• No results found

1 (4,6 Di­methyl­pyrimidin 2 yl­sulfanyl) 3,3 di­methyl­butan 2 one

N/A
N/A
Protected

Academic year: 2020

Share "1 (4,6 Di­methyl­pyrimidin 2 yl­sulfanyl) 3,3 di­methyl­butan 2 one"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1180

Liang-Zhong Xuet al. C

12H18N2OS doi:10.1107/S1600536805009372 Acta Cryst.(2005). E61, o1180–o1181 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

1-(4,6-Dimethylpyrimidin-2-ylsulfanyl)-3,3-dimethyl-butan-2-one

Liang-Zhong Xu,a* Xi-Liu Ma,a Hai-Bin Song,bQi Zhuaand Ya-Xun Yanga

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China, andbState Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China

Correspondence e-mail: qknhs@163169.net

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.003 A˚ Disorder in main residue

Rfactor = 0.044

wRfactor = 0.122

Data-to-parameter ratio = 17.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title molecule, C12H18N2OS, all bond lengths and angles

are normal. The non-H atoms of the 4,6-dimethylpyrimidin-2-ylsulfanyl moiety are coplanar. In the crystal structure, the pyrimidine rings form stacks along the c axis with a short interplanar distance of 3.35 A˚ , indicating the presence of–

stacking interactions.

Comment

Pyrimidine compounds are highly efficient in the control of powdery mildew (Wang, 1995; Maureret al., 1990). As a result of their biological activity, these compounds are under inten-sive study. In a continuation of our search for new biologically active pyrimidine compounds, the title compound, (I), has been synthesized and its crystal structure is reported.

In (I) (Fig. 1), the bond lengths and angles in the 4,6-di-methylpyrimidin-2-ylsulfanyl moiety (Table 1) are in good agreement with those found in the literature (Jianet al., 2003). Atoms S1/N1/N2/C1–C6 are essentially coplanar, with a maximum displacement from the mean plane of 0.01 A˚ for C3. In the crystal structure, the pyrimidine rings form stacks along the c axis with a short interplanar distance of 3.35 A˚ , indi-cating the presence of–stacking interactions; these, along with van der Waals forces, stabilize the crystal packing (Fig. 2).

Experimental

A mixture of 1-bromo-3,3-dimethylbutan-2-one (1.79 g, 0.01 mol), 4,6-dimethyl-2-mercaptopyrimidine (1.4 g, 0.01 mol) and acetone (50 ml) was stirred for 1 h at room temperature. The solution was then filtered, concentrated and purified by recrystallization to afford the title compound (yield 2.05 g, 86%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethyl acetate at room temperature.

(2)

Crystal data

C12H18N2OS Mr= 238.34

Monoclinic,P21=c a= 8.8654 (15) A˚ b= 21.938 (4) A˚ c= 6.7526 (12) A˚

= 94.967 (2)

V= 1308.4 (4) A˚3 Z= 4

Dx= 1.210 Mg m 3 MoKradiation Cell parameters from 1167

reflections

= 2.3–19.5

= 0.23 mm1 T= 293 (2) K Block, colorless 0.260.240.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.931,Tmax= 0.955 7629 measured reflections

2565 independent reflections 1663 reflections withI> 2(I) Rint= 0.034

max= 26.0 h=9!10 k=27!24 l=8!7

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.044 wR(F2) = 0.122 S= 1.03 2565 reflections 148 parameters

H-atom parameters constrained w= 1/[2(F

o2) + 0.2819P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.20 e A˚

3

min=0.30 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

S1—C1 1.748 (2) S1—C7 1.790 (2) N1—C1 1.329 (2) N1—C2 1.343 (3) N2—C4 1.336 (3)

N2—C1 1.339 (3) O1—C8 1.203 (3) C2—C3 1.376 (3) C2—C5 1.492 (3) C3—C4 1.375 (3)

C1—S1—C7 102.33 (11) C1—N1—C2 115.51 (18)

C4—N2—C1 115.87 (18) N1—C1—N2 127.5 (2)

All H atoms were placed in calculated positions and included in the final cycles of refinement using a riding model [C—H = 0.93– 0.97 A˚ andUiso(H) = 1.2Ueq(C)]. Two rotationally disordered methyl

groups, at atoms C5 and C6, were refined with half site occupancy each.

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 1999); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1999) and PLATON (Spek, 2003); software used to prepare material for publication:SHELXTL.

References

Bruker (1998).SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison,

Wisconsin, USA.

Jian, F. F., Xiao, H. L. & Xu, L. Z. (2003).Acta Cryst.E59, o1663–o1665. Maurer, F. D., Findeisen, K. D., Hartwig, J. & Becker, B. D. (1990). Patent No

DE 3911488.

Sheldrick, G. M. (1996).SADABS.University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

[image:2.610.58.283.70.302.2]

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13. Wang, D. X. (1995).Pesticides,34, 6–9.

Figure 1

[image:2.610.327.551.73.401.2]

View of (I), with 40% probability displacement ellipsoids. Only one component of each of the disordered methyl groups (at atoms C5 and C6) is drawn.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, o1180–o1181

supporting information

Acta Cryst. (2005). E61, o1180–o1181 [https://doi.org/10.1107/S1600536805009372]

1-(4,6-Dimethylpyrimidin-2-ylsulfanyl)-3,3-dimethylbutan-2-one

Liang-Zhong Xu, Xi-Liu Ma, Hai-Bin Song, Qi Zhu and Ya-Xun Yang

1-(4,6-Dimethylpyrimidin-2-ylsulfanyl)-3,3-dimethylbutan-2-one

Crystal data

C12H18N2OS

Mr = 238.34

Monoclinic, P21/c Hall symbol: -P 2ybc

a = 8.8654 (15) Å

b = 21.938 (4) Å

c = 6.7526 (12) Å

β = 94.967 (2)°

V = 1308.4 (4) Å3

Z = 4

F(000) = 512

Dx = 1.210 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1167 reflections

θ = 2.3–19.5°

µ = 0.23 mm−1

T = 293 K Block, colorless 0.26 × 0.24 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.931, Tmax = 0.955

7629 measured reflections 2565 independent reflections 1663 reflections with I > 2σ(I)

Rint = 0.034

θmax = 26.0°, θmin = 1.9°

h = −9→10

k = −27→24

l = −8→7

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.044

wR(F2) = 0.122

S = 1.03 2565 reflections 148 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + 0.2819P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001

Δρmax = 0.20 e Å−3 Δρmin = −0.30 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

S1 1.19351 (7) 0.40489 (3) 0.26074 (11) 0.0687 (2)

N1 1.02438 (18) 0.30380 (8) 0.2426 (2) 0.0479 (4)

N2 1.29437 (18) 0.29468 (9) 0.2764 (3) 0.0554 (5)

O1 0.95566 (18) 0.42417 (7) 0.5473 (3) 0.0658 (5)

C1 1.1643 (2) 0.32607 (10) 0.2587 (3) 0.0486 (5)

C2 1.0139 (2) 0.24272 (10) 0.2419 (3) 0.0487 (5)

C3 1.1411 (3) 0.20650 (10) 0.2556 (3) 0.0547 (6)

H3 1.1327 0.1642 0.2528 0.066*

C4 1.2810 (2) 0.23402 (12) 0.2736 (3) 0.0560 (6)

C5 0.8590 (3) 0.21566 (11) 0.2245 (4) 0.0650 (6)

H5A 0.7849 0.2477 0.2164 0.098* 0.50

H5B 0.8463 0.1909 0.3391 0.098* 0.50

H5C 0.8459 0.1910 0.1069 0.098* 0.50

H5D 0.8665 0.1720 0.2252 0.098* 0.50

H5E 0.8052 0.2288 0.1025 0.098* 0.50

H5F 0.8055 0.2287 0.3347 0.098* 0.50

C6 1.4248 (3) 0.19770 (13) 0.2902 (4) 0.0833 (8)

H6A 1.5100 0.2249 0.3016 0.125* 0.50

H6B 1.4290 0.1728 0.1738 0.125* 0.50

H6C 1.4276 0.1721 0.4057 0.125* 0.50

H6D 1.4011 0.1550 0.2858 0.125* 0.50

H6E 1.4821 0.2070 0.4137 0.125* 0.50

H6F 1.4834 0.2078 0.1817 0.125* 0.50

C7 1.0052 (3) 0.43377 (11) 0.2108 (4) 0.0659 (6)

H7A 1.0121 0.4762 0.1722 0.079*

H7B 0.9573 0.4118 0.0975 0.079*

C8 0.9025 (2) 0.42990 (9) 0.3783 (4) 0.0537 (6)

C9 0.7336 (3) 0.43737 (11) 0.3254 (4) 0.0610 (6)

C10 0.7055 (3) 0.49904 (14) 0.2212 (5) 0.0906 (9)

H10A 0.7487 0.5310 0.3051 0.136*

H10B 0.5986 0.5056 0.1956 0.136*

H10C 0.7518 0.4991 0.0979 0.136*

C11 0.6511 (3) 0.43673 (13) 0.5148 (4) 0.0844 (8)

H11A 0.6708 0.3989 0.5836 0.127*

H11B 0.5442 0.4409 0.4808 0.127*

H11C 0.6864 0.4700 0.5990 0.127*

C12 0.6739 (3) 0.38454 (16) 0.1931 (6) 0.1152 (13)

H12A 0.7183 0.3863 0.0685 0.173*

H12B 0.5658 0.3876 0.1698 0.173*

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, o1180–o1181

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S1 0.0508 (4) 0.0604 (4) 0.0962 (5) −0.0113 (3) 0.0139 (3) −0.0022 (3)

N1 0.0429 (10) 0.0559 (12) 0.0459 (10) −0.0047 (7) 0.0089 (7) −0.0028 (8)

N2 0.0421 (10) 0.0752 (14) 0.0492 (11) 0.0041 (9) 0.0056 (8) −0.0014 (9)

O1 0.0618 (10) 0.0670 (11) 0.0677 (11) −0.0030 (8) 0.0000 (8) 0.0024 (8)

C1 0.0451 (12) 0.0598 (13) 0.0415 (11) −0.0035 (9) 0.0080 (9) −0.0023 (10)

C2 0.0533 (12) 0.0565 (14) 0.0369 (11) −0.0056 (10) 0.0081 (9) −0.0033 (10)

C3 0.0669 (15) 0.0511 (13) 0.0468 (13) 0.0051 (11) 0.0097 (10) −0.0012 (10)

C4 0.0530 (14) 0.0756 (17) 0.0398 (12) 0.0139 (11) 0.0065 (9) 0.0024 (11)

C5 0.0633 (14) 0.0589 (14) 0.0737 (16) −0.0142 (11) 0.0103 (12) −0.0098 (12)

C6 0.0678 (17) 0.098 (2) 0.084 (2) 0.0312 (14) 0.0078 (14) 0.0058 (15)

C7 0.0677 (15) 0.0539 (14) 0.0760 (17) −0.0018 (11) 0.0063 (13) 0.0075 (12)

C8 0.0550 (13) 0.0349 (11) 0.0705 (16) −0.0037 (9) 0.0017 (12) 0.0008 (11)

C9 0.0530 (13) 0.0509 (14) 0.0780 (16) 0.0043 (10) −0.0003 (12) −0.0067 (12)

C10 0.083 (2) 0.089 (2) 0.097 (2) 0.0255 (15) −0.0026 (16) 0.0243 (17)

C11 0.0658 (17) 0.0743 (19) 0.115 (2) 0.0109 (13) 0.0188 (16) 0.0109 (17)

C12 0.0626 (18) 0.108 (3) 0.171 (3) −0.0019 (16) −0.012 (2) −0.067 (2)

Geometric parameters (Å, º)

S1—C1 1.748 (2) C6—H6C 0.9600

S1—C7 1.790 (2) C6—H6D 0.9600

N1—C1 1.329 (2) C6—H6E 0.9600

N1—C2 1.343 (3) C6—H6F 0.9600

N2—C4 1.336 (3) C7—C8 1.514 (3)

N2—C1 1.339 (3) C7—H7A 0.9700

O1—C8 1.203 (3) C7—H7B 0.9700

C2—C3 1.376 (3) C8—C9 1.518 (3)

C2—C5 1.492 (3) C9—C11 1.528 (4)

C3—C4 1.375 (3) C9—C12 1.530 (3)

C3—H3 0.9300 C9—C10 1.535 (3)

C4—C6 1.500 (3) C10—H10A 0.9600

C5—H5A 0.9600 C10—H10B 0.9600

C5—H5B 0.9600 C10—H10C 0.9600

C5—H5C 0.9600 C11—H11A 0.9600

C5—H5D 0.9600 C11—H11B 0.9600

C5—H5E 0.9600 C11—H11C 0.9600

C5—H5F 0.9600 C12—H12A 0.9600

C6—H6A 0.9600 C12—H12B 0.9600

C6—H6B 0.9600 C12—H12C 0.9600

C1—S1—C7 102.33 (11) H6C—C6—H6D 56.3

C1—N1—C2 115.51 (18) C4—C6—H6E 109.5

C4—N2—C1 115.87 (18) H6A—C6—H6E 56.3

N1—C1—N2 127.5 (2) H6B—C6—H6E 141.1

(6)

N2—C1—S1 112.46 (15) H6D—C6—H6E 109.5

N1—C2—C3 121.33 (19) C4—C6—H6F 109.5

N1—C2—C5 117.39 (19) H6A—C6—H6F 56.3

C3—C2—C5 121.3 (2) H6B—C6—H6F 56.3

C4—C3—C2 118.7 (2) H6C—C6—H6F 141.1

C4—C3—H3 120.7 H6D—C6—H6F 109.5

C2—C3—H3 120.7 H6E—C6—H6F 109.5

N2—C4—C3 121.11 (19) C8—C7—S1 116.78 (17)

N2—C4—C6 117.0 (2) C8—C7—H7A 108.1

C3—C4—C6 121.9 (2) S1—C7—H7A 108.1

C2—C5—H5A 109.5 C8—C7—H7B 108.1

C2—C5—H5B 109.5 S1—C7—H7B 108.1

H5A—C5—H5B 109.5 H7A—C7—H7B 107.3

C2—C5—H5C 109.5 O1—C8—C7 120.2 (2)

H5A—C5—H5C 109.5 O1—C8—C9 122.2 (2)

H5B—C5—H5C 109.5 C7—C8—C9 117.6 (2)

C2—C5—H5D 109.5 C8—C9—C11 109.6 (2)

H5A—C5—H5D 141.1 C8—C9—C12 109.90 (19)

H5B—C5—H5D 56.3 C11—C9—C12 108.4 (2)

H5C—C5—H5D 56.3 C8—C9—C10 108.7 (2)

C2—C5—H5E 109.5 C11—C9—C10 108.7 (2)

H5A—C5—H5E 56.3 C12—C9—C10 111.5 (3)

H5B—C5—H5E 141.1 C9—C10—H10A 109.5

H5C—C5—H5E 56.3 C9—C10—H10B 109.5

H5D—C5—H5E 109.5 H10A—C10—H10B 109.5

C2—C5—H5F 109.5 C9—C10—H10C 109.5

H5A—C5—H5F 56.3 H10A—C10—H10C 109.5

H5B—C5—H5F 56.3 H10B—C10—H10C 109.5

H5C—C5—H5F 141.1 C9—C11—H11A 109.5

H5D—C5—H5F 109.5 C9—C11—H11B 109.5

H5E—C5—H5F 109.5 H11A—C11—H11B 109.5

C4—C6—H6A 109.5 C9—C11—H11C 109.5

C4—C6—H6B 109.5 H11A—C11—H11C 109.5

H6A—C6—H6B 109.5 H11B—C11—H11C 109.5

C4—C6—H6C 109.5 C9—C12—H12A 109.5

H6A—C6—H6C 109.5 C9—C12—H12B 109.5

H6B—C6—H6C 109.5 H12A—C12—H12B 109.5

C4—C6—H6D 109.5 C9—C12—H12C 109.5

H6A—C6—H6D 141.1 H12A—C12—H12C 109.5

H6B—C6—H6D 56.3 H12B—C12—H12C 109.5

C2—N1—C1—N2 −0.8 (3) C2—C3—C4—N2 −0.5 (3)

C2—N1—C1—S1 179.80 (14) C2—C3—C4—C6 179.7 (2)

C4—N2—C1—N1 1.4 (3) C1—S1—C7—C8 73.75 (19)

C4—N2—C1—S1 −179.22 (15) S1—C7—C8—O1 20.1 (3)

C7—S1—C1—N1 −6.02 (19) S1—C7—C8—C9 −163.53 (16)

C7—S1—C1—N2 174.52 (16) O1—C8—C9—C11 0.4 (3)

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, o1180–o1181

C1—N1—C2—C5 179.86 (18) O1—C8—C9—C12 −118.6 (3)

N1—C2—C3—C4 1.0 (3) C7—C8—C9—C12 65.1 (3)

C5—C2—C3—C4 −179.3 (2) O1—C8—C9—C10 119.2 (2)

C1—N2—C4—C3 −0.6 (3) C7—C8—C9—C10 −57.1 (3)

Figure

Figure 1

References

Related documents

2 Percentage endorsement rates for items from the DISCO PDA measure stratified by group ( “substantial” PDA features, “some” PDA features and the rest of the sample).. N

Although total labor earnings increase with the unskilled unions’ bargaining power, we can say nothing when the increase in production is due to stronger skilled unions, since

The unit I teach, the site of this research, involves students exercising self- determination in a collaborative, creative mode; a phenomenon Meill and Littleton (2004:18) describe

Most companies recruit for full-time and internship positions, but some indicate Co-Op as a recruiting priority, while not attending Professional Practice

$1000 and a complimentary letter to Mary Patten for her heroic work in bringing the fast sailing clipper ship safely around the dangerous Cape Horn?. When Mary and Captain

The Master Fund is authorised in Luxembourg as a specialised investment fund and is managed by a management company, Ress Capital Fund Management SA, who acts

The Department of Health, Physical Education, Recreation and Dance offers a Master of Science in Education in Health and Physical Education and a Master of Science in

 The LSO is responsible for developing criteria and drafting policy for the DOT regarding instructor certification and evaluation, documentation of training safety requirements,