• No results found

Di μ3 bromo di­bromo­tetra­kis­­[μ di­phenyl(2 pyridyl)­phosphine)]­tetracopper(I) di­chloro­methane hexasolvate

N/A
N/A
Protected

Academic year: 2020

Share "Di μ3 bromo di­bromo­tetra­kis­­[μ di­phenyl(2 pyridyl)­phosphine)]­tetracopper(I) di­chloro­methane hexasolvate"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m176

Jian-Liang Zhouet al. [Cu4Br4(C17H14NP)4]6CH2Cl2 DOI: 10.1107/S1600536803005725 Acta Cryst.(2003). E59, m176±m178

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Di-

l

3-bromo-dibromotetrakis[

l

-diphenyl-(2-pyridyl)phosphine)]tetracopper(I)

dichloromethane hexasolvate

Jian-Liang Zhou, Yi-Zhi Li, He-Gen Zheng,* Xin-Quan Xin and Lin-Lin Xu

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C±C) = 0.008 AÊ Rfactor = 0.032 wRfactor = 0.157

Data-to-parameter ratio = 17.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title compound, [Cu4Br4(C17H14NP)4]6CH2Cl2, the centrosymmetric Cu4Br2group is in a slightly distorted plane, forming a shuttle-like structure. Each of the CuI ions is coordinated by two Br, N and P atoms, with metal±metal bonds between neighbouring Cu atoms.

Comment

The chemistry of transition metal clusters has attracted much attention owing to their relevance to certain biological cata-lysts and functional materials (Holm & Simhon, 1985; Holm, 1992; Duet al., 1992). Transition metal complexes containing coordinated diphenyl(2-pyridyl)phosphine (PyPPh2) have been studied for their structural chemistry. Much research has focused on the preparation of model compounds because of their catalytic and non-linear optical properties (Niu et al., 2001). A rich structural diversity of PyPPh2-containing Cu complexes has been revealed. The PyPPh2ligand can coord-inate to Cu in different coordination fashions, such as mono-dentate and bimono-dentate. We present here the structure of the title compound, (I).

The structure of the complex in (I) is centrosymmetric and the two independent Cu atoms are coordinated in different modes (Fig. 1). Atom Cu1 is coordinated by two3-bridging Br atoms, and P and N atoms from PyPPh2ligands. Atom Cu2 is coordinated by a terminal Br atom, a3-bridging Br atom, and P and N atoms from PyPPh2 ligands. There are two different kinds of Br atoms: two are terminal and the other two are3-bridging. Br1 coordinates to three Cu atoms in a 3-bridging bond mode, while atom Br2 is terminal. The bond lengths of Br1ÐCu1, Br1ÐCu2 and Br1ÐCu1iare 2.4645 (8), 2.5721 (8) and 2.8008 (8) AÊ, respectively (see Table 1 for symmetry code). The average BrÐCu bond length involving

3-Br is 2.6125 (8) AÊ, which is longer than that of the terminal CuÐBr bond [2.4754 (8) AÊ]. The PyPPh2 ligand is bidentate and coordinates to two Cu atoms through its P and N atoms, forming a distorted CuÐCuÐPÐCÐN pentagon, with the angles ranging from 85.78 (4) to 124.7 (3). The average CuÐ N bond length is 2.074 (4) AÊ, which is much shorter than the

(2)

average CuÐP bond length [2.1920 (14) AÊ]. There are inter-molecular CÐH Cl interactions (Fig. 2).

Experimental

The title compound, (I), was obtained by the reaction of CuBr (3 mmol, 0.430 g) with diphenyl(2-pyridyl)phosphine (3 mmol, 0.808 g) in CH2Cl2solution (20 ml). The mixture was stirred for 8 h. The resulting solution was subsequently ®ltered to afford a light yellow ®ltrate. Light yellow crystals of (I) were obtained after several days by layering the ®ltrate withiPrOH. Elemental analysis, calcu-lated for Cu4Br4(PyPPh2)46CH2Cl2: C 41.60, H 3.21, N 2.62%; found: C 41.62, H 3.20, N 2.64%.

Crystal data

[Cu4Br4(C17H14NP)4]6CH2Cl2

Mr= 2136.40

Monoclinic,P21=c

a= 13.818 (1) AÊ

b= 17.793 (2) AÊ

c= 19.292 (2) AÊ

= 104.85 (1)

V= 4584.8 (8) AÊ3

Z= 2

Dx= 1.548 Mg mÿ3

MoKradiation Cell parameters from 3951

re¯ections

= 2.2±20.2

= 3.12 mmÿ1

T= 293 (2) K Block, light yellow 0.30.20.2 mm

Data collection

Bruker SMART CCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin= 0.476,Tmax= 0.534

23308 measured re¯ections

8072 independent re¯ections 6838 re¯ections withI> 2(I)

Rint= 0.007 max= 25.0

h=ÿ16!16

k=ÿ21!12

l=ÿ22!20

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.032

wR(F2) = 0.157

S= 1.02 8072 re¯ections 460 parameters

w= 1/[2(F

o2) + (0.12P)2

+ 1.99P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.64 e AÊÿ3

min=ÿ0.74 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Cu1ÐN1 2.051 (4) Cu1ÐP1 2.1699 (14) Cu1ÐBr1 2.4645 (8) Cu1ÐCu2 2.7556 (8) Cu1ÐBr1i 2.8008 (8)

Cu2ÐN2 2.097 (4) Cu2ÐP2 2.2140 (14) Cu2ÐBr2 2.4754 (8) Cu2ÐBr1 2.5721 (8) N1ÐCu1ÐP1 124.21 (12)

N1ÐCu1ÐBr1 114.65 (12) P1ÐCu1ÐBr1 114.42 (4) N1ÐCu1ÐCu2 98.04 (10) P1ÐCu1ÐCu2 85.78 (4) Br1ÐCu1ÐCu2 58.72 (2) N1ÐCu1ÐBr1i 98.00 (10)

P1ÐCu1ÐBr1i 101.33 (4)

Br1ÐCu1ÐBr1i 96.40 (2)

Cu2ÐCu1ÐBr1i 154.45 (3)

N2ÐCu2ÐP2 117.70 (12) N2ÐCu2ÐBr2 103.49 (11)

P2ÐCu2ÐBr2 105.64 (4) N2ÐCu2ÐBr1 109.64 (11) P2ÐCu2ÐBr1 113.87 (4) Br2ÐCu2ÐBr1 105.08 (3) N2ÐCu2ÐCu1 91.48 (11) P2ÐCu2ÐCu1 79.73 (4) Br2ÐCu2ÐCu1 158.76 (3) Br1ÐCu2ÐCu1 54.98 (2) Cu1ÐBr1ÐCu2 66.30 (2) Cu1ÐBr1ÐCu1i 83.60 (2)

Cu2ÐBr1ÐCu1i 149.30 (3)

Symmetry code: (i) 2ÿx;1ÿy;1ÿz.

All H atoms were positioned geometrically and re®ned with riding model constraints, with CÐH distances set at 0.93 or 0.97 AÊ.

Data collection:SMART(Bruker, 2000); cell re®nement:SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to re®ne structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

This work was supported by the National Natural Science Foundation of China (Nos. 20171020, 10104007 and 90101028) and the Nanjing University Talent Development Foundation, through a research grant (No. 0205005122). The authors thank Mr Yong-Jiang Liu for the data collection.

References

Bruker (2000).SMART, SAINT, SADABSandSHELXTL.Bruker AXS inc.,

Figure 2

A packing diagram of (I), viewed down theaaxis. Dashed lines indicate CÐH Cl interactions.

Figure 1

(3)

metal-organic papers

m178

Jian-Liang Zhouet al. [Cu4Br4(C17H14NP)4]6CH2Cl2 Acta Cryst.(2003). E59, m176±m178

Du, S. W., Zhu, N. Y., Chen, P. C. & Wu, X. T. (1992).Angew. Chem. Int. Ed. Engl.8, 1085±1087.

Holm, R. H. (1992).Adv. Inorg. Chem.38, 1±3.

Holm, R. H. & Simhon, E. D. (1985). InMolybdenum Enzymes. New York: Wiley.

(4)

supporting information

Acta Cryst. (2003). E59, m176–m178 [doi:10.1107/S1600536803005725]

Di-

µ

3

-bromo-dibromotetrakis[

µ

-diphenyl(2-pyridyl)phosphine)]tetracopper(I)

dichloromethane hexasolvate

Jian-Liang Zhou, Yi-Zhi Li, He-Gen Zheng, Xin-Quan Xin and Lin-Lin Xu

S1. Comment

The chemistry of transition metal clusters has attracted much attention owing to their relevance to certain biological

catalyses and functional materials (Holm et al., 1985; Holm, 1992; Du et al., 1992). Transition metal complexes containing coordinated diphenyl(2-pyridyl)phosphine (PyPPh2) have been studied for their structural chemistry. Much

research has focused on the preparation of model compounds because of their catalytic and non-linear optical properties

(Niu et al., 2001). A rich structural diversity of PyPPh2-containing Cu complexes has been revealed. The PyPPh2 ligand

can coordinate to Cu in different coordination fashions, such as monodentate and bidentate. We present here the structure

of the title compound, (I).

The structure of the complex in (I) is centrosymmetric and the two independent Cu atoms are coordinated in different

modes (Fig. 1). Atom Cu1 is coordinated by two µ3-bridging Br atoms, and P and N atoms from PyPPh2 ligands. Atom

Cu2 is coordinated by a terminal Br atom, a µ3-bridging Br atom, and P and N atoms from PyPPh2 ligands. There are two

different kinds of Br atoms: two are terminal and the other two are µ3-bridging. The Br1 coordinates to three Cu atoms in

a µ3bridging bond mode, while atom Br2 is terminal. The bond lengths of Br1—Cu1, Br1—Cu2 and Br1—Cu1i are

2.4645 (8), 2.5721 (8) and 2.8008 (8) Å, respectively (see Table 1 for symmetry code). The average Br—Cu bond length

involving µ3-Br is 2.6125 (8) Å, which is longer than that of the terminal Cu—Br bond [2.4754 (8) Å]. The PyPPh2 ligand

is a bidentate and coordinates to two Cu atoms through its P and N atoms, forming a distorted Cu—Cu—P—C—N

pentagon, with the angles ranging from 85.78 (4) to 124.7 (3)°. The average Cu—N bond length is 2.074 (4) Å, which is

much shorter than the average Cu—P bond length [2.1920 (14) Å]. There are intermolecular C—H···Cl interactions (Fig.

2).

S2. Experimental

The title compound, (I), was obtained by the reaction of CuBr (3 mmol, 0.430 g) with diphenyl(2-pyridyl)phosphine (3

mmol, 0.808 g) in CH2Cl2 solution (20 ml). The mixture was stirred for 8 h. The resulting solution was subsequently

filtered to afford a light-yellow filtrate. Light-yellow crystals of (I) were obtained after several days by laying the filtrate

with i-PrOH. Elemental analysis, calculated for Cu4Br4(PyPPh2)4·6CH2Cl2: C 41.60, H 3.21, N 2.62%; found: C 41.62, H

3.20, N 2.64%.

S3. Refinement

(5)

supporting information

[image:5.610.128.484.71.321.2]

sup-2

Acta Cryst. (2003). E59, m176–m178

Figure 1

(6)

Figure 2

The packing diagram of (I), viewed down the a axis. The broken lines indicate C—H···Cl interactions.

Di-µ3-bromo-dibromotetrakis[µ-diphenyl(2-pyridyl)phosphine)]tetracopper(I) hexakisdichloromethane solvate

Crystal data

[Cu4Br4(C17H14NP)4]·6CH2Cl2

Mr = 2136.40 Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 13.818 (1) Å

b = 17.793 (2) Å

c = 19.292 (2) Å

β = 104.85 (1)°

V = 4584.8 (8) Å3

Z = 2

F(000) = 2120

Dx = 1.548 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3951 reflections

θ = 2.2–20.2°

µ = 3.12 mm−1

T = 293 K Strip, light yellow 0.3 × 0.2 × 0.2 mm

Data collection

Bruker SMART diffractometer

Radiation source: sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin = 0.476, Tmax = 0.534

23308 measured reflections 8072 independent reflections 6838 reflections with I > 2σ(I)

Rint = 0.007

θmax = 25.0°, θmin = 1.9°

h = −16→16

k = −21→12

l = −22→20

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.032

wR(F2) = 0.157

S = 1.02 8072 reflections 460 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.12P)2 + 1.99P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.64 e Å−3

Δρmin = −0.74 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(7)

supporting information

sup-4

Acta Cryst. (2003). E59, m176–m178

Cu2 0.98400 (5) 0.30401 (3) 0.42525 (3) 0.06069 (18) Br1 1.08113 (4) 0.40829 (3) 0.50636 (2) 0.06077 (16) Br2 1.10391 (4) 0.19858 (3) 0.43650 (2) 0.06145 (16) P1 0.78981 (10) 0.39748 (7) 0.46157 (7) 0.0610 (3) P2 0.94083 (10) 0.33349 (7) 0.30991 (7) 0.0605 (3)

N1 0.9154 (3) 0.4820 (2) 0.3305 (2) 0.0592 (9)

C1 0.9241 (3) 0.4292 (3) 0.2794 (2) 0.0559 (10)

C2 0.9216 (4) 0.4516 (3) 0.2101 (3) 0.0592 (11)

H2 0.9264 0.4160 0.1758 0.071*

C3 0.9118 (4) 0.5278 (3) 0.1919 (3) 0.0624 (11)

H3 0.9111 0.5432 0.1457 0.075*

C4 0.9032 (4) 0.5805 (3) 0.2430 (3) 0.0593 (11)

H4 0.8961 0.6312 0.2309 0.071*

C5 0.9052 (4) 0.5579 (3) 0.3119 (2) 0.0608 (11)

H5 0.8996 0.5934 0.3460 0.073*

C6 0.8176 (4) 0.2897 (3) 0.2652 (3) 0.0605 (12)

C7 0.7389 (4) 0.3288 (3) 0.2218 (2) 0.0583 (11)

H7 0.7456 0.3796 0.2128 0.070*

C8 0.6490 (4) 0.2915 (2) 0.1913 (3) 0.0590 (11)

H8 0.5955 0.3173 0.1617 0.071*

C9 0.6402 (4) 0.2155 (3) 0.2056 (3) 0.0611 (13)

H9 0.5804 0.1906 0.1857 0.073*

C10 0.7184 (4) 0.1772 (3) 0.2487 (3) 0.0598 (12)

H10 0.7116 0.1264 0.2575 0.072*

C11 0.8085 (4) 0.2140 (3) 0.2795 (3) 0.0605 (12)

H11 0.8616 0.1880 0.3092 0.073*

C12 1.0210 (4) 0.2975 (2) 0.2556 (3) 0.0584 (11)

C13 0.9849 (4) 0.2670 (2) 0.1868 (3) 0.0592 (12)

H13 0.9164 0.2611 0.1675 0.071*

C14 1.0522 (4) 0.2457 (2) 0.1477 (3) 0.0617 (12)

H14 1.0288 0.2249 0.1023 0.074*

C15 1.1542 (4) 0.2555 (2) 0.1767 (3) 0.0595 (12)

H15 1.1991 0.2417 0.1504 0.071*

C16 1.1895 (4) 0.2859 (3) 0.2447 (3) 0.0606 (12)

H16 1.2579 0.2923 0.2639 0.073*

C17 1.1229 (4) 0.3068 (2) 0.2842 (3) 0.0622 (12)

H17 1.1467 0.3271 0.3299 0.075*

N2 0.8725 (3) 0.2610 (2) 0.4702 (2) 0.0610 (9)

C18 0.7972 (4) 0.3037 (3) 0.4872 (3) 0.0610 (11)

C19 0.7295 (4) 0.2701 (3) 0.5194 (2) 0.0610 (11)

H19 0.6789 0.2987 0.5303 0.073*

C20 0.7367 (4) 0.1935 (2) 0.5355 (3) 0.0612 (12)

H20 0.6916 0.1711 0.5575 0.073*

C21 0.8119 (4) 0.1509 (3) 0.5185 (3) 0.0598 (12)

H21 0.8170 0.0998 0.5289 0.072*

C22 0.8795 (4) 0.1850 (2) 0.4858 (3) 0.0583 (11)

H22 0.9297 0.1565 0.4745 0.070*

(8)

C24 0.8323 (4) 0.4646 (2) 0.6013 (3) 0.0600 (12)

H24 0.8993 0.4554 0.6037 0.072*

C25 0.8058 (4) 0.4991 (3) 0.6588 (3) 0.0622 (13)

H25 0.8551 0.5128 0.6994 0.075*

C26 0.7055 (4) 0.5129 (2) 0.6551 (3) 0.0582 (11)

H26 0.6878 0.5358 0.6934 0.070*

C27 0.6319 (4) 0.4925 (3) 0.5945 (3) 0.0617 (12)

H27 0.5650 0.5018 0.5922 0.074*

C28 0.6583 (4) 0.4581 (3) 0.5370 (3) 0.0591 (12)

H28 0.6090 0.4445 0.4963 0.071*

C29 0.6754 (4) 0.4042 (3) 0.3907 (3) 0.0622 (11)

C30 0.6107 (4) 0.3434 (3) 0.3693 (3) 0.0632 (11)

H30 0.6250 0.2975 0.3927 0.076*

C31 0.5254 (4) 0.3508 (3) 0.3134 (3) 0.0629 (11)

H31 0.4829 0.3100 0.2990 0.076*

C32 0.5035 (4) 0.4199 (3) 0.2789 (3) 0.0621 (11)

H32 0.4460 0.4253 0.2417 0.075*

C33 0.5673 (4) 0.4807 (3) 0.2998 (3) 0.0629 (12)

H33 0.5529 0.5267 0.2765 0.075*

C34 0.6522 (4) 0.4726 (3) 0.3554 (3) 0.0624 (11)

H34 0.6947 0.5135 0.3696 0.075*

C40 0.5738 (4) 0.5898 (3) 0.0406 (3) 0.0627 (13)

H40A 0.6314 0.6124 0.0287 0.075*

H40B 0.5198 0.5830 −0.0023 0.075*

Cl41 0.60511 (9) 0.50282 (6) 0.09416 (6) 0.0613 (3) Cl42 0.53451 (9) 0.64031 (6) 0.11240 (6) 0.0613 (3)

C50 0.5554 (4) 0.7653 (3) 0.9573 (3) 0.0607 (12)

H50A 0.4870 0.7827 0.9400 0.073*

H50B 0.5570 0.7112 0.9635 0.073*

Cl51 0.62630 (9) 0.81619 (6) 1.03761 (6) 0.0612 (3) Cl52 0.63845 (9) 0.79866 (6) 0.90207 (6) 0.0609 (3)

C60 0.2384 (4) 0.0633 (3) 0.6282 (3) 0.0617 (12)

H60A 0.2426 0.1172 0.6361 0.074*

H60B 0.2893 0.0376 0.6646 0.074*

Cl61 0.23931 (9) 0.03683 (6) 0.53711 (6) 0.0616 (3) Cl62 0.11041 (9) 0.02520 (6) 0.61905 (6) 0.0612 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(9)

supporting information

sup-6

Acta Cryst. (2003). E59, m176–m178

C2 0.077 (3) 0.053 (2) 0.060 (3) −0.010 (2) 0.040 (2) −0.013 (2) C3 0.081 (3) 0.049 (2) 0.061 (3) 0.009 (2) 0.024 (2) 0.005 (2) C4 0.076 (3) 0.055 (3) 0.059 (3) −0.013 (2) 0.039 (2) −0.012 (2) C5 0.079 (3) 0.054 (3) 0.046 (2) 0.019 (2) 0.009 (2) 0.0137 (19) C6 0.079 (3) 0.055 (3) 0.061 (3) −0.014 (2) 0.042 (2) −0.014 (2) C7 0.076 (3) 0.052 (2) 0.059 (3) −0.010 (2) 0.039 (2) −0.012 (2) C8 0.075 (3) 0.053 (2) 0.062 (3) −0.013 (2) 0.041 (2) −0.012 (2) C9 0.078 (3) 0.054 (3) 0.069 (3) −0.025 (2) 0.051 (3) −0.027 (2) C10 0.077 (3) 0.051 (2) 0.069 (3) −0.023 (2) 0.050 (3) −0.025 (2) C11 0.081 (3) 0.050 (2) 0.068 (3) −0.026 (2) 0.051 (2) −0.024 (2) C12 0.073 (3) 0.053 (3) 0.061 (3) −0.012 (2) 0.039 (2) −0.012 (2) C13 0.078 (3) 0.048 (2) 0.068 (3) −0.020 (2) 0.049 (2) −0.022 (2) C14 0.084 (3) 0.052 (2) 0.068 (3) −0.024 (2) 0.053 (2) −0.025 (2) C15 0.077 (3) 0.051 (2) 0.068 (3) −0.021 (2) 0.050 (2) −0.022 (2) C16 0.080 (3) 0.051 (2) 0.069 (3) −0.022 (2) 0.052 (2) −0.022 (2) C17 0.082 (3) 0.052 (2) 0.070 (3) −0.024 (2) 0.053 (3) −0.025 (2) N2 0.076 (2) 0.057 (2) 0.055 (2) 0.0004 (18) 0.0261 (18) 0.0009 (17) C18 0.076 (3) 0.057 (3) 0.055 (3) 0.000 (2) 0.026 (2) 0.001 (2) C19 0.076 (3) 0.057 (3) 0.055 (3) 0.000 (2) 0.026 (2) 0.001 (2) C20 0.079 (3) 0.050 (2) 0.072 (3) −0.025 (2) 0.052 (3) −0.026 (2) C21 0.078 (3) 0.049 (2) 0.068 (3) −0.023 (2) 0.048 (2) −0.023 (2) C22 0.077 (3) 0.049 (2) 0.066 (3) −0.020 (2) 0.048 (2) −0.020 (2) C23 0.078 (3) 0.056 (3) 0.057 (3) 0.003 (2) 0.026 (2) 0.001 (2) C24 0.077 (3) 0.052 (2) 0.068 (3) −0.021 (2) 0.049 (2) −0.022 (2) C25 0.082 (3) 0.053 (2) 0.070 (3) −0.026 (2) 0.055 (3) −0.026 (2) C26 0.075 (3) 0.050 (2) 0.064 (3) −0.021 (2) 0.045 (2) −0.021 (2) C27 0.082 (3) 0.050 (2) 0.071 (3) −0.024 (2) 0.054 (3) −0.025 (2) C28 0.077 (3) 0.054 (2) 0.062 (3) −0.023 (2) 0.047 (2) −0.024 (2) C29 0.076 (3) 0.060 (3) 0.057 (3) 0.002 (2) 0.028 (2) 0.003 (2) C30 0.076 (3) 0.062 (3) 0.057 (3) 0.005 (2) 0.026 (2) 0.001 (2) C31 0.080 (3) 0.060 (3) 0.055 (3) 0.003 (2) 0.028 (2) 0.001 (2) C32 0.075 (3) 0.060 (3) 0.056 (3) 0.005 (2) 0.025 (2) 0.004 (2) C33 0.081 (3) 0.059 (3) 0.055 (3) 0.008 (2) 0.028 (2) 0.003 (2) C34 0.076 (3) 0.061 (3) 0.056 (3) 0.004 (2) 0.026 (2) 0.002 (2) C40 0.079 (3) 0.057 (3) 0.069 (3) −0.024 (2) 0.050 (2) −0.026 (2) Cl41 0.0797 (7) 0.0522 (6) 0.0697 (7) −0.0238 (5) 0.0513 (6) −0.0236 (5) Cl42 0.0796 (7) 0.0517 (6) 0.0700 (7) −0.0237 (5) 0.0510 (6) −0.0237 (5) C50 0.079 (3) 0.053 (2) 0.068 (3) −0.022 (2) 0.049 (2) −0.022 (2) Cl51 0.0797 (7) 0.0517 (6) 0.0697 (7) −0.0237 (5) 0.0509 (6) −0.0235 (5) Cl52 0.0788 (7) 0.0522 (6) 0.0687 (7) −0.0232 (5) 0.0501 (6) −0.0235 (5) C60 0.080 (3) 0.053 (2) 0.069 (3) −0.025 (2) 0.051 (2) −0.024 (2) Cl61 0.0802 (7) 0.0525 (6) 0.0701 (7) −0.0240 (5) 0.0518 (6) −0.0238 (5) Cl62 0.0799 (7) 0.0514 (6) 0.0700 (7) −0.0240 (5) 0.0513 (6) −0.0237 (5)

Geometric parameters (Å, º)

Cu1—N1 2.051 (4) C16—H16 0.9300

(10)

Cu1—Br1 2.4645 (8) N2—C22 1.383 (6)

Cu1—Cu2 2.7556 (8) N2—C18 1.394 (6)

Cu1—Br1i 2.8008 (8) C18—C19 1.384 (7)

Cu2—N2 2.097 (4) C19—C20 1.396 (7)

Cu2—P2 2.2140 (14) C19—H19 0.9300

Cu2—Br2 2.4754 (8) C20—C21 1.392 (6)

Cu2—Br1 2.5721 (8) C20—H20 0.9300

Br1—Cu1i 2.8008 (8) C21—C22 1.393 (6)

P1—C18 1.736 (5) C21—H21 0.9300

P1—C29 1.810 (5) C22—H22 0.9300

P1—C23 1.882 (5) C23—C24 1.379 (7)

P2—C1 1.798 (5) C23—C28 1.402 (7)

P2—C12 1.825 (4) C24—C25 1.396 (6)

P2—C6 1.870 (5) C24—H24 0.9300

N1—C1 1.389 (6) C25—C26 1.392 (7)

N1—C5 1.395 (6) C25—H25 0.9300

C1—C2 1.386 (6) C26—C27 1.387 (7)

C2—C3 1.399 (7) C26—H26 0.9300

C2—H2 0.9300 C27—C28 1.394 (6)

C3—C4 1.387 (6) C27—H27 0.9300

C3—H3 0.9300 C28—H28 0.9300

C4—C5 1.382 (6) C29—C34 1.391 (7)

C4—H4 0.9300 C29—C30 1.397 (7)

C5—H5 0.9300 C30—C31 1.385 (7)

C6—C7 1.380 (7) C30—H30 0.9300

C6—C11 1.388 (7) C31—C32 1.393 (7)

C7—C8 1.398 (7) C31—H31 0.9300

C7—H7 0.9300 C32—C33 1.389 (7)

C8—C9 1.392 (7) C32—H32 0.9300

C8—H8 0.9300 C33—C34 1.380 (7)

C9—C10 1.364 (8) C33—H33 0.9300

C9—H9 0.9300 C34—H34 0.9300

C10—C11 1.397 (7) C40—Cl42 1.846 (4)

C10—H10 0.9300 C40—Cl41 1.849 (5)

C11—H11 0.9300 C40—H40A 0.9700

C12—C17 1.385 (7) C40—H40B 0.9700

C12—C13 1.400 (7) C50—Cl51 1.845 (5)

C13—C14 1.392 (6) C50—Cl52 1.852 (4)

C13—H13 0.9300 C50—H50A 0.9700

C14—C15 1.388 (7) C50—H50B 0.9700

C14—H14 0.9300 C60—Cl61 1.823 (4)

C15—C16 1.387 (7) C60—Cl62 1.860 (4)

C15—H15 0.9300 C60—H60A 0.9700

C16—C17 1.387 (6) C60—H60B 0.9700

N1—Cu1—P1 124.21 (12) C16—C15—H15 119.8

N1—Cu1—Br1 114.65 (12) C14—C15—H15 119.8

(11)

supporting information

sup-8

Acta Cryst. (2003). E59, m176–m178

N1—Cu1—Cu2 98.04 (10) C15—C16—H16 119.9

P1—Cu1—Cu2 85.78 (4) C17—C16—H16 119.9

Br1—Cu1—Cu2 58.72 (2) C12—C17—C16 119.8 (5)

N1—Cu1—Br1i 98.00 (10) C12—C17—H17 120.1

P1—Cu1—Br1i 101.33 (4) C16—C17—H17 120.1

Br1—Cu1—Br1i 96.40 (2) C22—N2—C18 119.8 (4)

Cu2—Cu1—Br1i 154.45 (3) C22—N2—Cu2 115.4 (3)

N2—Cu2—P2 117.70 (12) C18—N2—Cu2 124.7 (3)

N2—Cu2—Br2 103.49 (11) C19—C18—N2 120.1 (4)

P2—Cu2—Br2 105.64 (4) C19—C18—P1 123.0 (4)

N2—Cu2—Br1 109.64 (11) N2—C18—P1 116.8 (4)

P2—Cu2—Br1 113.87 (4) C18—C19—C20 120.2 (5)

Br2—Cu2—Br1 105.08 (3) C18—C19—H19 119.9

N2—Cu2—Cu1 91.48 (11) C20—C19—H19 119.9

P2—Cu2—Cu1 79.73 (4) C21—C20—C19 119.7 (4)

Br2—Cu2—Cu1 158.76 (3) C21—C20—H20 120.2

Br1—Cu2—Cu1 54.98 (2) C19—C20—H20 120.2

Cu1—Br1—Cu2 66.30 (2) C20—C21—C22 119.8 (4)

Cu1—Br1—Cu1i 83.60 (2) C20—C21—H21 120.1

Cu2—Br1—Cu1i 149.30 (3) C22—C21—H21 120.1

C18—P1—C29 104.8 (2) N2—C22—C21 120.5 (4)

C18—P1—C23 101.6 (2) N2—C22—H22 119.8

C29—P1—C23 104.6 (2) C21—C22—H22 119.8

C18—P1—Cu1 119.03 (19) C24—C23—C28 120.1 (4)

C29—P1—Cu1 112.46 (17) C24—C23—P1 122.4 (4)

C23—P1—Cu1 112.84 (17) C28—C23—P1 117.5 (4)

C1—P2—C12 101.0 (2) C23—C24—C25 120.2 (5)

C1—P2—C6 102.6 (2) C23—C24—H24 119.9

C12—P2—C6 101.7 (2) C25—C24—H24 119.9

C1—P2—Cu2 122.20 (15) C26—C25—C24 119.8 (5)

C12—P2—Cu2 116.57 (18) C26—C25—H25 120.1

C6—P2—Cu2 110.10 (16) C24—C25—H25 120.1

C1—N1—C5 119.5 (4) C27—C26—C25 120.1 (4)

C1—N1—Cu1 120.4 (3) C27—C26—H26 119.9

C5—N1—Cu1 120.1 (3) C25—C26—H26 119.9

C2—C1—N1 120.3 (4) C26—C27—C28 120.1 (5)

C2—C1—P2 123.9 (3) C26—C27—H27 120.0

N1—C1—P2 115.8 (3) C28—C27—H27 120.0

C1—C2—C3 119.8 (4) C27—C28—C23 119.6 (5)

C1—C2—H2 120.1 C27—C28—H28 120.2

C3—C2—H2 120.1 C23—C28—H28 120.2

C4—C3—C2 119.8 (4) C34—C29—C30 119.0 (5)

C4—C3—H3 120.1 C34—C29—P1 118.3 (4)

C2—C3—H3 120.1 C30—C29—P1 122.7 (4)

C5—C4—C3 120.1 (4) C31—C30—C29 120.5 (5)

C5—C4—H4 119.9 C31—C30—H30 119.7

C3—C4—H4 119.9 C29—C30—H30 119.7

(12)

C4—C5—H5 119.8 C30—C31—H31 120.2

N1—C5—H5 119.8 C32—C31—H31 120.2

C7—C6—C11 120.9 (5) C33—C32—C31 120.3 (5)

C7—C6—P2 123.6 (4) C33—C32—H32 119.8

C11—C6—P2 115.6 (4) C31—C32—H32 119.8

C6—C7—C8 119.6 (4) C34—C33—C32 119.6 (5)

C6—C7—H7 120.2 C34—C33—H33 120.2

C8—C7—H7 120.2 C32—C33—H33 120.2

C9—C8—C7 119.3 (5) C33—C34—C29 121.0 (5)

C9—C8—H8 120.3 C33—C34—H34 119.5

C7—C8—H8 120.3 C29—C34—H34 119.5

C10—C9—C8 120.7 (4) Cl42—C40—Cl41 93.4 (2)

C10—C9—H9 119.6 Cl42—C40—H40A 113.0

C8—C9—H9 119.6 Cl41—C40—H40A 113.0

C9—C10—C11 120.4 (5) Cl42—C40—H40B 113.0

C9—C10—H10 119.8 Cl41—C40—H40B 113.0

C11—C10—H10 119.8 H40A—C40—H40B 110.4

C6—C11—C10 119.1 (5) Cl51—C50—Cl52 93.0 (2)

C6—C11—H11 120.5 Cl51—C50—H50A 113.1

C10—C11—H11 120.5 Cl52—C50—H50A 113.1

C17—C12—C13 120.3 (4) Cl51—C50—H50B 113.1

C17—C12—P2 115.7 (3) Cl52—C50—H50B 113.1

C13—C12—P2 123.9 (4) H50A—C50—H50B 110.5

C14—C13—C12 119.6 (5) Cl61—C60—Cl62 93.2 (2)

C14—C13—H13 120.2 Cl61—C60—H60A 113.1

C12—C13—H13 120.2 Cl62—C60—H60A 113.1

C15—C14—C13 119.8 (4) Cl61—C60—H60B 113.1

C15—C14—H14 120.1 Cl62—C60—H60B 113.1

C13—C14—H14 120.1 H60A—C60—H60B 110.5

C16—C15—C14 120.3 (4)

Figure

Figure 1

References

Related documents

A firm pursuing strict credit standard is likely to face the following: Low sales as few customers are attracted; Less cases of bad and doubtful debt loss; decrease in the amount

Development of this Neo-Schumpeterian approach and recognizing the economic structure of technological system as the basement of long-run economic growth are the central

Most respondents rejected the utilitarian choice in greater good dilemma D5 (either donate money or buy oneself a car; Figure 3), despite perceiving the wrongness of doing

We compare the adaptive system to other state-of-the-art systems using four test sets in the SIGHAN’s First Interna- tional Chinese Word Segmentation Bakeoff, each of which

Against this background, we can only expect that the educational and the professional indoctri- nation influence European central bankers’ economic reform proposals: central

Die empirischen Befunde zur räumlichen Emergenz der PV-Industrie unterstreichen die im er- weiterten Window-of-locational-opportunity-Konzept betonten Aspekte (B OSCHMA /L AMBOOY

The advantages of using common-factor portfolios in asset pricing are: (i) they produce a dimension reduction in the asset- pricing data-base while preserving the

Many games are known to possess a multiplicity of equilibria and one cannot hope to derive general conditions for the existence of a unique Nash equilibrium; thus, in this work,