• No results found

Hexa­kis­(N,N di­methyl­formamide κO)magnesium tetra­chloro­magnesate

N/A
N/A
Protected

Academic year: 2020

Share "Hexa­kis­(N,N di­methyl­formamide κO)magnesium tetra­chloro­magnesate"

Copied!
15
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m942

Barkeret al. [Mg(C

3H7NO)6][MgCl4] doi:10.1107/S1600536806011123 Acta Cryst.(2006). E62, m942–m944

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Hexakis(N,N-dimethylformamide-

j

O)-magnesium tetrachloromagnesate

Bobby L. Barker, David Aubry, Frank R. Fronczek,

Steven F. Watkins* and George G. Stanley

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA

Correspondence e-mail: swatkins@lsu.edu

Key indicators

Single-crystal X-ray study T= 120 K

Mean(l–Mg) = 0.001 A˚ Rfactor = 0.035 wRfactor = 0.068

Data-to-parameter ratio = 11.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 14 March 2006 Accepted 27 March 2006

#2006 International Union of Crystallography All rights reserved

The crystallographically independent unit of the title compound, [Mg(C3H7NO)6][MgCl4], consists of two six-coordinate magnesium dications and two four-six-coordinate magnesium dianions. The two cations are quasi-octahedral and statistically equivalent [average Mg—O = 2.07 (3) A˚ ] and the anions are quasi-tetrahedral and statistically equivalent [average Mg—Cl = 2.334 (11) A˚ ].

Comment

The asymmetric unit of the title compound consists of two cations and two anions. Equivalent bond lengths and bond angles of the metal-bondedN,N-dimethylformamide (DMFA) ligands are statistically equal to one another and are consistent with values reported for the [(DMFA)6Mg]2+ dication by Krautscheid & Vielsack (1999). Other DMFA–Mg complexes have been reported by Hollanderet al.(1973) and Adamset al.

(2005). The bond lengths and angles in the [MgCl4] 2

dianion do not differ significantly from the values reported by Sobota

et al. (1986), Sobota & Szafert (1996), and Pavanello et al.

(1994).

Experimental

Crystals of the title compound were grown from dimethylformamide solution. Their preparation is discussed by Barker (2005).

Crystal data

[Mg(C3H7NO)6][MgCl4]

Mr= 629 Monoclinic,P21

a= 13.905 (2) A˚

b= 12.108 (3) A˚

c= 19.079 (3) A˚ = 90.717 (15)

V= 3211.9 (10) A˚3

Z= 4

Dx= 1.301 Mg m

3 MoKradiation Cell parameters from 7510

reflections = 2.5–27.5

= 0.45 mm1

(2)

Data collection

Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler !scans withoffsets

Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor 1997)

Tmin= 0.929,Tmax= 0.956

45159 measured reflections 7677 independent reflections 5986 reflections withI> 2(I)

Rint= 0.036

max= 27.5

h=18!18

k=15!15

l=24!24

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.035

wR(F2) = 0.068

S= 1.02 7677 reflections 673 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0276P)2 + 0.1249P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.26 e A˚

3 min=0.23 e A˚

[image:2.610.314.562.67.255.2]

3

Table 1

Selected geometric parameters (A˚ ,).

Cl1—Mg3 2.3392 (12) Cl2—Mg3 2.3167 (14) Cl3—Mg3 2.3374 (14) Cl4—Mg3 2.3274 (13) Cl5—Mg4 2.3467 (13) Cl6—Mg4 2.3248 (15) Cl7—Mg4 2.3330 (13) Cl8—Mg4 2.3460 (13)

Mg1—O2 2.035 (2)

Mg1—O6 2.042 (2)

Mg1—O1 2.047 (2)

Mg1—O3 2.058 (2)

Mg1—O5 2.060 (2)

Mg1—O4 2.080 (2)

Mg2—O12 2.046 (2) Mg2—O11 2.054 (2)

Mg2—O9 2.057 (2)

Mg2—O7 2.080 (2)

Mg2—O8 2.098 (2)

Mg2—O10 2.123 (2)

O2—Mg1—O6 91.03 (10) O2—Mg1—O1 91.54 (9) O6—Mg1—O1 91.79 (9) O2—Mg1—O3 87.90 (9) O6—Mg1—O3 91.77 (9) O1—Mg1—O3 176.40 (11) O2—Mg1—O5 94.07 (10) O6—Mg1—O5 174.78 (11) O1—Mg1—O5 86.96 (9) O3—Mg1—O5 89.53 (9) O2—Mg1—O4 174.92 (9) O6—Mg1—O4 87.90 (10) O1—Mg1—O4 93.46 (9) O3—Mg1—O4 87.17 (9) O5—Mg1—O4 87.12 (9) O12—Mg2—O11 177.49 (10) O12—Mg2—O9 88.60 (9) O11—Mg2—O9 89.00 (9) O12—Mg2—O7 90.82 (9) O11—Mg2—O7 91.62 (9) O9—Mg2—O7 176.63 (9)

O12—Mg2—O8 91.20 (9) O11—Mg2—O8 88.33 (9) O9—Mg2—O8 95.95 (9) O7—Mg2—O8 87.38 (9) O12—Mg2—O10 89.81 (9) O11—Mg2—O10 90.87 (9) O9—Mg2—O10 89.10 (9) O7—Mg2—O10 87.58 (9) O8—Mg2—O10 174.87 (10) Cl2—Mg3—Cl4 109.97 (5) Cl2—Mg3—Cl3 107.74 (5) Cl4—Mg3—Cl3 109.80 (5) Cl2—Mg3—Cl1 109.47 (5) Cl4—Mg3—Cl1 108.84 (5) Cl3—Mg3—Cl1 111.01 (5) Cl6—Mg4—Cl7 111.91 (5) Cl6—Mg4—Cl8 108.60 (5) Cl7—Mg4—Cl8 108.18 (5) Cl6—Mg4—Cl5 109.11 (5) Cl7—Mg4—Cl5 109.12 (5) Cl8—Mg4—Cl5 109.91 (5)

Refinement of the Flack (1983) parameter with 6646 Friedel pairs led to a value of 0.49 (3); the crystal was thus assumed to be an inversion twin with equal components. Friedel pairs were averaged in the final refinement, and the absolute structure chosen was arbitrary. All H atoms were placed in calculated positions, with C—H distances of 0.93 A˚ andUiso= 1.2Ueqof the attached C atom, and thereafter

treated as riding. A torsional parameter was refined for each methyl group.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEP-3(Farrugia, 1997); software used to prepare material for publication:SHELXL97.

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

References

Adams, H., Rolfe, A. & Jones, S. (2005).Acta Cryst.E61, m1251–m1252. Barker, B. L. (2005). PhD dissertation, Louisiana State University, USA. URL:

http://etd.lsu.edu/docs/available/etd-04132005-131235/. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Hollander, F. J., Templeton, D. H. & Zalkin, A. (1973).Acta Cryst.B29, 1289– 1295.

Krautscheid, H. & Vielsack, F. (1999).Z. Anorg. Allg. Chem.625, 562–566. Nonius (2000).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

[image:2.610.45.296.288.580.2]

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Figure 1

The atom-numbering scheme for cation–anion pair 1, with displacement ellipsoids shown at the 50% probability level. H atoms are not shown.

Figure 2

[image:2.610.313.566.296.487.2]
(3)

Pavanello, L., Visona, P., Bresadola, S. & Bandoli, G. (1994).Z. Kristallogr.

209, 946–949.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Sobota, P., Pluzinski, T. & Lis, T. (1986).Bull. Pol. Acad. Sci. Chem.33, 491– 496.

Sobota, P. & Szafert, S. (1996).Inorg. Chem.35, 1778–1781.

metal-organic papers

m944

Barkeret al. [Mg(C

(4)

supporting information

Acta Cryst. (2006). E62, m942–m944 [https://doi.org/10.1107/S1600536806011123]

Hexakis(N,N-dimethylformamide-

κ

O)magnesium tetrachloromagnesate

Bobby L. Barker, David Aubry, Frank R. Fronczek, Steven F. Watkins and George G. Stanley

Hexakis(dimethylformamide-κO)magnesium tetrachloromagnesium

Crystal data

[Mg(C3H7NO)6][MgCl4] Mr = 629

Monoclinic, P21

Hall symbol: P 2ybc

a = 13.905 (2) Å

b = 12.108 (3) Å

c = 19.079 (3) Å

β = 90.717 (15)°

V = 3211.9 (10) Å3 Z = 4

F(000) = 1328

Dx = 1.301 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 7510 reflections

θ = 2.5–27.5°

µ = 0.45 mm−1 T = 120 K

Fragment, colorless 0.35 × 0.25 × 0.1 mm

Data collection

Nonius KappaCCD (with an Oxford Cryosystems Cryostream cooler) diffractometer

ω scans with κ offsets

Absorption correction: multi-scan

(SCALEPACK; Otwinowski & Minor 1997)

Tmin = 0.929, Tmax = 0.956

45159 measured reflections

7677 independent reflections 5986 reflections with I > 2σ(I)

Rint = 0.036

θmax = 27.5°, θmin = 2.6° h = −18→18

k = −15→15

l = −24→24

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.035 wR(F2) = 0.068 S = 1.02 7677 reflections 673 parameters

1 restraint

H-atom parameters constrained

w = 1/[σ2(Fo2) + (0.0276P)2 + 0.1249P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.26 e Å−3

Δρmin = −0.23 e Å−3 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-2

Acta Cryst. (2006). E62, m942–m944

H1 0.7171 0.2214 0.3938 0.027*

C2 0.8315 (2) 0.5855 (3) 0.29553 (15) 0.0257 (7)

H2 0.8031 0.5804 0.3404 0.031*

C3 0.8060 (2) 0.4019 (3) 0.10987 (14) 0.0251 (7)

H3 0.8039 0.4785 0.1208 0.03*

C4 0.6483 (2) 0.1565 (3) 0.22322 (15) 0.0322 (8)

H4 0.6108 0.2112 0.1999 0.039*

C5 0.5867 (2) 0.4604 (3) 0.20265 (15) 0.0265 (7)

H5 0.6221 0.5111 0.1751 0.032*

C6 0.9259 (2) 0.1936 (3) 0.31337 (14) 0.0267 (7)

H6 0.8767 0.1415 0.3227 0.032*

C7 0.8651 (2) 1.4998 (3) 0.81427 (14) 0.0222 (7)

H7 0.8063 1.5388 0.8191 0.027*

C8 0.8643 (2) 1.1921 (3) 0.65451 (14) 0.0264 (7)

H8 0.8618 1.1323 0.6867 0.032*

C9 0.5895 (2) 1.1678 (3) 0.68706 (14) 0.0215 (7)

H9 0.6399 1.1253 0.6674 0.026*

C10 0.6385 (2) 1.3112 (3) 0.89857 (15) 0.0280 (7) H10 0.6395 1.2337 0.8909 0.034* C11 0.8475 (2) 1.1500 (3) 0.84557 (14) 0.0217 (7) H11 0.8808 1.2077 0.8693 0.026* C12 0.6128 (2) 1.4838 (3) 0.67797 (15) 0.0261 (7)

H12 0.5675 1.426 0.6709 0.031*

C13 0.6964 (2) 0.4241 (3) 0.50595 (15) 0.0309 (8) H13A 0.728 0.4749 0.4736 0.046* H13B 0.7313 0.4237 0.5509 0.046*

H13C 0.63 0.4482 0.5133 0.046*

C14 0.6664 (2) 0.2227 (3) 0.52163 (15) 0.0301 (8) H14A 0.6713 0.1527 0.4961 0.045* H14B 0.5997 0.2342 0.5359 0.045* H14C 0.7082 0.2202 0.5633 0.045* C15 0.8675 (3) 0.7769 (3) 0.32168 (16) 0.0372 (8) H15A 0.8372 0.7584 0.3662 0.056*

H15B 0.83 0.8344 0.2978 0.056*

(6)

H19A 0.5137 0.0866 0.1478 0.068* H19B 0.4977 −0.0212 0.1947 0.068* H19C 0.5682 −0.0258 0.1291 0.068* C20 0.6821 (4) −0.0339 (4) 0.2432 (3) 0.0737 (15) H20A 0.7411 −0.0024 0.2635 0.111* H20B 0.6988 −0.0878 0.207 0.111* H20C 0.6456 −0.0707 0.2801 0.111* C21 0.4344 (2) 0.3796 (3) 0.23331 (17) 0.0351 (8) H21A 0.4756 0.3356 0.2646 0.053* H21B 0.399 0.3304 0.2013 0.053* H21C 0.3886 0.422 0.2612 0.053* C22 0.4440 (3) 0.5263 (3) 0.14236 (16) 0.0393 (9) H22A 0.491 0.5733 0.1189 0.059* H22B 0.3974 0.5726 0.1668 0.059* H22C 0.4103 0.4806 0.1075 0.059* C23 1.0927 (3) 0.2477 (3) 0.32209 (19) 0.0449 (10) H23A 1.0657 0.3191 0.3076 0.067* H23B 1.1356 0.2202 0.2857 0.067* H23C 1.1289 0.2568 0.3661 0.067* C24 1.0394 (2) 0.0631 (3) 0.36463 (16) 0.0326 (8) H24A 0.9806 0.0202 0.372 0.049* H24B 1.0717 0.0761 0.4098 0.049* H24C 1.0823 0.022 0.3337 0.049* C25 1.0383 (2) 1.4967 (3) 0.82623 (18) 0.0353 (8) H25A 1.0538 1.4601 0.8708 0.053* H25B 1.088 1.5515 0.8158 0.053* H25C 1.0356 1.4416 0.7886 0.053* C26 0.9455 (3) 1.6619 (3) 0.86089 (17) 0.0364 (8) H26A 0.8796 1.6905 0.8611 0.055* H26B 0.9859 1.7104 0.8325 0.055* H26C 0.9709 1.6594 0.909 0.055* C27 0.9261 (3) 1.2662 (4) 0.54552 (16) 0.0446 (10) H27A 0.8965 1.2402 0.5017 0.067* H27B 0.9941 1.2832 0.5377 0.067* H27C 0.8929 1.3329 0.5614 0.067* C28 0.9673 (3) 1.0755 (3) 0.58489 (18) 0.0402 (9) H28A 0.9639 1.0281 0.6264 0.06* H28B 1.0348 1.0897 0.5738 0.06* H28C 0.9357 1.0386 0.5451 0.06* C29 0.4197 (2) 1.2044 (3) 0.69692 (16) 0.0335 (8) H29A 0.4411 1.2478 0.7376 0.05*

H29B 0.3687 1.1534 0.711 0.05*

H29C 0.3949 1.2543 0.6605 0.05* C30 0.4786 (3) 1.0575 (3) 0.61658 (16) 0.0336 (8)

H30A 0.538 1.0195 0.6036 0.05*

H30B 0.4501 1.0928 0.575 0.05*

(7)

supporting information

sup-4

Acta Cryst. (2006). E62, m942–m944

H31A 0.5802 1.1927 0.9943 0.064* H31B 0.4974 1.2777 1.0155 0.064* H31C 0.5996 1.2814 1.055 0.064* C32 0.5930 (2) 1.4634 (3) 0.97480 (16) 0.0319 (8) H32A 0.6195 1.5076 0.9366 0.048* H32B 0.6286 1.4792 1.0183 0.048* H32C 0.525 1.4819 0.9808 0.048* C33 0.9445 (2) 1.0214 (3) 0.91339 (17) 0.0357 (8) H33A 0.9753 1.0896 0.9299 0.053* H33B 0.9932 0.9723 0.8936 0.053* H33C 0.9133 0.9845 0.9528 0.053* C34 0.8256 (3) 0.9547 (3) 0.82497 (18) 0.0397 (9) H34A 0.7817 0.9188 0.8577 0.06*

H34B 0.8743 0.9015 0.81 0.06*

H34C 0.7893 0.9811 0.784 0.06*

C35 0.6597 (3) 1.6713 (3) 0.6623 (2) 0.0445 (10) H35A 0.6821 1.6748 0.7112 0.067* H35B 0.629 1.7414 0.6494 0.067* H35C 0.7146 1.6579 0.6317 0.067* C36 0.5015 (3) 1.6054 (3) 0.61609 (19) 0.0461 (10)

H36A 0.463 1.5378 0.613 0.069*

(8)

O2 0.82860 (16) 0.50255 (19) 0.25731 (10) 0.0304 (5) O3 0.78873 (16) 0.33448 (19) 0.15719 (10) 0.0317 (5) O4 0.71564 (15) 0.18888 (17) 0.26131 (10) 0.0254 (5) O5 0.63180 (16) 0.40271 (19) 0.24605 (11) 0.0311 (5) O6 0.90270 (15) 0.28161 (19) 0.28383 (10) 0.0302 (5) O7 0.86158 (15) 1.40273 (18) 0.79214 (10) 0.0243 (5) O8 0.81567 (15) 1.27627 (19) 0.66794 (10) 0.0281 (5) O9 0.61223 (15) 1.24448 (18) 0.72763 (9) 0.0250 (5) O10 0.67198 (15) 1.37135 (18) 0.85166 (10) 0.0256 (5) O11 0.78276 (15) 1.17601 (17) 0.80318 (10) 0.0258 (5) O12 0.68966 (15) 1.46176 (18) 0.70919 (10) 0.0260 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(9)

supporting information

sup-6

Acta Cryst. (2006). E62, m942–m944

C34 0.045 (2) 0.0236 (19) 0.050 (2) −0.0010 (18) −0.0105 (17) 0.0050 (16) C35 0.045 (2) 0.026 (2) 0.063 (2) −0.0001 (18) 0.0156 (18) 0.0079 (18) C36 0.048 (3) 0.048 (3) 0.042 (2) 0.016 (2) −0.0143 (18) 0.0055 (18) Cl1 0.0306 (4) 0.0239 (4) 0.0248 (4) 0.0004 (4) 0.0017 (3) −0.0036 (3) Cl2 0.0257 (5) 0.0494 (6) 0.0584 (5) −0.0019 (4) −0.0066 (4) −0.0119 (5) Cl3 0.0468 (5) 0.0226 (4) 0.0319 (4) 0.0087 (4) 0.0050 (3) −0.0003 (3) Cl4 0.0527 (6) 0.0246 (5) 0.0305 (4) −0.0026 (4) 0.0132 (4) 0.0031 (3) Cl5 0.0334 (5) 0.0309 (5) 0.0313 (4) −0.0042 (4) −0.0016 (3) 0.0002 (3) Cl6 0.0408 (5) 0.0233 (4) 0.0447 (5) 0.0050 (4) 0.0030 (4) −0.0005 (4) Cl7 0.0564 (6) 0.0444 (6) 0.0389 (5) −0.0129 (5) 0.0178 (4) 0.0080 (4) Cl8 0.0272 (4) 0.0331 (5) 0.0254 (4) 0.0037 (4) 0.0009 (3) 0.0000 (3) Mg1 0.0247 (6) 0.0239 (6) 0.0180 (5) −0.0021 (5) 0.0010 (4) 0.0024 (4) Mg2 0.0241 (6) 0.0203 (6) 0.0184 (5) 0.0015 (4) −0.0014 (4) 0.0003 (4) Mg3 0.0241 (6) 0.0194 (6) 0.0219 (5) 0.0007 (5) 0.0015 (4) −0.0009 (4) Mg4 0.0256 (6) 0.0224 (6) 0.0253 (5) −0.0003 (5) 0.0037 (4) 0.0027 (4) N1 0.0262 (15) 0.0258 (15) 0.0180 (12) 0.0021 (12) 0.0021 (10) 0.0031 (10) N2 0.0291 (15) 0.0221 (15) 0.0188 (12) −0.0003 (12) 0.0034 (10) −0.0015 (10) N3 0.0236 (15) 0.0291 (16) 0.0165 (12) −0.0011 (12) 0.0001 (9) 0.0040 (11) N4 0.0298 (17) 0.0332 (18) 0.0309 (15) −0.0117 (14) −0.0039 (12) −0.0046 (12) N5 0.0242 (15) 0.0268 (15) 0.0261 (13) 0.0024 (13) −0.0002 (10) 0.0016 (11) N6 0.0258 (15) 0.0286 (16) 0.0280 (14) −0.0021 (13) −0.0004 (11) 0.0004 (12) N7 0.0263 (15) 0.0219 (15) 0.0226 (13) −0.0003 (12) 0.0012 (11) −0.0009 (11) N8 0.0220 (15) 0.0392 (18) 0.0283 (14) −0.0009 (13) 0.0022 (11) −0.0066 (12) N9 0.0251 (16) 0.0258 (15) 0.0224 (13) −0.0027 (12) 0.0023 (10) −0.0024 (11) N10 0.0249 (15) 0.0276 (16) 0.0247 (13) −0.0016 (12) 0.0032 (10) −0.0023 (11) N11 0.0212 (15) 0.0201 (15) 0.0280 (13) 0.0005 (12) −0.0014 (10) 0.0041 (11) N12 0.0300 (16) 0.0228 (15) 0.0268 (14) 0.0017 (12) 0.0026 (11) 0.0030 (11) O1 0.0352 (13) 0.0292 (13) 0.0202 (10) −0.0051 (11) 0.0032 (9) 0.0049 (9) O2 0.0410 (14) 0.0260 (13) 0.0243 (11) −0.0062 (11) 0.0044 (9) 0.0023 (10) O3 0.0384 (14) 0.0369 (14) 0.0198 (10) −0.0086 (11) 0.0046 (9) 0.0023 (10) O4 0.0289 (13) 0.0253 (13) 0.0221 (10) −0.0042 (10) −0.0044 (9) −0.0006 (9) O5 0.0294 (13) 0.0315 (13) 0.0325 (12) 0.0030 (11) −0.0032 (9) 0.0076 (10) O6 0.0284 (13) 0.0304 (14) 0.0318 (11) 0.0007 (11) −0.0015 (9) 0.0037 (10) O7 0.0270 (13) 0.0221 (12) 0.0238 (10) −0.0005 (10) −0.0012 (9) 0.0005 (9) O8 0.0283 (12) 0.0336 (14) 0.0222 (10) 0.0038 (11) −0.0002 (9) −0.0051 (10) O9 0.0296 (13) 0.0232 (12) 0.0222 (10) −0.0011 (10) −0.0025 (9) −0.0020 (9) O10 0.0274 (12) 0.0268 (13) 0.0227 (10) 0.0001 (10) 0.0005 (9) −0.0015 (9) O11 0.0264 (12) 0.0228 (12) 0.0280 (11) 0.0046 (10) −0.0023 (9) 0.0038 (9) O12 0.0248 (12) 0.0263 (13) 0.0267 (11) 0.0027 (10) −0.0036 (9) 0.0029 (9)

Geometric parameters (Å, º)

C1—O1 1.245 (3) C23—N6 1.461 (4)

C1—N1 1.323 (3) C23—H23A 0.98

C1—H1 0.95 C23—H23B 0.98

C2—O2 1.241 (4) C23—H23C 0.98

C2—N2 1.314 (4) C24—N6 1.458 (4)

(10)

C3—O3 1.243 (4) C24—H24B 0.98

C3—N3 1.320 (4) C24—H24C 0.98

C3—H3 0.95 C25—N7 1.452 (4)

C4—O4 1.242 (4) C25—H25A 0.98

C4—N4 1.311 (4) C25—H25B 0.98

C4—H4 0.95 C25—H25C 0.98

C5—O5 1.246 (4) C26—N7 1.453 (4)

C5—N5 1.309 (4) C26—H26A 0.98

C5—H5 0.95 C26—H26B 0.98

C6—O6 1.246 (4) C26—H26C 0.98

C6—N6 1.317 (4) C27—N8 1.460 (5)

C6—H6 0.95 C27—H27A 0.98

C7—O7 1.249 (4) C27—H27B 0.98

C7—N7 1.320 (4) C27—H27C 0.98

C7—H7 0.95 C28—N8 1.465 (4)

C8—O8 1.251 (4) C28—H28A 0.98

C8—N8 1.318 (4) C28—H28B 0.98

C8—H8 0.95 C28—H28C 0.98

C9—O9 1.247 (4) C29—N9 1.456 (4)

C9—N9 1.316 (4) C29—H29A 0.98

C9—H9 0.95 C29—H29B 0.98

C10—O10 1.248 (4) C29—H29C 0.98

C10—N10 1.320 (4) C30—N9 1.468 (4)

C10—H10 0.95 C30—H30A 0.98

C11—O11 1.243 (3) C30—H30B 0.98

C11—N11 1.313 (4) C30—H30C 0.98

C11—H11 0.95 C31—N10 1.461 (4)

C12—O12 1.246 (4) C31—H31A 0.98

C12—N12 1.309 (4) C31—H31B 0.98

C12—H12 0.95 C31—H31C 0.98

C13—N1 1.455 (4) C32—N10 1.456 (4)

C13—H13A 0.98 C32—H32A 0.98

C13—H13B 0.98 C32—H32B 0.98

C13—H13C 0.98 C32—H32C 0.98

C14—N1 1.459 (4) C33—N11 1.458 (4)

C14—H14A 0.98 C33—H33A 0.98

C14—H14B 0.98 C33—H33B 0.98

C14—H14C 0.98 C33—H33C 0.98

C15—N2 1.441 (4) C34—N11 1.458 (4)

C15—H15A 0.98 C34—H34A 0.98

C15—H15B 0.98 C34—H34B 0.98

C15—H15C 0.98 C34—H34C 0.98

C16—N2 1.455 (4) C35—N12 1.445 (4)

C16—H16A 0.98 C35—H35A 0.98

C16—H16B 0.98 C35—H35B 0.98

C16—H16C 0.98 C35—H35C 0.98

C17—N3 1.465 (4) C36—N12 1.462 (4)

(11)

supporting information

sup-8

Acta Cryst. (2006). E62, m942–m944

C17—H17B 0.98 C36—H36B 0.98

C17—H17C 0.98 C36—H36C 0.98

C18—N3 1.450 (4) Cl1—Mg3 2.3392 (12)

C18—H18A 0.98 Cl2—Mg3 2.3167 (14)

C18—H18B 0.98 Cl3—Mg3 2.3374 (14)

C18—H18C 0.98 Cl4—Mg3 2.3274 (13)

C19—N4 1.453 (4) Cl5—Mg4 2.3467 (13)

C19—H19A 0.98 Cl6—Mg4 2.3248 (15)

C19—H19B 0.98 Cl7—Mg4 2.3330 (13)

C19—H19C 0.98 Cl8—Mg4 2.3460 (13)

C20—N4 1.442 (5) Mg1—O2 2.035 (2)

C20—H20A 0.98 Mg1—O6 2.042 (2)

C20—H20B 0.98 Mg1—O1 2.047 (2)

C20—H20C 0.98 Mg1—O3 2.058 (2)

C21—N5 1.458 (4) Mg1—O5 2.060 (2)

C21—H21A 0.98 Mg1—O4 2.080 (2)

C21—H21B 0.98 Mg2—O12 2.046 (2)

C21—H21C 0.98 Mg2—O11 2.054 (2)

C22—N5 1.458 (4) Mg2—O9 2.057 (2)

C22—H22A 0.98 Mg2—O7 2.080 (2)

C22—H22B 0.98 Mg2—O8 2.098 (2)

C22—H22C 0.98 Mg2—O10 2.123 (2)

O1—C1—N1 124.8 (3) N9—C29—H29C 109.5 O1—C1—H1 117.6 H29A—C29—H29C 109.5 N1—C1—H1 117.6 H29B—C29—H29C 109.5 O2—C2—N2 124.4 (3) N9—C30—H30A 109.5

O2—C2—H2 117.8 N9—C30—H30B 109.5

N2—C2—H2 117.8 H30A—C30—H30B 109.5 O3—C3—N3 123.3 (3) N9—C30—H30C 109.5 O3—C3—H3 118.4 H30A—C30—H30C 109.5 N3—C3—H3 118.4 H30B—C30—H30C 109.5 O4—C4—N4 125.4 (3) N10—C31—H31A 109.5

O4—C4—H4 117.3 N10—C31—H31B 109.5

N4—C4—H4 117.3 H31A—C31—H31B 109.5 O5—C5—N5 123.8 (3) N10—C31—H31C 109.5 O5—C5—H5 118.1 H31A—C31—H31C 109.5 N5—C5—H5 118.1 H31B—C31—H31C 109.5 O6—C6—N6 123.8 (3) N10—C32—H32A 109.5

O6—C6—H6 118.1 N10—C32—H32B 109.5

N6—C6—H6 118.1 H32A—C32—H32B 109.5 O7—C7—N7 123.9 (3) N10—C32—H32C 109.5 O7—C7—H7 118.1 H32A—C32—H32C 109.5 N7—C7—H7 118.1 H32B—C32—H32C 109.5 O8—C8—N8 124.7 (3) N11—C33—H33A 109.5

O8—C8—H8 117.7 N11—C33—H33B 109.5

(12)
(13)

supporting information

sup-10

Acta Cryst. (2006). E62, m942–m944

(14)

N8—C27—H27B 109.5 C12—N12—C36 122.4 (3) H27A—C27—H27B 109.5 C35—N12—C36 117.9 (3) N8—C27—H27C 109.5 C1—O1—Mg1 126.9 (2) H27A—C27—H27C 109.5 C2—O2—Mg1 135.7 (2) H27B—C27—H27C 109.5 C3—O3—Mg1 133.6 (2) N8—C28—H28A 109.5 C4—O4—Mg1 125.5 (2) N8—C28—H28B 109.5 C5—O5—Mg1 138.4 (2) H28A—C28—H28B 109.5 C6—O6—Mg1 130.7 (2) N8—C28—H28C 109.5 C7—O7—Mg2 125.7 (2) H28A—C28—H28C 109.5 C8—O8—Mg2 131.3 (2) H28B—C28—H28C 109.5 C9—O9—Mg2 135.6 (2) N9—C29—H29A 109.5 C10—O10—Mg2 127.6 (2) N9—C29—H29B 109.5 C11—O11—Mg2 134.9 (2) H29A—C29—H29B 109.5 C12—O12—Mg2 132.1 (2)

(15)

supporting information

sup-12

Acta Cryst. (2006). E62, m942–m944

Figure

Figure 1

References

Related documents

niezależnie od rodzaju konkurencji ilościowej na rynku produktu oraz formy funkcji kosztów całkowitych produkcji, współpraca przedsiębiorstw jedynie na etapie badań i

This paper aims to demonstrate the role of RFID in improving agricultural products cold chain monitoring, and to provide an overview of developments in RFID application in

Aiming to address this is- sue, we present one step in the development of improved datasets by integrating the Argu- ment Scheme Key – a novel annotation method based on one of the

(2019) Linking soy oil demand from the US Renewable Fuel Standard to palm oil expansion through an analysis on vegetable oil

is set to 0.5. We use MedNLI, RQE, QA, and MedQuAD in medical domain as in-domain data and MNLI as external data. For MedNLI, we ad- ditionally find that using MedNLI as in-domain

Keywords: Risk Analysis; Intraday Volatility; National Stock Exchange of India; Nifty Futures; Temporal

CSEA Return of Conventional Southeast Asia equity Return of Southeast Asia composite index CTH Return of Conventional Thailand equity Return of Stock Exchange of Thailand SET

Table II: Results for the open economy equilibrium with symmetric countries using the Pareto distribution recommend policy: the “optimal” corporate tax rates are the same as in