• No results found

2 Eth­­oxy 3 phenyl 1 benzothieno[3,2 d]pyrimidin 4(3H) one

N/A
N/A
Protected

Academic year: 2020

Share "2 Eth­­oxy 3 phenyl 1 benzothieno[3,2 d]pyrimidin 4(3H) one"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o2229–o2230 doi:10.1107/S1600536806015959 Xuet al. C

18H14N2O2S

o2229

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

2-Ethoxy-3-phenyl-1-benzothieno[3,2-

d

]-pyrimidin-4(3

H

)-one

Sheng-Zhen Xu, Yang-Gen Hu, Xiang Wang and Ming-Wu Ding*

Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China

Correspondence e-mail: ding2005711@yahoo.com.cn

Key indicators

Single-crystal X-ray study T= 292 K

Mean(C–C) = 0.003 A˚ Rfactor = 0.045 wRfactor = 0.120

Data-to-parameter ratio = 17.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 19 April 2006 Accepted 1 May 2006

#2006 International Union of Crystallography All rights reserved

In the crystal structure of the title compound, C18H14N2O2S,

the packing of the molecules is mainly governed by inter-molecular –interactions.

Comment

Derivatives of thienopyrimidines are of great importance because of their remarkable biological properties (Walter, 1999a,b). In recent years, we have been engaged in the preparation of heterocyclic derivatives containing a fused pyrimidinone system using the aza-Wittig reaction (Dinget al., 2004). Some X-ray crystal structure reports for thienopyrim-idine derivatives have been published (Xuet al., 2005; Caoet al., 2006). Here, the structure of the title compound, (I), which may be used as a new precursor for obtaining bioactive mol-ecules, is reported (Fig. 1).

The benzothienopyrimidine ring system is almost planar, with a maximum deviation of 0.042 (2) A˚ for atom C3; the C11–C16 phenyl ring is twisted with respect to it, with a dihedral angle of 58.38 (6). Intermolecularinteractions

seem to be effective in stabilizing the crystal structure (Fig. 2). The centroid–centroid distances between the S1/C6/C1/C7/C8 and C1–C6 rings, and between the N1/C7–C9/N2/C10 and C1– C6 rings are 3.777 (1) and 3.644 (1) A˚ , respectively [inter-planar distances 3.540 (1) and 3.518 (1) A˚ , respectively]. There are no inter- or intramolecular hydrogen-bonding interactions.

Experimental

(2)

Suitable crystals were obtained by vapour diffusion of ethanol into dichloromethane at room temperature.

Crystal data

C18H14N2O2S Mr= 322.37

Monoclinic,C2=c a= 22.4877 (18) A˚ b= 11.2298 (9) A˚ c= 14.8969 (12) A˚

= 126.298 (1)

V= 3031.9 (4) A˚3

Z= 8

Dx= 1.412 Mg m

3 MoKradiation

= 0.23 mm 1 T= 292 (2) K Block, colorless 0.300.200.20 mm

Data collection

Bruker SMART 4K CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 2003) Tmin= 0.936,Tmax= 0.956

16980 measured reflections 3620 independent reflections 3090 reflections withI> 2(I) Rint= 0.057

max= 28.0

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.045 wR(F2) = 0.120 S= 1.05 3620 reflections 209 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0671P)2 + 0.7743P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.21 e A˚ 3

min= 0.35 e A˚ 3

H atoms were located in a difference map and treated as riding, with C—H = 0.93–0.98 A˚ andUiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl

C).

Data collection:SMART(Bruker, 2001); cell refinement:SAINT

(Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

PLATON (Spek, 2003); software used to prepare material for publication:SHELXTL(Sheldrick, 2001).

The authors gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (project No. 20102001).

References

Bruker (2001).SMART(Version 5.628) andSAINT(Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.

Cao, M.-H., Xu, S.-Z. & Hu, Y.-G. (2006).Acta Cryst.E62, o1319–o1320.

Ding, M.-W., Xu, S.-Z. & Zhao, J.-F. (2004).J. Org. Chem.69, 8366–8371. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of

Go¨ttingen, Germany.

Sheldrick, G. M. (2001).SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2003).SADABS. Version 2.10. Bruker AXS inc., Madison, Wisconsin, USA.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13. Walter, H. (1999a). PCT Int. Appl. No.44. Walter, H. (1999b). PCT Int. Appl. No.89.

[image:2.610.318.566.71.233.2]

Xu, S.-Z., Cao, M.-H., Hu, Y.-G., Ding, M.-W. & Xiao, W.-J. (2005).Acta Cryst. E61, o2789–o2790.

