• No results found

1,3 Di tert butyl 6 (tri­methyl­silyl­ethynyl)­fulvene

N/A
N/A
Protected

Academic year: 2020

Share "1,3 Di tert butyl 6 (tri­methyl­silyl­ethynyl)­fulvene"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o710

Harald Bergeret al. C

19H30Si doi:10.1107/S1600536805004745 Acta Cryst.(2005). E61, o710–o711 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

1,3-Di-

tert

-butyl-6-(trimethylsilylethynyl)fulvene

Harald Berger,aPeter

Bubenitschek,aHenning Hopfa and Peter G. Jonesb*

a

Institut fu¨r Organische Chemie, Technische Universita¨t Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, andb

Institut fu¨r Anorganische und Analytische Chemie, Tech-nische Universita¨t Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study

T= 143 K

Mean(C–C) = 0.003 A˚ Disorder in main residue

Rfactor = 0.051

wRfactor = 0.139

Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography

Printed in Great Britain – all rights reserved

In the title compound, C19H30Si, the double bonds are essentially localized. The central ring and its substituents, including the triple-bond system, are coplanar, with the Si atom lying 0.148 (2) A˚ out of the plane. The packing involves herring-bone layers parallel to theabplane.

Comment

In our studies of the preparation and thermal behaviour of hydrocarbons containing a linearly conjugated 1,3-hexadien-5-yne subsystem, we were interested in 6-ethynylfulvene and its derivatives, because these compounds could, in principle, open up a new route to substituted pentalenes (for a summary of our work in this area, see Hopf, 2002). The title bis-tert-butyl derivative, (3), is one of these precursors; it can be prepared readily and in excellent yield by a Sonogashira-type coupling between the 6-chlorofulvene (1) and trimethylsilylethyne, (2). We report here the structure of (3) as determined by single-crystal X-ray diffractometry. Its spectroscopic and analytical data will be reported in the forthcoming PhD dissertation of H. Berger (Berger, 2005).

The molecule is shown in Fig. 1. Molecular dimensions (Table 1) may be regarded as normal, e.g. bond lengths corresponding to essentially localized multiple bonds. Atoms C1—C9 and C13 are coplanar (r.m.s. deviation 0.0173 A˚ ), with the Si atom lying 0.148 (2) A˚ out of the plane thus defined.

The packing (Fig. 2) involves herring-bone layers of mol-ecules parallel to the ab plane at z ’ 1

4. Within the layers, molecules are related by the 21screw axis; a second layer atz

’3

4is generated by inversion (and the glide plane).

We have recently published the structure of another tri-methylsilylethynyl-substituted hydrocarbon (Berger et al., 2004).

Experimental

Details of the synthesis of the title compound are given in Berger (2005). Single crystals were obtained by slow evaporation of an acetone solution.

(2)

Crystal data

C19H30Si

Mr= 286.52

Monoclinic,P21=n

a= 9.966 (2) A˚

b= 12.079 (2) A˚

c= 16.345 (2) A˚ = 92.42 (2) V= 1965.8 (6) A˚3

Z= 4

Dx= 0.968 Mg m 3 MoKradiation Cell parameters from 60

reflections = 10–11.5

= 0.11 mm1

T= 143 (2) K Prism, red 0.60.30.3 mm

Data collection

Stoe Stadi-4 diffractometer !–scans

Absorption correction: none 3599 measured reflections 3395 independent reflections 2628 reflections withI> 2(I)

Rint= 0.030

max= 25.0

h=11!0

k=14!0

l=19!19 3 standard reflections

frequency: 60 min intensity decay: none

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.051

wR(F2) = 0.139

S= 1.03 3395 reflections 209 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0653P)2

+ 0.5585P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.002

max= 0.15 e A˚

3

min=0.23 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

C1—C2 1.345 (3) C1—C5 1.488 (2) C2—C3 1.474 (3) C3—C4 1.342 (2)

C4—C5 1.452 (3) C5—C6 1.348 (2) C6—C7 1.424 (3) C7—C8 1.205 (3)

C8—C7—C6 175.6 (2) C7—C8—Si 177.9 (2)

The trimethylsilyl group is disordered over two positions with a common silicon site and relative occupancy 0.54:0.46 (2). An exten-sive system of restraints was used to improve stability of the refine-ment; the finalSHELXLinstruction file is included in the archived CIF in the supplementary material. All methyl H atoms were posi-tioned geometrically at ideally staggered positions and refined using a riding model, with C—H = 0.98 A˚ and H—C—H 109.5, andU

iso(H)

= 1.2Ueq(C).

Data collection:DIF4(Stoe & Cie, 1992); cell refinement:DIF4; data reduction:REDU4(Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97(Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

We thank Mr A. Weinkauf for technical assistance.

References

Berger, H. (2005). PhD dissertation, Technical University of Braunschweig, Germany. In preparation.

Berger, H., Bubenitschek, P., Hopf, H. & Jones, P. G. (2004).Acta Cryst.E60, o2209–o2210.

Hopf, H. (2002).Modern Arene Chemistry, edited by D. Astruc, pp. 169–195. New York: Wiley-VCH.

Sheldrick, G. M. (1990).Acta Cryst.A46, 467–473.

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany. Siemens (1994).XP.Version 5.03. Siemens Analytical X-ray Instruments Inc.,

Madison, Wisconsin, USA.

Stoe & Cie (1992).DIF4andREDU4. Stoe & Cie, Darmstadt, Germany.

Figure 1

[image:2.610.313.565.331.529.2]

The molecule of the title compound. The second disorder site of the trimethylsilyl group has been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. H atom radii are arbitrary.

Figure 2

Packing diagram of the title compound, showing a view of the layer atz’

1

4. Radii are arbitrary, and the H atoms and second disorder component

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, o710–o711

supporting information

Acta Cryst. (2005). E61, o710–o711 [https://doi.org/10.1107/S1600536805004745]

1,3-Di-

tert

-butyl-6-(trimethylsilylethynyl)fulvene

Harald Berger, Peter Bubenitschek, Henning Hopf and Peter G. Jones

1,3-Di-tert-butyl-6-(trimethylsilylethynyl)fulvene

Crystal data C19H30Si Mr = 286.52

Monoclinic, P21/n a = 9.966 (2) Å b = 12.079 (2) Å c = 16.345 (2) Å β = 92.42 (2)° V = 1965.8 (6) Å3 Z = 4

F(000) = 632 Dx = 0.968 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 60 reflections θ = 10–11.5°

µ = 0.11 mm−1 T = 143 K Prism, red

0.6 × 0.3 × 0.3 mm

Data collection Stoe STADI-4

diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ωθ scans

3599 measured reflections 3395 independent reflections 2628 reflections with I > 2σ(I)

Rint = 0.030

θmax = 25.0°, θmin = 3.0° h = −11→0

k = −14→0 l = −19→19

3 standard reflections every 60 min intensity decay: none

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.051 wR(F2) = 0.139 S = 1.03 3395 reflections 209 parameters 205 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0653P)2 + 0.5585P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.002 Δρmax = 0.15 e Å−3 Δρmin = −0.23 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Final RES file:

TITL nudel in P2(1)/n CELL 0.71073 9.966 12.079 16.345 90.00 92.42 90.00 ZERR 4.00 0.002 0.002 0.002 0.00 0.02 0.00 SYMM. 5-X,. 5+Y,. 5-Z SFAC C H SI UNIT 76 120 4 TEMP -130 SIZE. 6. 3. 3 L·S. 6 FMAP 2 PLAN 5 DELU SIMU ACTA 50 CONF BOND $H SIMU 0.02 0.04 0.7 MPLA c1 c2 c3 c4 c5 c6 c7 c8 c9 c13 10 si WGHT 0.065300 0.558500 FVAR 0.23727 0.54245 C1 1 0.739234 0.148162 0.191553 11.00000 0.03048 0.03042 = 0.03908 0.00031 0.00018 0.00075 C2 1 0.799096 0.114270 0.262505 11.00000 0.03496 0.03652 = 0.04319 0.00140 - 0.00225 0.00880 AFIX 43 H2 2 0.871509 0.063144 0.266537 11.00000 - 1.20000 AFIX 0 C3 1 0.737601 0.166865 0.333176 11.00000 0.03719 0.03336 = 0.03587 - 0.00123 - 0.00544 - 0.00021 C4 1 0.639279 0.233493 0.303558 11.00000 0.03320 0.03074 = 0.03705 - 0.00365 - 0.00082 0.00148 AFIX 43 H4 2 0.582954 0.277907 0.335626 11.00000 - 1.20000 AFIX 0 C5 1 0.632602 0.226966 0.214783 11.00000 0.03020 0.02840 = 0.03784 0.00151 - 0.00224 - 0.00040 C6 1 0.545170 0.281544 0.164217 11.00000 0.03586 0.03959 = 0.03622 0.00141 - 0.00100 0.00352 AFIX 43 H6 2 0.551933 0.270181 0.107027 11.00000 - 1.20000 AFIX 0 C7 1 0.443450 0.354925 0.189968 11.00000 0.03537 0.04356 = 0.03727 0.00397 - 0.00651 0.00337 C8 1 0.353390 0.416450 0.206619 11.00000 0.03791 0.05367 = 0.04218 0.00481 - 0.00265 0.01035 C9 1 0.769968 0.111363 0.105808 11.00000 0.04252 0.03926 = 0.03833 0.00077 0.00614 0.00656 C10 1 0.887635 0.030580 0.109572 11.00000 0.07656 0.07201 = 0.05696 - 0.00038 0.01686 0.03582 AFIX 33 H10A 2 0.907313 0.006863

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, o710–o711

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

C1 0.73923 (18) 0.14816 (15) 0.19155 (11) 0.0334 (4) C2 0.79910 (19) 0.11427 (16) 0.26251 (12) 0.0383 (5)

H2 0.8715 0.0631 0.2665 0.046*

C3 0.73760 (19) 0.16686 (15) 0.33318 (11) 0.0357 (4) C4 0.63928 (18) 0.23349 (15) 0.30356 (11) 0.0337 (4)

H4 0.5830 0.2779 0.3356 0.040*

C5 0.63260 (17) 0.22697 (14) 0.21478 (11) 0.0323 (4) C6 0.54517 (19) 0.28154 (16) 0.16422 (12) 0.0373 (4)

H6 0.5519 0.2702 0.1070 0.045*

C7 0.44345 (19) 0.35492 (17) 0.18997 (12) 0.0390 (5) C8 0.3534 (2) 0.41645 (18) 0.20662 (12) 0.0447 (5) C9 0.7700 (2) 0.11136 (16) 0.10581 (12) 0.0399 (5) C10 0.8876 (3) 0.0306 (2) 0.10957 (16) 0.0681 (8)

H10A 0.9073 0.0069 0.0540 0.082*

H10B 0.8644 −0.0341 0.1423 0.082*

H10C 0.9668 0.0671 0.1349 0.082*

C11 0.6484 (2) 0.0506 (2) 0.06618 (15) 0.0595 (6)

H11A 0.6694 0.0271 0.0108 0.071*

H11B 0.5708 0.1004 0.0634 0.071*

H11C 0.6276 −0.0145 0.0991 0.071*

C12 0.8091 (2) 0.20936 (19) 0.05192 (14) 0.0533 (6)

H12A 0.8282 0.1825 −0.0029 0.064*

H12B 0.8892 0.2456 0.0763 0.064*

H12C 0.7348 0.2625 0.0480 0.064*

C13 0.7827 (2) 0.14445 (18) 0.42072 (12) 0.0463 (5) C14 0.9321 (3) 0.1718 (3) 0.43167 (18) 0.0923 (11)

H14A 0.9625 0.1575 0.4885 0.111*

H14B 0.9465 0.2500 0.4187 0.111*

H14C 0.9832 0.1255 0.3949 0.111*

C15 0.7635 (3) 0.0215 (2) 0.43883 (16) 0.0772 (9)

H15A 0.7926 0.0061 0.4957 0.093*

H15B 0.8172 −0.0226 0.4019 0.093*

H15C 0.6684 0.0021 0.4304 0.093*

C16 0.7044 (3) 0.2128 (2) 0.48019 (14) 0.0673 (7)

H16A 0.7364 0.1961 0.5364 0.081*

H16B 0.6087 0.1948 0.4736 0.081*

H16C 0.7176 0.2917 0.4690 0.081*

Si 0.21139 (6) 0.50623 (6) 0.23129 (4) 0.0498 (2)

C17 0.2083 (10) 0.5153 (15) 0.3417 (4) 0.095 (3) 0.542 (19)

H17D 0.1336 0.5628 0.3569 0.114* 0.542 (19)

H17E 0.2931 0.5470 0.3634 0.114* 0.542 (19)

H17F 0.1966 0.4412 0.3646 0.114* 0.542 (19)

C18 0.0579 (10) 0.4378 (10) 0.1904 (8) 0.093 (3) 0.542 (19)

H18D 0.0605 0.4327 0.1307 0.112* 0.542 (19)

(6)

H18F 0.0522 0.3632 0.2136 0.112* 0.542 (19) C19 0.2382 (14) 0.6380 (7) 0.1792 (8) 0.093 (4) 0.542 (19)

H19D 0.2382 0.6256 0.1200 0.111* 0.542 (19)

H19E 0.3247 0.6693 0.1981 0.111* 0.542 (19)

H19F 0.1659 0.6895 0.1917 0.111* 0.542 (19)

C17A 0.2444 (12) 0.5730 (13) 0.3330 (6) 0.078 (3) 0.458 (19)

H17A 0.2555 0.5158 0.3753 0.094* 0.458 (19)

H17B 0.1686 0.6209 0.3456 0.094* 0.458 (19)

H17C 0.3265 0.6175 0.3317 0.094* 0.458 (19)

C18A 0.0574 (12) 0.4236 (12) 0.2357 (13) 0.103 (4) 0.458 (19)

H18A 0.0687 0.3675 0.2788 0.124* 0.458 (19)

H18B 0.0393 0.3871 0.1829 0.124* 0.458 (19)

H18C −0.0181 0.4721 0.2479 0.124* 0.458 (19)

C19A 0.1896 (19) 0.6146 (14) 0.1534 (9) 0.116 (6) 0.458 (19)

H19A 0.2724 0.6580 0.1511 0.139* 0.458 (19)

H19B 0.1153 0.6633 0.1675 0.139* 0.458 (19)

H19C 0.1693 0.5805 0.0999 0.139* 0.458 (19)

Atomic displacement parameters (Å2)

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, o710–o711

Geometric parameters (Å, º)

C1—C2 1.345 (3) C14—H14C 0.9800

C1—C5 1.488 (2) C15—H15A 0.9800

C1—C9 1.514 (3) C15—H15B 0.9800

C2—C3 1.474 (3) C15—H15C 0.9800

C2—H2 0.9500 C16—H16A 0.9800

C3—C4 1.342 (2) C16—H16B 0.9800

C3—C13 1.506 (3) C16—H16C 0.9800

C4—C5 1.452 (3) Si—C17 1.810 (7)

C4—H4 0.9500 Si—C19 1.829 (8)

C5—C6 1.348 (2) Si—C19A 1.833 (9)

C6—C7 1.424 (3) Si—C18A 1.835 (9)

C6—H6 0.9500 Si—C18 1.839 (7)

C7—C8 1.205 (3) Si—C17A 1.865 (8)

C8—Si 1.841 (2) C17—H17D 0.9800

C9—C10 1.525 (3) C17—H17E 0.9800

C9—C12 1.536 (3) C17—H17F 0.9800

C9—C11 1.536 (3) C18—H18D 0.9800

C10—H10A 0.9800 C18—H18E 0.9800

C10—H10B 0.9800 C18—H18F 0.9800

C10—H10C 0.9800 C19—H19D 0.9800

C11—H11A 0.9800 C19—H19E 0.9800

C11—H11B 0.9800 C19—H19F 0.9800

C11—H11C 0.9800 C17A—H17A 0.9800

C12—H12A 0.9800 C17A—H17B 0.9800

C12—H12B 0.9800 C17A—H17C 0.9800

C12—H12C 0.9800 C18A—H18A 0.9800

C13—C16 1.516 (3) C18A—H18B 0.9800

C13—C14 1.528 (3) C18A—H18C 0.9800

C13—C15 1.528 (3) C19A—H19A 0.9800

C14—H14A 0.9800 C19A—H19B 0.9800

C14—H14B 0.9800 C19A—H19C 0.9800

C2—C1—C5 105.68 (16) H15A—C15—H15B 109.5

C2—C1—C9 127.52 (17) C13—C15—H15C 109.5

C5—C1—C9 126.78 (16) H15A—C15—H15C 109.5

C1—C2—C3 111.13 (16) H15B—C15—H15C 109.5

C1—C2—H2 124.4 C13—C16—H16A 109.5

C3—C2—H2 124.4 C13—C16—H16B 109.5

C4—C3—C2 107.28 (16) H16A—C16—H16B 109.5

C4—C3—C13 129.38 (18) C13—C16—H16C 109.5

C2—C3—C13 123.34 (17) H16A—C16—H16C 109.5

C3—C4—C5 109.26 (17) H16B—C16—H16C 109.5

C3—C4—H4 125.4 C17—Si—C19 114.8 (5)

C5—C4—H4 125.4 C19A—Si—C18A 109.9 (6)

C6—C5—C4 125.98 (17) C17—Si—C18 109.9 (4)

(8)

C4—C5—C1 106.66 (15) C17—Si—C8 107.4 (4)

C5—C6—C7 124.98 (18) C19—Si—C8 106.4 (4)

C5—C6—H6 117.5 C19A—Si—C8 109.8 (5)

C7—C6—H6 117.5 C18A—Si—C8 109.9 (5)

C8—C7—C6 175.6 (2) C18—Si—C8 106.9 (4)

C7—C8—Si 177.9 (2) C19A—Si—C17A 108.8 (6)

C1—C9—C10 109.63 (17) C18A—Si—C17A 108.4 (5) C1—C9—C12 111.77 (16) C8—Si—C17A 110.0 (3)

C10—C9—C12 107.64 (19) Si—C17—H17D 109.5

C1—C9—C11 110.12 (17) Si—C17—H17E 109.5

C10—C9—C11 107.62 (19) H17D—C17—H17E 109.5

C12—C9—C11 109.94 (18) Si—C17—H17F 109.5

C9—C10—H10A 109.5 H17D—C17—H17F 109.5

C9—C10—H10B 109.5 H17E—C17—H17F 109.5

H10A—C10—H10B 109.5 Si—C18—H18D 109.5

C9—C10—H10C 109.5 Si—C18—H18E 109.5

H10A—C10—H10C 109.5 H18D—C18—H18E 109.5

H10B—C10—H10C 109.5 Si—C18—H18F 109.5

C9—C11—H11A 109.5 H18D—C18—H18F 109.5

C9—C11—H11B 109.5 H18E—C18—H18F 109.5

H11A—C11—H11B 109.5 Si—C19—H19D 109.5

C9—C11—H11C 109.5 Si—C19—H19E 109.5

H11A—C11—H11C 109.5 H19D—C19—H19E 109.5

H11B—C11—H11C 109.5 Si—C19—H19F 109.5

C9—C12—H12A 109.5 H19D—C19—H19F 109.5

C9—C12—H12B 109.5 H19E—C19—H19F 109.5

H12A—C12—H12B 109.5 Si—C17A—H17A 109.5

C9—C12—H12C 109.5 Si—C17A—H17B 109.5

H12A—C12—H12C 109.5 H17A—C17A—H17B 109.5

H12B—C12—H12C 109.5 Si—C17A—H17C 109.5

C3—C13—C16 111.72 (17) H17A—C17A—H17C 109.5 C3—C13—C14 108.8 (2) H17B—C17A—H17C 109.5

C16—C13—C14 109.4 (2) Si—C18A—H18A 109.5

C3—C13—C15 108.90 (18) Si—C18A—H18B 109.5 C16—C13—C15 109.5 (2) H18A—C18A—H18B 109.5

C14—C13—C15 108.5 (2) Si—C18A—H18C 109.5

C13—C14—H14A 109.5 H18A—C18A—H18C 109.5

C13—C14—H14B 109.5 H18B—C18A—H18C 109.5

H14A—C14—H14B 109.5 Si—C19A—H19A 109.5

C13—C14—H14C 109.5 Si—C19A—H19B 109.5

H14A—C14—H14C 109.5 H19A—C19A—H19B 109.5

H14B—C14—H14C 109.5 Si—C19A—H19C 109.5

C13—C15—H15A 109.5 H19A—C19A—H19C 109.5

C13—C15—H15B 109.5 H19B—C19A—H19C 109.5

(9)

supporting information

sup-7 Acta Cryst. (2005). E61, o710–o711

Figure

Figure 2

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical