• No results found

3 Ammonio 4 meth­oxy­benzene­sulfonate

N/A
N/A
Protected

Academic year: 2020

Share "3 Ammonio 4 meth­oxy­benzene­sulfonate"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o539–o540 doi:10.1107/S160053680500293X Gao, Huo and Ng C

7H9NO4S

o539

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Ammonio-4-methoxybenzenesulfonate

Shan Gao,aLi-Hua Huoaand Seik Weng Ngb*

a

College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People’s Republic of China, andbDepartment of

Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: [email protected]

Key indicators

Single-crystal X-ray study T= 295 K

Mean(C–C) = 0.002 A˚ Rfactor = 0.028 wRfactor = 0.084

Data-to-parameter ratio = 11.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

3–Amino-4-methoxybenzenesulfonic acid exists in the solid state in the zwitterionic form as 3-ammonio-4-methoxy-benzenesulfonate, C7H9NO4S. The zwitterions are linked by

the ammonium H atoms into a layer structure.

Comment

3-Amino-4-hydroxybezenesulfonic acid, like a number of arenesulfonic acids, adopts a layer structure in which the aromatic rings stack into sheets; the sulfonate groups are located on the top and bottom of the layers (Gunderman & Squattrito, 1996). The title compound, (I), which has a methoxy substituent in place of the hydroxy substituent, also adopts a layer structure in which the zwitterions are linked to each other by hydrogen bonds (Fig. 1). The ammonium unit serves as the donor site for three hydrogen bonds; however, two of the three sulfonate O atoms are engaged in hydrogen bonding (Table 2). The negative charge appears to be de-localized over only two of the three O atoms, as the O atom that is not engaged in the interactions is nearest to the S atom.

Experimental

The title compound was recovered unchanged in an unsuccessful reaction with calcium nitrate hexahydrate. The calcium salt (0.82 g, 3 mmol) was mixed with methoxybenzenesulfonic acid (1.22 g, 6 mmol) in water. Colorless prismatic crystals separated from the solution after several days. Analysis calculated for C7H9NO4S:

C 41.37, H 4.46, N 6.89%; found C 41.33, H 4.48, N 6.87%.

Crystal data

C7H9NO4S

Mr= 203.21

Triclinic,P1

a= 7.321 (2) A˚

b= 8.234 (2) A˚

c= 8.354 (2) A˚

= 62.05 (3) = 65.34 (3) = 74.04 (3)

V= 402.3 (1) A˚3

Z= 2

Dx= 1.678 Mg m

3

MoKradiation Cell parameters from 3869

reflections

= 3.1–27.5 = 0.38 mm1

T= 295 (2) K Prism, colorless 0.340.260.19 mm

(2)

Data collection

Rigaku R-AXIS RAPID diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.810,Tmax= 0.931

3979 measured reflections

1830 independent reflections 1713 reflections withI> 2(I)

Rint= 0.011 max= 27.5

h=9!8

k=10!10

l=10!10

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.028

wR(F2) = 0.084

S= 1.04 1830 reflections 154 parameters

All H-atom parameters refined

w= 1/[2(F

o2) + (0.053P)2

+ 0.1821P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.33 e A˚

3

min=0.38 e A˚3

Table 1

Selected geometric parameters (A˚ ,).

S1—O1 1.465 (1) S1—O2 1.464 (1) S1—O3 1.445 (1) S1—C1 1.771 (2)

O4—C4 1.354 (2) O4—C7 1.434 (2) N1—C3 1.457 (2) O1—S1—O2 111.1 (1)

O1—S1—O3 114.4 (1) O2—S1—O3 112.6 (1) C1—S1—O1 105.0 (1) C1—S1—O2 105.4 (1) C1—S1—O3 107.6 (1) C4—O4—C7 117.8 (1)

C2—C1—C6 120.4 (1) C2—C1—S1 120.0 (1) C6—C1—S1 119.5 (1) C2—C3—N1 120.4 (1) C4—C3—N1 117.9 (1) O4—C4—C5 125.9 (1) O4—C4—C3 115.1 (1)

Table 2

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

N1—H1n1 O1i 0.86 (1) 1.98 (1) 2.829 (2) 171 (2) N1—H1n2 O2ii

0.86 (1) 1.93 (1) 2.770 (2) 169 (2) N1—H1n3 O1iii

0.86 (1) 2.10 (1) 2.878 (2) 151 (2)

Symmetry codes: (i)x;1þy;z1; (ii)x;1y;1z; (iii) 1x;1y;1z.

All H atoms were refined with distance restraints of N—H = 0.85 (1) A˚ and C—H = 0.95 (1) A˚.

Data collection:RAPID-AUTO (Rigaku, 1998); cell refinement:

RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:ORTEPII(Johnson, 1976); software used to prepare material for publication:SHELXL97.

We thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054 G036) and the University of Malaya for supporting this study.

References

Gunderman, B. J. & Squattrito, P. J. (1996).Acta Cryst.C52, 940–942. Higashi, T. (1995).ABSCOR.Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Rigaku (1998).RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails

Drive, The Woodlands, TX 77381-5209, USA.

[image:2.610.311.567.72.220.2]

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, o539–o540

supporting information

Acta Cryst. (2005). E61, o539–o540 [https://doi.org/10.1107/S160053680500293X]

3-Ammonio-4-methoxybenzenesulfonate

Shan Gao, Li-Hua Huo and Seik Weng Ng

3-Ammonio-4-methoxybenzenesulfonate

Crystal data

C7H9NO4S Mr = 203.21

Triclinic, P1 Hall symbol: -P 1

a = 7.321 (2) Å

b = 8.234 (2) Å

c = 8.354 (2) Å

α = 62.05 (3)°

β = 65.34 (3)°

γ = 74.04 (3)°

V = 402.3 (1) Å3

Z = 2

F(000) = 212

Dx = 1.678 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3869 reflections

θ = 3.1–27.5°

µ = 0.38 mm−1 T = 295 K Prism, colorless 0.34 × 0.26 × 0.19 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin = 0.810, Tmax = 0.931

3979 measured reflections 1830 independent reflections 1713 reflections with I > 2σ(I)

Rint = 0.011

θmax = 27.5°, θmin = 3.1° h = −9→8

k = −10→10

l = −10→10

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.028 wR(F2) = 0.084 S = 1.04 1830 reflections 154 parameters 9 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

All H-atom parameters refined

w = 1/[σ2(F

o2) + (0.053P)2 + 0.1821P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.33 e Å−3

Δρmin = −0.38 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S1 0.20715 (5) 0.17966 (4) 0.70736 (4) 0.0182 (1)

(4)

O2 0.1115 (2) 0.0881 (1) 0.6530 (2) 0.0252 (2)

O3 0.0620 (2) 0.2766 (2) 0.8221 (2) 0.0293 (3)

O4 0.6393 (2) 0.7397 (1) −0.0404 (1) 0.0241 (2)

N1 0.3040 (2) 0.8525 (2) 0.1882 (2) 0.0201 (2)

C1 0.3461 (2) 0.3464 (2) 0.4875 (2) 0.0185 (3)

C2 0.2715 (2) 0.5314 (2) 0.4307 (2) 0.0185 (3)

C3 0.3757 (2) 0.6567 (2) 0.2520 (2) 0.0178 (3)

C4 0.5540 (2) 0.6018 (2) 0.1294 (2) 0.0186 (3)

C5 0.6265 (2) 0.4157 (2) 0.1873 (2) 0.0218 (3)

C6 0.5224 (2) 0.2889 (2) 0.3667 (2) 0.0220 (3)

C7 0.8295 (3) 0.6943 (2) −0.1674 (2) 0.0306 (3)

H1n1 0.313 (3) 0.904 (3) 0.069 (2) 0.042 (6)*

H1n2 0.179 (2) 0.872 (3) 0.249 (3) 0.034 (5)*

H1n3 0.370 (3) 0.910 (3) 0.206 (3) 0.033 (5)*

H2 0.152 (2) 0.574 (2) 0.510 (2) 0.029 (5)*

H5 0.744 (2) 0.373 (3) 0.106 (2) 0.033 (5)*

H6 0.575 (3) 0.163 (1) 0.404 (2) 0.027 (4)*

H71 0.936 (3) 0.651 (3) −0.117 (3) 0.052 (6)*

H72 0.853 (3) 0.800 (2) −0.286 (2) 0.051 (6)*

H73 0.828 (3) 0.597 (2) −0.198 (3) 0.046 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S1 0.0171 (2) 0.0166 (2) 0.0171 (2) −0.0018 (1) −0.0062 (1) −0.0035 (1) O1 0.0238 (5) 0.0233 (5) 0.0243 (5) −0.0021 (4) −0.0128 (4) −0.0007 (4) O2 0.0216 (5) 0.0266 (5) 0.0277 (5) −0.0069 (4) −0.0078 (4) −0.0093 (4) O3 0.0292 (6) 0.0277 (5) 0.0241 (5) −0.0007 (4) −0.0032 (4) −0.0113 (4) O4 0.0213 (5) 0.0215 (5) 0.0186 (5) −0.0020 (4) −0.0020 (4) −0.0038 (4) N1 0.0170 (6) 0.0163 (5) 0.0213 (6) −0.0017 (4) −0.0056 (5) −0.0039 (4) C1 0.0178 (6) 0.0174 (6) 0.0179 (6) −0.0033 (5) −0.0067 (5) −0.0040 (5) C2 0.0164 (6) 0.0194 (6) 0.0183 (6) −0.0014 (5) −0.0059 (5) −0.0065 (5) C3 0.0169 (6) 0.0151 (6) 0.0202 (6) −0.0009 (5) −0.0084 (5) −0.0049 (5) C4 0.0169 (6) 0.0204 (6) 0.0177 (6) −0.0030 (5) −0.0067 (5) −0.0057 (5) C5 0.0171 (6) 0.0227 (7) 0.0228 (7) 0.0003 (5) −0.0047 (5) −0.0101 (5) C6 0.0210 (7) 0.0167 (6) 0.0251 (7) 0.0003 (5) −0.0082 (5) −0.0069 (5) C7 0.0248 (7) 0.0343 (8) 0.0226 (7) −0.0032 (6) 0.0002 (6) −0.0107 (6)

Geometric parameters (Å, º)

S1—O1 1.465 (1) C4—C5 1.391 (2)

S1—O2 1.464 (1) C5—C6 1.391 (2)

S1—O3 1.445 (1) N1—H1n1 0.86 (1)

S1—C1 1.771 (2) N1—H1n2 0.86 (1)

O4—C4 1.354 (2) N1—H1n3 0.86 (1)

O4—C7 1.434 (2) C2—H2 0.95 (1)

N1—C3 1.457 (2) C5—H5 0.95 (1)

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, o539–o540

C1—C6 1.390 (2) C7—H71 0.95 (1)

C2—C3 1.384 (2) C7—H72 0.95 (1)

C3—C4 1.397 (2) C7—H73 0.95 (1)

O1—S1—O2 111.1 (1) C3—N1—H1n1 113 (2)

O1—S1—O3 114.4 (1) C3—N1—H1n2 112 (1)

O2—S1—O3 112.6 (1) H1n1—N1—H1n2 104 (2)

C1—S1—O1 105.0 (1) C3—N1—H1n3 110 (1)

C1—S1—O2 105.4 (1) H1n1—N1—H1n3 109 (2)

C1—S1—O3 107.6 (1) H1n2—N1—H1n3 108 (2)

C4—O4—C7 117.8 (1) C3—C2—H2 119 (1)

C2—C1—C6 120.4 (1) C1—C2—H2 122 (1)

C2—C1—S1 120.0 (1) C4—C5—H5 121 (1)

C6—C1—S1 119.5 (1) C6—C5—H5 119 (1)

C1—C2—C3 118.7 (1) C5—C6—H6 118 (1)

C2—C3—C4 121.7 (1) C1—C6—H6 121 (1)

C2—C3—N1 120.4 (1) O4—C7—H71 114 (2)

C4—C3—N1 117.9 (1) O4—C7—H72 106 (1)

O4—C4—C5 125.9 (1) H71—C7—H72 115 (2)

O4—C4—C3 115.1 (1) O4—C7—H73 114 (1)

C3—C4—C5 119.1 (1) H71—C7—H73 103 (2)

C4—C5—C6 119.5 (1) H72—C7—H73 105 (2)

C1—C6—C6 120.6 (1)

O3—S1—C1—C2 −17.6 (1) C7—O4—C4—C3 176.1 (1)

O2—S1—C1—C2 102.8 (1) C2—C3—C4—O4 −179.8 (1)

O1—S1—C1—C2 −139.8 (1) N1—C3—C4—O4 −1.3 (2)

O3—S1—C1—C6 166.9 (1) C2—C3—C4—C5 1.1 (2)

O2—S1—C1—C6 −72.7 (1) N1—C3—C4—C5 179.6 (1)

O1—S1—C1—C6 44.7 (1) O4—C4—C5—C6 −180.0 (1)

C6—C1—C2—C3 0.1 (2) C3—C4—C5—C6 −1.0 (2)

S1—C1—C2—C3 −175.3 (1) C4—C5—C6—C1 0.5 (2)

C1—C2—C3—C4 −0.7 (2) C2—C1—C6—C5 0.0 (2)

C1—C2—C3—N1 −179.1 (1) S1—C1—C6—C5 175.5 (1)

C7—O4—C4—C5 −4.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1n1···O1i 0.86 (1) 1.98 (1) 2.829 (2) 171 (2)

N1—H1n2···O2ii 0.86 (1) 1.93 (1) 2.770 (2) 169 (2)

N1—H1n3···O1iii 0.86 (1) 2.10 (1) 2.878 (2) 151 (2)

Figure

Figure 1ORTEPII (Johnson, 1976) plot of (I). Displacement ellipsoids are drawnat the 70% probability level and H atoms are drawn as spheres ofarbitrary radii.

References

Related documents

9a, which illustrates SGI time se- ries for all sites within each cluster, grouped in their respec- tive clusters and presented in the form of a heat map where low values of

The time taken for the selection of the active node and time required for the cluster head detection can be targeted to improve the total routing time as the dead node selection

Abstract - This paper presents a comprehensive review on study of modeling and simulation of permanent magnet synchronous generator based on wind energy conversion

A study on the impact of Natural Resources Endowment on Economic growth: Empirical evidence from Mali. Journal of Economics and Development

Under Regulation 21 (1) (c) you are required to: Maintain, and make available for inspection by the chief inspector, the additional records specified in Schedule 4 of the Health

based supply shock on the core inflation in India, where as food inflation and fuel inflation does. not seems to effect core inflation in the long

The reason for the above result is that an increase in the degree of privatization from full nationalization increases the public firm’s price since it leans to its own profit,

modifications in the value of the minimum legal salary and facilitates an estimate of its impact on the labour status of individuals (see Chart 1). As a