• No results found

1 (4,6 Dimeth­­oxy 1,3,5 triazin 2 yl­­oxy) 1H benzotriazole

N/A
N/A
Protected

Academic year: 2020

Share "1 (4,6 Dimeth­­oxy 1,3,5 triazin 2 yl­­oxy) 1H benzotriazole"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o494

Zhanget al. C

11H10N6O3 doi:10.1107/S1600536806000055 Acta Cryst.(2006). E62, o494–o495

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(4,6-Dimethoxy-1,3,5-triazin-2-yloxy)-1

H

-benzo-triazole

Da-Tong Zhang, Fang-Gang Sun, Ya-Wei Sun, Gui-Yun Duan and Jian-Wu Wang*

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China

Correspondence e-mail: yugp2005@yahoo.com.cn

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.038

wRfactor = 0.108

Data-to-parameter ratio = 12.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2006 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, C11H10N6O3, the mean planes of the

benzotriazole ring system and the 1,3,5-triazine ring make a dihedral angle of 89.3 (3). The crystal packing is stabilized by –stacking interactions and van der Waals forces.

Comment

Carbodiimides combined with 1-hydroxy-1H-benzotriazole (HOBt) have been widely employed in peptide synthesis (Chen et al., 1989). However, carbodiimides, which are necessary components in the formation of the activated ester, can cause allergic reaction (Bodanszky & Williams, 1967). The title compound, (I) (Fig. 1), was synthesized to replace the combination of carbodiimides and HOBt. In this paper, we report its crystal structure.

The bond lengths and angles of the benzotriazole and 1,3,5-triazine systems (Table 1) are in agreement with the values reported earlier (Xuet al., 2005; Gło´wka & Iwanicka, 1989). The mean planes of the benzotriazole ring system and the 1,3,5-triazine ring (C9–C11/N4–N6) make a dihedral angle of 89.3 (3). The crystal packing of (I) (Fig. 2) is stabilized by van der Waals forces and –stacking interactions between the 1,3,5-triazine rings [theCg Cgidistance is 3.573 (6) A˚ , where

Cgis the centroid of the C9–C11/N4–N6 ring] and between the benzotriazole ring systems of neighbouring molecules [the distance between the centroids of the C7/C8/N1–N3 and C3— C8iirings is 3.810 (2) A˚ [symmetry codes: (i)x, y, 1 z; (ii)1

2x, 1

2y, 1z].

Experimental

The title compound was synthesized by the reaction of 1-hydroxy-1H -benzotriazole (0.01 mol) and 2-chloro-4,6-dimethoxy-1,3,5-triazine (0.01 mol) in the presence ofN-methylmorpholine (20 ml) at room temperature (5 h). Purification was achieved by recrystallization from

(2)

a mixture of hexane/dichloromethane (1:1v/v) in 92% isolated yield (2.52 g). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in a mixture of hexane/dichloro-methane (1:1v/v) at room temperature for one week.

Crystal data

C11H10N6O3

Mr= 274.25

Monoclinic,C2=c a= 21.602 (3) A˚

b= 7.3765 (12) A˚

c= 18.248 (3) A˚

= 122.139 (2)

V= 2462.1 (7) A˚3

Z= 8

Dx= 1.480 Mg m

3 MoKradiation Cell parameters from 4441

reflections

= 2.2–25.8

= 0.11 mm1

T= 298 (2) K Block, colourless 0.280.250.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.969,Tmax= 0.989 6143 measured reflections

2166 independent reflections 1772 reflections withI> 2(I)

Rint= 0.026

max= 25.0

h=25!23

k=8!8

l=21!21

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.039

wR(F2) = 0.109

S= 1.06 2166 reflections 181 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0659P)2 + 0.215P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.17 e A˚ 3

min=0.14 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

O3—N2 1.3751 (15) O3—C10 1.3753 (17) N1—N3 1.2960 (18) N1—N2 1.3394 (18) N2—C8 1.3495 (19) N3—C7 1.378 (2)

N4—C10 1.298 (2) N4—C9 1.3418 (19) N5—C10 1.3174 (19) N5—C11 1.3201 (18) N6—C9 1.3164 (19) N6—C11 1.3352 (19)

N2—O3—C10 114.63 (11) N3—N1—N2 106.90 (12)

All H atoms were placed in calculated positions, with C—H = 0.93 and 0.96 A˚ , and included in the final cycles of refinement using a riding model, withUiso(H) = 1.2Ueq(C) for the aryl H atoms and

1.5Ueq(C) for the methyl H atoms.

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 1999); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1999); software used to prepare material for publication:SHELXTL.

References

Bodanszky, M. & Williams, N. J. (1967).J. Am. Chem. Soc.89, 685–689. Bruker (1998).SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison,

Wisconsin, USA.

Chen, S. T., Wu, S. H. & Wang, K. T. (1989).Synthesis, pp. 37–38. Gło´wka, M. L. & Iwanicka, I. (1989).Acta Cryst.C45, 1765–1767. Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

[image:2.610.45.294.72.216.2]

Xu, L. Z.,Yang, S. H., Zhu, C. Y., Li, K. & Liu, F. Q. (2005).Acta Cryst.E61, o259–o260.

Figure 2

A packing diagram for (I).

Figure 1

[image:2.610.44.296.256.461.2]
(3)

supporting information

sup-1

Acta Cryst. (2006). E62, o494–o495

supporting information

Acta Cryst. (2006). E62, o494–o495 [https://doi.org/10.1107/S1600536806000055]

1-(4,6-Dimethoxy-1,3,5-triazin-2-yloxy)-1

H

-benzotriazole

Da-Tong Zhang, Fang-Gang Sun, Ya-Wei Sun, Gui-Yun Duan and Jian-Wu Wang

N-(4,6-Dimethoxy-1,3,5-triazin-2-yloxy)benzotriazole

Crystal data

C11H10N6O3 Mr = 274.25

Monoclinic, C2/c

Hall symbol: -C 2yc

a = 21.602 (3) Å

b = 7.3765 (12) Å

c = 18.248 (3) Å

β = 122.139 (2)°

V = 2462.1 (7) Å3 Z = 8

F(000) = 1136

Dx = 1.480 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 4441 reflections

θ = 2.2–25.8°

µ = 0.11 mm−1 T = 298 K Block, colourless 0.28 × 0.25 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.969, Tmax = 0.989

6143 measured reflections 2166 independent reflections 1772 reflections with I > 2σ(I)

Rint = 0.026

θmax = 25.0°, θmin = 2.2° h = −25→23

k = −8→8

l = −21→21

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.039 wR(F2) = 0.109 S = 1.06 2166 reflections 181 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0659P)2 + 0.215P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.17 e Å−3

Δρmin = −0.14 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.07602 (6) 0.29815 (17) 0.61285 (7) 0.0628 (3) O2 −0.15237 (5) 0.13163 (15) 0.40446 (7) 0.0544 (3) O3 0.01517 (6) 0.22857 (17) 0.33540 (7) 0.0619 (4) N1 0.10049 (7) 0.44497 (18) 0.35243 (9) 0.0571 (4) N2 0.08608 (7) 0.27361 (19) 0.36287 (8) 0.0526 (4) N3 0.16629 (7) 0.44673 (17) 0.36753 (9) 0.0542 (4) N4 0.05018 (7) 0.27119 (17) 0.47817 (8) 0.0497 (3) N5 −0.06908 (6) 0.18303 (17) 0.36679 (8) 0.0478 (3) N6 −0.04015 (7) 0.20778 (17) 0.51135 (8) 0.0483 (3) C1 0.05644 (11) 0.2854 (3) 0.67696 (11) 0.0715 (5) H1B 0.0977 0.3182 0.7326 0.107* H1C 0.0420 0.1634 0.6790 0.107* H1D 0.0166 0.3663 0.6619 0.107* C2 −0.20510 (9) 0.1057 (3) 0.31372 (11) 0.0655 (5) H2A −0.2518 0.0768 0.3054 0.098* H2B −0.1896 0.0081 0.2924 0.098* H2C −0.2091 0.2149 0.2828 0.098* C3 0.27141 (9) 0.0235 (2) 0.41915 (10) 0.0605 (4) H3B 0.3161 −0.0256 0.4332 0.073* C4 0.21716 (11) −0.0919 (2) 0.41181 (11) 0.0643 (5) H4B 0.2264 −0.2158 0.4195 0.077* C5 0.15086 (10) −0.0287 (2) 0.39361 (10) 0.0604 (5) H5B 0.1152 −0.1049 0.3904 0.073* C6 0.26108 (8) 0.2049 (2) 0.40641 (10) 0.0520 (4) H6B 0.2976 0.2809 0.4116 0.062* C7 0.19304 (8) 0.2721 (2) 0.38515 (9) 0.0447 (4) C8 0.14040 (8) 0.1570 (2) 0.38027 (9) 0.0453 (4) C9 0.02576 (8) 0.25727 (19) 0.53190 (9) 0.0460 (4) C10 −0.00035 (8) 0.2294 (2) 0.39936 (10) 0.0460 (4) C11 −0.08539 (8) 0.17567 (19) 0.42693 (10) 0.0437 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, o494–o495

N4 0.0462 (7) 0.0559 (8) 0.0473 (8) −0.0050 (5) 0.0251 (6) −0.0019 (6) N5 0.0445 (7) 0.0561 (8) 0.0461 (7) −0.0008 (5) 0.0264 (6) 0.0014 (5) N6 0.0505 (8) 0.0519 (8) 0.0478 (8) 0.0003 (6) 0.0298 (6) −0.0014 (6) C1 0.0796 (13) 0.0888 (14) 0.0497 (10) −0.0020 (10) 0.0369 (9) −0.0162 (9) C2 0.0467 (9) 0.0859 (13) 0.0585 (10) −0.0072 (8) 0.0245 (8) 0.0018 (9) C3 0.0622 (10) 0.0634 (11) 0.0561 (10) 0.0103 (8) 0.0317 (8) 0.0007 (8) C4 0.0837 (12) 0.0484 (10) 0.0605 (11) 0.0069 (9) 0.0382 (10) 0.0021 (8) C5 0.0756 (11) 0.0528 (10) 0.0559 (10) −0.0167 (8) 0.0371 (9) −0.0021 (8) C6 0.0511 (9) 0.0600 (10) 0.0490 (9) −0.0019 (7) 0.0293 (7) 0.0005 (7) C7 0.0509 (9) 0.0470 (9) 0.0397 (8) −0.0022 (6) 0.0264 (7) 0.0018 (6) C8 0.0505 (9) 0.0521 (9) 0.0376 (8) −0.0050 (7) 0.0262 (7) 0.0004 (6) C9 0.0490 (9) 0.0447 (9) 0.0437 (9) 0.0012 (6) 0.0241 (7) −0.0035 (6) C10 0.0462 (9) 0.0504 (9) 0.0463 (9) 0.0008 (6) 0.0280 (7) 0.0037 (6) C11 0.0458 (8) 0.0393 (8) 0.0505 (9) 0.0023 (6) 0.0286 (7) 0.0031 (6)

Geometric parameters (Å, º)

O1—C9 1.3211 (18) C1—H1B 0.9600 O1—C1 1.4431 (19) C1—H1C 0.9600 O2—C11 1.3175 (17) C1—H1D 0.9600 O2—C2 1.4385 (19) C2—H2A 0.9600 O3—N2 1.3751 (15) C2—H2B 0.9600 O3—C10 1.3753 (17) C2—H2C 0.9600 N1—N3 1.2960 (18) C3—C6 1.356 (2) N1—N2 1.3394 (18) C3—C4 1.396 (3) N2—C8 1.3495 (19) C3—H3B 0.9300 N3—C7 1.378 (2) C4—C5 1.368 (2) N4—C10 1.298 (2) C4—H4B 0.9300 N4—C9 1.3418 (19) C5—C8 1.388 (2) N5—C10 1.3174 (19) C5—H5B 0.9300 N5—C11 1.3201 (18) C6—C7 1.396 (2) N6—C9 1.3164 (19) C6—H6B 0.9300 N6—C11 1.3352 (19) C7—C8 1.384 (2)

(6)

O1—C1—H1D 109.5 N2—C8—C5 135.25 (14) H1B—C1—H1D 109.5 C7—C8—C5 122.86 (14) H1C—C1—H1D 109.5 N6—C9—O1 120.19 (13) O2—C2—H2A 109.5 N6—C9—N4 126.81 (13) O2—C2—H2B 109.5 O1—C9—N4 113.00 (13) H2A—C2—H2B 109.5 N4—C10—N5 130.04 (13) O2—C2—H2C 109.5 N4—C10—O3 120.03 (13) H2A—C2—H2C 109.5 N5—C10—O3 109.93 (12) H2B—C2—H2C 109.5 O2—C11—N5 119.08 (13) C6—C3—C4 122.13 (16) O2—C11—N6 114.28 (12) C6—C3—H3B 118.9 N5—C11—N6 126.63 (13)

Figure

Figure 2structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical