters constrained

Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + 0.0001|Fo|2]

(Δ/σ)max = 0.013 Δρmax = 1.63 e Å−3 Δρmin = −1.07 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

(4)

Ir21 0.16583 (3) 0.073514 (6) 0.43368 (2) 0.02867 (8) Ir22 0.07724 (3) 0.081953 (6) 0.25896 (2) 0.02622 (7) Mo11 0.51536 (6) 0.14479 (1) −0.03588 (4) 0.0296 (2) Mo12 0.23688 (6) 0.21635 (1) −0.01414 (4) 0.0287 (2) Mo21 0.35570 (6) 0.06355 (1) 0.32921 (4) 0.0308 (2) Mo22 0.07957 (6) 0.13292 (1) 0.37072 (4) 0.0265 (2)

Cl1 0.766 (1) 0.0314 (1) −0.0081 (4) 0.136 (3) 0.500 Cl2 0.764 (1) −0.0305 (2) 0.0416 (8) 0.208 (5) 0.500 S1 0.2648 (2) 0.13184 (4) 0.1416 (1) 0.0353 (5)

O101 0.2034 (7) 0.1692 (2) −0.3197 (3) 0.069 (2) O102 0.4863 (7) 0.2407 (2) −0.2392 (4) 0.076 (2) O103 0.7095 (5) 0.2229 (1) 0.1999 (3) 0.049 (2) O104 0.6931 (6) 0.2540 (1) −0.0577 (4) 0.054 (2) O105 0.6092 (6) 0.1603 (1) −0.2028 (3) 0.060 (2) O106 0.8047 (5) 0.1680 (1) 0.0680 (4) 0.050 (2) O107 0.1400 (6) 0.2438 (1) −0.2012 (3) 0.057 (2) O108 0.4195 (5) 0.2751 (1) 0.0386 (4) 0.064 (2) O201 0.2641 (6) 0.0674 (2) 0.6318 (3) 0.065 (2) O202 −0.0574 (6) 0.0251 (1) 0.4350 (4) 0.059 (2) O203 −0.0090 (5) 0.0912 (1) 0.0612 (3) 0.061 (2) O204 −0.1590 (6) 0.0351 (1) 0.2361 (4) 0.064 (2) O205 0.3381 (6) 0.0121 (1) 0.4630 (4) 0.056 (2) O206 0.1766 (6) 0.0203 (1) 0.1885 (4) 0.065 (2) O207 −0.0749 (6) 0.1047 (1) 0.5002 (3) 0.055 (2) O208 −0.1992 (5) 0.1196 (1) 0.2370 (3) 0.053 (2)

C01 0.872 (1) −0.0016 (3) 0.018 (1) 0.120 (9) 0.500 C101 0.2584 (8) 0.1768 (2) −0.2500 (5) 0.041 (2)

(5)

C123 −0.0102 (9) 0.0865 (2) −0.2505 (5) 0.053 (2) C124 0.0168 (8) 0.1035 (2) −0.1636 (5) 0.044 (2) C125 0.1196 (7) 0.1306 (2) −0.1558 (4) 0.035 (2) C126 0.1759 (7) 0.1416 (2) −0.0613 (4) 0.031 (2) C127 0.2945 (7) 0.1655 (2) −0.0479 (4) 0.029 (1) C128 0.3795 (7) 0.1739 (2) 0.0408 (4) 0.027 (2) C129 0.3695 (6) 0.1628 (2) 0.1261 (4) 0.026 (2) C130 0.4312 (7) 0.1745 (2) 0.2065 (4) 0.037 (2) C201 0.2334 (7) 0.0710 (2) 0.5579 (5) 0.039 (2) C202 0.0272 (8) 0.0430 (2) 0.4355 (5) 0.036 (2) C203 0.0291 (7) 0.0891 (2) 0.1357 (5) 0.036 (2) C204 −0.0723 (8) 0.0527 (2) 0.2442 (5) 0.041 (2) C205 0.3213 (8) 0.0342 (2) 0.4189 (5) 0.039 (2) C206 0.2177 (8) 0.0400 (2) 0.2377 (5) 0.044 (2) C207 −0.0001 (7) 0.1088 (2) 0.4542 (5) 0.035 (2) C208 −0.0833 (7) 0.1183 (2) 0.2787 (4) 0.034 (2) C209 0.5749 (8) 0.0407 (2) 0.3802 (5) 0.050 (2) C210 0.5960 (8) 0.0721 (2) 0.3674 (6) 0.053 (2) C211 0.5461 (8) 0.0784 (2) 0.2784 (6) 0.050 (2) C212 0.4919 (8) 0.0509 (2) 0.2347 (5) 0.050 (2) C213 0.5109 (8) 0.0268 (2) 0.2987 (6) 0.050 (2) C214 0.487 (1) −0.0060 (2) 0.2840 (8) 0.085 (4) C215 −0.0153 (9) 0.1799 (2) 0.3163 (5) 0.049 (2) C216 0.129 (1) 0.1845 (2) 0.3511 (7) 0.063 (2) C217 0.1605 (9) 0.1795 (2) 0.4402 (7) 0.063 (3) C218 0.0350 (8) 0.1715 (2) 0.4626 (5) 0.043 (2) C219 −0.0749 (8) 0.1720 (2) 0.3847 (5) 0.036 (2) C220 −0.2247 (8) 0.1685 (2) 0.3810 (6) 0.054 (2) C221 0.818 (1) 0.2029 (2) 0.6421 (6) 0.075 (3) C222 0.7942 (8) 0.1683 (2) 0.6434 (5) 0.049 (2) C223 0.6476 (7) 0.1582 (2) 0.5958 (4) 0.041 (2) C224 0.6337 (7) 0.1240 (2) 0.5897 (4) 0.041 (2) C225 0.4865 (7) 0.1114 (2) 0.5484 (4) 0.040 (2) C226 0.4248 (7) 0.1247 (2) 0.4581 (4) 0.030 (2) C227 0.2975 (6) 0.1078 (2) 0.4004 (4) 0.027 (1) C228 0.2498 (6) 0.1125 (1) 0.3066 (4) 0.025 (1) C229 0.3098 (6) 0.1348 (2) 0.2548 (4) 0.027 (2) C230 0.3992 (7) 0.1587 (2) 0.2776 (4) 0.039 (2)

H01a 0.9067 −0.0076 −0.0307 0.145* 0.500 H01b 0.9476 0.0022 0.0671 0.145* 0.500 H109 0.3417 0.0892 −0.0868 0.064*

(6)
(7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)

C118 0.031 (4) 0.038 (4) 0.043 (4) −0.002 (3) 0.019 (3) 0.003 (3) C119 0.026 (4) 0.051 (4) 0.042 (3) −0.000 (3) 0.015 (3) −0.000 (3) C120 0.036 (5) 0.080 (7) 0.045 (5) −0.012 (4) 0.004 (3) −0.003 (4) C121 0.22 (2) 0.080 (9) 0.083 (8) −0.07 (1) 0.05 (1) −0.040 (6) C122 0.075 (7) 0.065 (7) 0.075 (6) −0.029 (5) 0.012 (6) −0.019 (5) C123 0.064 (6) 0.052 (5) 0.040 (4) −0.006 (4) 0.008 (4) −0.011 (4) C124 0.049 (5) 0.048 (5) 0.038 (4) −0.014 (3) 0.014 (4) −0.006 (3) C125 0.039 (4) 0.041 (4) 0.024 (3) −0.003 (3) 0.006 (3) −0.003 (3) C126 0.033 (4) 0.036 (4) 0.023 (3) −0.003 (3) 0.004 (3) −0.003 (3) C127 0.031 (2) 0.030 (2) 0.025 (3) 0.001 (2) 0.004 (2) 0.003 (2) C128 0.030 (3) 0.028 (3) 0.024 (2) 0.003 (2) 0.009 (2) 0.003 (2) C129 0.026 (3) 0.027 (4) 0.026 (2) 0.001 (2) 0.006 (3) 0.004 (3) C130 0.036 (4) 0.046 (5) 0.026 (3) −0.011 (4) 0.004 (3) 0.002 (3) C201 0.032 (4) 0.053 (5) 0.031 (2) −0.004 (4) 0.007 (3) 0.011 (4) C202 0.041 (4) 0.037 (4) 0.032 (4) 0.005 (2) 0.013 (3) 0.015 (3) C203 0.030 (4) 0.045 (5) 0.030 (2) −0.006 (3) 0.001 (3) −0.000 (3) C204 0.049 (4) 0.034 (4) 0.040 (4) −0.010 (3) 0.009 (4) −0.004 (4) C205 0.040 (4) 0.042 (4) 0.040 (4) 0.009 (4) 0.015 (3) 0.013 (3) C206 0.041 (4) 0.044 (5) 0.044 (5) 0.010 (3) 0.005 (3) −0.003 (3) C207 0.035 (4) 0.031 (4) 0.038 (4) 0.006 (3) 0.006 (3) 0.009 (3) C208 0.029 (3) 0.044 (4) 0.029 (4) 0.003 (3) 0.008 (2) −0.006 (3) C209 0.029 (4) 0.065 (4) 0.056 (4) 0.017 (4) 0.012 (4) 0.024 (4) C210 0.035 (4) 0.061 (4) 0.067 (4) 0.001 (4) 0.018 (4) 0.002 (5) C211 0.033 (4) 0.052 (5) 0.071 (4) 0.008 (4) 0.026 (4) 0.021 (4) C212 0.043 (5) 0.060 (5) 0.055 (5) 0.015 (4) 0.023 (4) 0.008 (3) C213 0.043 (5) 0.043 (4) 0.068 (4) 0.011 (4) 0.023 (4) 0.002 (3) C214 0.097 (8) 0.046 (4) 0.120 (9) 0.016 (6) 0.043 (7) −0.014 (6) C215 0.074 (4) 0.037 (5) 0.043 (5) 0.020 (4) 0.025 (4) 0.017 (4) C216 0.072 (4) 0.024 (4) 0.113 (6) −0.001 (4) 0.061 (5) −0.001 (5) C217 0.040 (5) 0.042 (5) 0.106 (5) −0.012 (4) 0.015 (5) −0.036 (5) C218 0.048 (4) 0.040 (5) 0.036 (4) 0.006 (4) 0.003 (3) −0.018 (4) C219 0.044 (3) 0.024 (4) 0.040 (3) 0.011 (3) 0.007 (2) −0.004 (3) C220 0.044 (4) 0.053 (6) 0.062 (5) 0.011 (4) 0.009 (4) −0.008 (4) C221 0.078 (7) 0.064 (5) 0.070 (7) −0.014 (6) −0.006 (6) −0.006 (5) C222 0.042 (4) 0.066 (5) 0.037 (4) −0.010 (4) 0.007 (3) 0.001 (4) C223 0.039 (4) 0.061 (4) 0.016 (3) 0.001 (4) −0.005 (3) 0.001 (3) C224 0.031 (3) 0.061 (4) 0.025 (4) −0.001 (4) −0.004 (3) 0.010 (4) C225 0.033 (4) 0.057 (5) 0.028 (3) −0.006 (3) 0.002 (3) 0.007 (3) C226 0.027 (3) 0.038 (4) 0.025 (3) −0.006 (3) 0.005 (3) −0.001 (3) C227 0.026 (2) 0.030 (3) 0.024 (3) 0.001 (2) 0.003 (2) 0.005 (2) C228 0.026 (3) 0.026 (3) 0.023 (3) −0.000 (2) 0.005 (2) 0.003 (2) C229 0.026 (3) 0.033 (4) 0.021 (2) 0.004 (2) 0.006 (3) 0.006 (3) C230 0.041 (4) 0.046 (5) 0.026 (4) −0.017 (3) 0.002 (3) 0.005 (3)

Geometric parameters (Å, º)

(9)
(10)

O101—C101 1.145 (8) C216—C217 1.38 (1) O102—C102 1.133 (9) C216—H216 0.95 O103—C103 1.148 (8) C217—C218 1.42 (1) O104—C104 1.142 (8) C217—H217 0.95 O105—C105 1.159 (8) C218—C219 1.42 (1) O106—C106 1.166 (8) C218—H218 0.95 O107—C107 1.176 (8) C219—C220 1.48 (1) O108—C108 1.179 (8) C220—H220b 0.95 O201—C201 1.138 (8) C220—H220c 0.95 O202—C202 1.138 (8) C220—H220a 0.95 O203—C203 1.144 (8) C221—C222 1.51 (1) O204—C204 1.130 (8) C221—H221a 0.95 O205—C205 1.170 (8) C221—H221c 0.95 O206—C206 1.154 (9) C221—H221b 0.95 O207—C207 1.174 (8) C222—C223 1.52 (1) O208—C208 1.172 (7) C222—H222b 0.95 C01—H01a 0.95 C222—H222a 0.95 C01—H01b 0.95 C223—C224 1.48 (1) C109—C110 1.39 (1) C223—H223b 0.95 C109—C113 1.38 (1) C223—H223a 0.95 C109—H109 0.95 C224—C225 1.538 (9) C110—C111 1.39 (1) C224—H224a 0.95 C110—H110 0.95 C224—H224b 0.95 C111—C112 1.42 (1) C225—C226 1.513 (9) C111—H111 0.95 C225—H225b 0.95 C112—C113 1.41 (1) C225—H225a 0.95 C112—H112 0.95 C226—C227 1.540 (9) C113—C114 1.50 (1) C226—H226a 0.95 C114—H114a 0.95 C226—H226b 0.95 C114—H114b 0.95 C227—C228 1.448 (8) C114—H114c 0.95 C228—C229 1.482 (9) C115—C116 1.40 (1) C229—C230 1.351 (9) C115—C119 1.43 (1) C230—H230 0.95 C115—H115 0.95

(11)
(12)

C105···C112 2.95 (1) Mo11···C106 1.982 (7) C105···C114 3.10 (1) Mo11···C105 1.987 (7) C105···C109 3.49 (1) Mo12···C107 1.983 (7) C106···C111 2.73 (1) Mo12···C108 1.989 (7)

(13)
(14)
(15)
(16)

Ir12—C106—O106 122.5 (6) Mo21—C227—Mo22 126.9 (3) Mo11—C106—O106 156.9 (6) Mo21—C227—C226 113.7 (4) Ir11—C107—Mo12 81.0 (3) Mo21—C227—C228 71.5 (4) Ir11—C107—O107 122.2 (6) Mo22—C227—C226 118.2 (4) Mo12—C107—O107 156.7 (6) Mo22—C227—C228 71.8 (3) Ir12—C108—Mo12 80.4 (3) C226—C227—C228 122.9 (6) Ir12—C108—O108 123.3 (5) Ir22—C228—Mo21 77.7 (2) Mo12—C108—O108 156.3 (6) Ir22—C228—Mo22 77.6 (2) C110—C109—C113 109.2 (7) Ir22—C228—C227 107.4 (4) C110—C109—H109 125.4 Ir22—C228—C229 127.1 (4) C113—C109—H109 125.4 Mo21—C228—Mo22 128.0 (3) C109—C110—C111 108.3 (7) Mo21—C228—C227 72.7 (4) C109—C110—H110 125.8 Mo21—C228—C229 116.2 (4) C111—C110—H110 125.8 Mo22—C228—C227 72.4 (4) C110—C111—C112 107.4 (7) Mo22—C228—C229 115.2 (4) C110—C111—H111 126.3 C227—C228—C229 125.5 (6) C112—C111—H111 126.3 S1—C229—C228 119.2 (5) C111—C112—C113 107.3 (7) S1—C229—C230 108.1 (5) C111—C112—H112 126.4 C228—C229—C230 132.7 (6) C113—C112—H112 126.4 C130—C230—C229 114.9 (6) C109—C113—C112 107.7 (7) C130—C230—H230 122.6 C109—C113—C114 125.8 (9) C229—C230—H230 122.6 C112—C113—C114 126.2 (9)

References

Related documents

Because de facto states can’t win independence struggle against thier parent state without an external support, their patron states’ involvement would become inevitable. Such

nology (Chatterjee et al., 2017) and domain in- formation (Kobus et al., 2016). In this work, we designed a data preparation strategy for domain- specific translation systems to

In the present study, for the frontal (10° proclined view); Only 6.7% of orthodontists reported different perception for upper incisor inclination with different

To explain the patterns seen in the data (see Figure 4(b) and Table 1)—a high persecution probability overall, but a lower persecution probability in high-mortality towns (and close

Using parallel data from Europarl (Koehn, 2005) we apply our method to build taggers for the same eight target languages as Das and Petrov (2011) — Danish, Dutch, German,

We extend the S PARSE LDA (Yao et al., 2009) inference scheme for latent Dirichlet allocation (LDA) to tree-based topic models.. This sampling scheme computes the exact

We employ the post- ordering framework proposed by (Sudoh et al., 2011b) for Japanese to English transla- tion and improve upon the reordering method. The existing post-ordering

Given the sentence selected as relevant and its predicate labeling, the output layer of the network can now explicitly learn the correlations between textual information, and