Figure 1

View of the molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

[image:2.610.316.565.273.424.2]
(3)

supporting information

sup-1

Acta Cryst. (2006). E62, o2229–o2230

supporting information

Acta Cryst. (2006). E62, o2229–o2230 [https://doi.org/10.1107/S1600536806015959]

2-Ethoxy-3-phenyl-1-benzothieno[3,2-

d

]pyrimidin-4(3

H

)-one

Sheng-Zhen Xu, Yang-Gen Hu, Xiang Wang and Ming-Wu Ding

2-Ethoxy-3-phenyl-1-benzothieno[3,2-d]pyrimidin-4(3H)-one

Crystal data C18H14N2O2S

Mr = 322.37 Monoclinic, C2/c a = 22.4877 (18) Å b = 11.2298 (9) Å c = 14.8969 (12) Å β = 126.298 (1)° V = 3031.9 (4) Å3

Z = 8

F(000) = 1344

Dx = 1.412 Mg m−3 Melting point: 463 K

Mo radiation, λ = 0.71073 Å Cell parameters from 7441 reflections θ = 2.3–28.3°

µ = 0.23 mm−1

T = 292 K Block, colorless 0.30 × 0.20 × 0.20 mm

Data collection

Bruker SMART 4K CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 2003) Tmin = 0.936, Tmax = 0.956

16980 measured reflections 3620 independent reflections 3090 reflections with I > 2σ(I) Rint = 0.057

θmax = 28.0°, θmin = 2.1°

h = −29→28 k = −14→14 l = −19→19

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.045

wR(F2) = 0.120

S = 1.05 3620 reflections 209 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0671P)2 + 0.7743P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.21 e Å−3 Δρmin = −0.35 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 −0.02951 (7) −0.00160 (12) 0.08998 (11) 0.0408 (3)

C2 −0.07988 (8) 0.09192 (15) 0.04456 (12) 0.0494 (3)

H2 −0.0645 0.1693 0.0704 0.059*

C3 −0.15289 (9) 0.06803 (18) −0.03936 (14) 0.0594 (4)

H3 −0.1870 0.1299 −0.0713 0.071*

C4 −0.17585 (8) −0.04851 (18) −0.07664 (13) 0.0596 (4)

H4 −0.2254 −0.0631 −0.1327 0.071*

C5 −0.12722 (9) −0.14225 (16) −0.03289 (13) 0.0546 (4)

H5 −0.1433 −0.2195 −0.0583 0.066*

C6 −0.05263 (8) −0.11815 (13) 0.05129 (11) 0.0454 (3)

C7 0.04878 (7) 0.00306 (12) 0.17617 (10) 0.0380 (3)

C8 0.08178 (8) −0.10584 (12) 0.19779 (11) 0.0423 (3)

C9 0.15982 (8) −0.12020 (12) 0.27669 (11) 0.0439 (3)

C10 0.15544 (7) 0.09391 (11) 0.30399 (10) 0.0373 (3)

C11 0.27430 (7) −0.01167 (12) 0.41539 (11) 0.0403 (3)

C12 0.31985 (8) 0.05726 (13) 0.40266 (12) 0.0481 (3)

H12 0.3001 0.1036 0.3392 0.058*

C13 0.39512 (9) 0.05632 (16) 0.48557 (15) 0.0597 (4)

H13 0.4261 0.1032 0.4783 0.072*

C14 0.42440 (9) −0.01378 (16) 0.57889 (15) 0.0638 (5)

H14 0.4751 −0.0145 0.6340 0.077*

C15 0.37891 (9) −0.08225 (14) 0.59035 (13) 0.0592 (4)

H15 0.3989 −0.1293 0.6535 0.071*

C16 0.30339 (8) −0.08216 (12) 0.50884 (12) 0.0469 (3)

H16 0.2726 −0.1289 0.5168 0.056*

C17 0.15953 (8) 0.29895 (11) 0.34532 (12) 0.0449 (3)

H17A 0.1901 0.3505 0.4094 0.054*

H17B 0.1137 0.2850 0.3364 0.054*

C18 0.14303 (10) 0.36009 (14) 0.24347 (14) 0.0582 (4)

H18A 0.1859 0.3577 0.2440 0.087*

H18B 0.1298 0.4415 0.2430 0.087*

H18C 0.1029 0.3203 0.1782 0.087*

N1 0.08543 (6) 0.10562 (10) 0.22964 (9) 0.0393 (3)

N2 0.19518 (6) −0.01064 (9) 0.33058 (9) 0.0394 (3)

O1 0.19509 (6) −0.21130 (9) 0.29867 (10) 0.0609 (3)

O2 0.19736 (5) 0.18566 (8) 0.36566 (8) 0.0446 (2)

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, o2229–o2230

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.0359 (7) 0.0508 (8) 0.0362 (6) −0.0060 (5) 0.0216 (6) −0.0048 (5) C2 0.0402 (7) 0.0582 (9) 0.0459 (7) 0.0015 (6) 0.0233 (6) −0.0045 (6) C3 0.0397 (8) 0.0809 (12) 0.0494 (8) 0.0030 (8) 0.0219 (7) −0.0017 (8) C4 0.0369 (7) 0.0915 (13) 0.0426 (8) −0.0121 (8) 0.0194 (6) −0.0053 (8) C5 0.0489 (8) 0.0674 (10) 0.0450 (8) −0.0222 (7) 0.0263 (7) −0.0120 (7) C6 0.0433 (7) 0.0516 (8) 0.0416 (7) −0.0096 (6) 0.0253 (6) −0.0048 (6) C7 0.0376 (7) 0.0394 (7) 0.0371 (6) −0.0032 (5) 0.0221 (6) −0.0034 (5) C8 0.0412 (7) 0.0367 (7) 0.0439 (7) −0.0071 (5) 0.0223 (6) −0.0058 (5) C9 0.0448 (7) 0.0341 (6) 0.0469 (7) −0.0008 (5) 0.0238 (6) −0.0027 (5) C10 0.0385 (6) 0.0339 (6) 0.0353 (6) −0.0007 (5) 0.0197 (5) −0.0032 (5) C11 0.0362 (7) 0.0373 (6) 0.0395 (7) 0.0028 (5) 0.0181 (6) −0.0056 (5) C12 0.0463 (8) 0.0479 (8) 0.0483 (8) −0.0014 (6) 0.0270 (7) −0.0047 (6) C13 0.0438 (8) 0.0603 (10) 0.0715 (11) −0.0075 (7) 0.0322 (8) −0.0165 (8) C14 0.0382 (8) 0.0599 (10) 0.0639 (10) 0.0087 (7) 0.0141 (7) −0.0119 (8) C15 0.0545 (9) 0.0483 (8) 0.0473 (8) 0.0158 (7) 0.0151 (7) 0.0013 (6) C16 0.0483 (8) 0.0389 (7) 0.0468 (7) 0.0061 (6) 0.0245 (6) −0.0005 (6) C17 0.0453 (7) 0.0324 (6) 0.0462 (7) −0.0003 (5) 0.0212 (6) −0.0078 (5) C18 0.0619 (10) 0.0451 (8) 0.0564 (9) −0.0011 (7) 0.0289 (8) 0.0025 (7) N1 0.0358 (6) 0.0370 (6) 0.0376 (5) −0.0006 (4) 0.0176 (5) −0.0045 (4) N2 0.0356 (6) 0.0343 (5) 0.0387 (6) 0.0004 (4) 0.0168 (5) −0.0028 (4) O1 0.0542 (7) 0.0362 (5) 0.0683 (7) 0.0055 (4) 0.0232 (6) −0.0060 (5) O2 0.0375 (5) 0.0350 (5) 0.0430 (5) −0.0003 (4) 0.0139 (4) −0.0076 (4) S1 0.0505 (2) 0.0386 (2) 0.0600 (3) −0.01165 (14) 0.0259 (2) −0.00964 (15)

Geometric parameters (Å, º)

C1—C2 1.392 (2) C10—N2 1.3838 (16)

C1—C6 1.400 (2) C11—C12 1.384 (2)

C1—C7 1.4403 (18) C11—C16 1.384 (2)

C2—C3 1.379 (2) C11—N2 1.4493 (17)

C2—H2 0.9300 C12—C13 1.384 (2)

C3—C4 1.396 (3) C12—H12 0.9300

C3—H3 0.9300 C13—C14 1.379 (3)

C4—C5 1.373 (2) C13—H13 0.9300

C4—H4 0.9300 C14—C15 1.369 (3)

C5—C6 1.4033 (19) C14—H14 0.9300

C5—H5 0.9300 C15—C16 1.385 (2)

C6—S1 1.7444 (16) C15—H15 0.9300

C7—N1 1.3650 (16) C16—H16 0.9300

C7—C8 1.3664 (19) C17—O2 1.4591 (15)

C8—C9 1.4301 (19) C17—C18 1.498 (2)

C8—S1 1.7366 (13) C17—H17A 0.9700

C9—O1 1.2147 (17) C17—H17B 0.9700

C9—N2 1.4265 (17) C18—H18A 0.9600

(6)

C10—O2 1.3300 (15) C18—H18C 0.9600

C2—C1—C6 120.55 (13) C11—C12—C13 119.14 (15)

C2—C1—C7 128.29 (13) C11—C12—H12 120.4

C6—C1—C7 111.15 (12) C13—C12—H12 120.4

C3—C2—C1 118.93 (15) C14—C13—C12 120.38 (16)

C3—C2—H2 120.5 C14—C13—H13 119.8

C1—C2—H2 120.5 C12—C13—H13 119.8

C2—C3—C4 120.31 (16) C15—C14—C13 120.02 (15)

C2—C3—H3 119.8 C15—C14—H14 120.0

C4—C3—H3 119.8 C13—C14—H14 120.0

C5—C4—C3 121.81 (14) C14—C15—C16 120.63 (15)

C5—C4—H4 119.1 C14—C15—H15 119.7

C3—C4—H4 119.1 C16—C15—H15 119.7

C4—C5—C6 118.11 (15) C11—C16—C15 119.12 (15)

C4—C5—H5 120.9 C11—C16—H16 120.4

C6—C5—H5 120.9 C15—C16—H16 120.4

C1—C6—C5 120.28 (14) O2—C17—C18 111.98 (13)

C1—C6—S1 112.45 (10) O2—C17—H17A 109.2

C5—C6—S1 127.27 (13) C18—C17—H17A 109.2

N1—C7—C8 124.16 (12) O2—C17—H17B 109.2

N1—C7—C1 123.24 (11) C18—C17—H17B 109.2

C8—C7—C1 112.60 (11) H17A—C17—H17B 107.9

C7—C8—C9 121.72 (12) C17—C18—H18A 109.5

C7—C8—S1 113.31 (10) C17—C18—H18B 109.5

C9—C8—S1 124.94 (10) H18A—C18—H18B 109.5

O1—C9—N2 121.14 (12) C17—C18—H18C 109.5

O1—C9—C8 127.18 (13) H18A—C18—H18C 109.5

N2—C9—C8 111.67 (11) H18B—C18—H18C 109.5

N1—C10—O2 121.38 (11) C10—N1—C7 115.11 (11)

N1—C10—N2 125.90 (11) C10—N2—C9 121.35 (11)

O2—C10—N2 112.70 (11) C10—N2—C11 120.52 (10)

C12—C11—C16 120.70 (13) C9—N2—C11 118.13 (10)

C12—C11—N2 120.16 (12) C10—O2—C17 116.38 (10)

C16—C11—N2 119.14 (13) C8—S1—C6 90.46 (7)

C6—C1—C2—C3 −0.2 (2) C13—C14—C15—C16 0.1 (2)

C7—C1—C2—C3 178.95 (14) C12—C11—C16—C15 0.5 (2)

C1—C2—C3—C4 1.0 (2) N2—C11—C16—C15 −179.39 (12)

C2—C3—C4—C5 −0.8 (2) C14—C15—C16—C11 −0.1 (2)

C3—C4—C5—C6 −0.2 (2) O2—C10—N1—C7 −177.12 (12)

C2—C1—C6—C5 −0.9 (2) N2—C10—N1—C7 1.9 (2)

C7—C1—C6—C5 179.87 (12) C8—C7—N1—C10 0.30 (19)

C2—C1—C6—S1 178.44 (11) C1—C7—N1—C10 −179.54 (12)

C7—C1—C6—S1 −0.82 (15) N1—C10—N2—C9 −1.4 (2)

C4—C5—C6—C1 1.0 (2) O2—C10—N2—C9 177.65 (11)

C4—C5—C6—S1 −178.16 (12) N1—C10—N2—C11 179.24 (13)

(7)

supporting information

sup-5

Acta Cryst. (2006). E62, o2229–o2230

C6—C1—C7—N1 −178.85 (12) O1—C9—N2—C10 178.51 (14)

C2—C1—C7—C8 −177.88 (14) C8—C9—N2—C10 −1.13 (18)

C6—C1—C7—C8 1.30 (17) O1—C9—N2—C11 −2.1 (2)

N1—C7—C8—C9 −2.9 (2) C8—C9—N2—C11 178.24 (12)

C1—C7—C8—C9 176.94 (12) C12—C11—N2—C10 −60.74 (17)

N1—C7—C8—S1 178.93 (10) C16—C11—N2—C10 119.17 (14)

C1—C7—C8—S1 −1.22 (16) C12—C11—N2—C9 119.88 (14)

C7—C8—C9—O1 −176.52 (15) C16—C11—N2—C9 −60.21 (17)

S1—C8—C9—O1 1.4 (2) N1—C10—O2—C17 0.79 (18)

C7—C8—C9—N2 3.1 (2) N2—C10—O2—C17 −178.31 (11)

S1—C8—C9—N2 −178.98 (10) C18—C17—O2—C10 −78.89 (16)

C16—C11—C12—C13 −0.9 (2) C7—C8—S1—C6 0.63 (12)

N2—C11—C12—C13 178.97 (13) C9—C8—S1—C6 −177.45 (13)

C11—C12—C13—C14 0.9 (2) C1—C6—S1—C8 0.13 (11)

Figure

Figure 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical