• No results found

5 Chloro 2 (2 hy­droxy­benzyl­­idene­amino)benzo­nitrile

N/A
N/A
Protected

Academic year: 2020

Share "5 Chloro 2 (2 hy­droxy­benzyl­­idene­amino)benzo­nitrile"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o2417–o2418 doi:10.1107/S1600536806018320 Chenget al. C

14H9ClN2O

o2417

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Chloro-2-(2-hydroxybenzylideneamino)-benzonitrile

Kui Cheng,aHai-Liang Zhu,a* Zhi-Bin Liband Zheng Yana

a

Department of Chemistry, Wuhan University of Science and Engineering, Wuhan 430073, People’s Republic of China, andbDepartment of Environment and Urban Construction, Wuhan University of Science and Engineering, Wuhan 430073, People’s Republic of China

Correspondence e-mail: hailiang_zhu@163.com

Key indicators

Single-crystal X-ray study

T= 292 K

Mean(C–C) = 0.005 A˚

Rfactor = 0.073

wRfactor = 0.168

Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 2 May 2006 Accepted 17 May 2006

#2006 International Union of Crystallography All rights reserved

The molecule of the title compound, C14H9ClN2O, is

essentially planar, suggesting a high degree of conjugation throughout the system. Intermolecular hydrogen bonds link adjacent molecules, forming one-dimensional chains running parallel to thebaxis.

Comment

Recently, we have reported a few Schiff base compounds (Chenget al., 2005, 2006; Zhuet al., 2005). As an extension of our work on the structural characterization of Schiff bases, the title compound, (I), is reported here.

In the title compound, all bond lengths are within normal ranges (Allenet al., 1987) (Fig. 1). The C1 N1 bond length of 1.275 (4) A˚ conforms to the value for a double bond. A strong intramolecular O—H N hydrogen bond (Table 1) results in the formation of a pseudo-six-membered planar ring (C7/C6/ C1/O1/H1/N1) (Fig. 1). In the crystal packing, intermolecular C—H O interactions (Table 1) link the molecules, forming chains running parallel to thebaxis (Fig. 2).

Experimental

Salicylaldehyde and 2-cyano-4-chloroaniline were available commercially and were used without further purification. A solutiom of salicylaldehyde (2.0 mmol, 244 mg) in methanol (20 ml) was added to a solution of 2-cyano-4-chloroaniline (2.0 mmol, 304 mg) in ethanol (20 ml). The mixture was stirred for 20 min and filtered. After leaving the filtrate to stand in air for 6 d, large yellow prismatic crystals of (I) formed at the bottom of the vessel. The crystals were isolated, washed three times with methanol and dried in a vacuum desiccator using P4O10(yield 88.7%). Analysis found: C 83.8, H 5.1, N

28.3%; calculated for C17H13NO: C 84.1, H 5.0, N 28.0%.

Crystal data

C14H9ClN2O Mr= 256.68

Monoclinic,P21=c a= 4.7060 (12) A˚

b= 14.372 (4) A˚

c= 18.225 (5) A˚

= 91.228 (4)

V= 1232.4 (6) A˚3

Z= 4

Dx= 1.383 Mg m 3

MoKradiation

= 0.30 mm1

T= 292 (2) K

(2)

Data collection

Bruker SMART CCD area-detector diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.883,Tmax= 0.928

9840 measured reflections 2299 independent reflections 1696 reflections withI> 2(I)

Rint= 0.117

max= 25.5

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.074 wR(F2) = 0.168 S= 1.10 2299 reflections 163 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.051P)2

+ 0.9611P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.28 e A˚

3 min=0.26 e A˚

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1 N1 0.82 1.98 2.620 (4) 135 C10—H10 O1i

0.93 2.50 3.321 (4) 147

Symmetry code: (i)x;y1 2;zþ

1 2.

H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H distances of 0.93 A˚ , O—H = 0.82 A˚ and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). The rather highRintvalue

(0.12) may result from the relatively poor quality of the crystal. Data collection:SMART(Siemens, 1996); cell refinement:SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.

This project was sponsored by the Scientific Research Foundation for returned overseas Chinese scholars.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Cheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005).Acta Cryst.E61, o1137– o1138.

Cheng, K., Zhu, H.-L., Liu, J.-J., Gao, M. & Zeng, J.-H. (2006).Acta Cryst.E62, o1932–o1933.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of

Go¨ttingen, Germany.

Sheldrick, G. M. (1997b).SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996).SMARTandSAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[image:2.610.312.566.73.204.2]

Zhu, H.-L., Cheng, K., You, Z.-L. & Li, Y.-G. (2005).Acta Cryst.E61, m755– m756.

Figure 1

[image:2.610.317.564.250.453.2]

The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates a hydrogen bond.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o2417–o2418

supporting information

Acta Cryst. (2006). E62, o2417–o2418 [https://doi.org/10.1107/S1600536806018320]

5-Chloro-2-(2-hydroxybenzylideneamino)benzonitrile

Kui Cheng, Hai-Liang Zhu, Zhi-Bin Li and Zheng Yan

5-Chloro-2-(2-hydroxybenzylideneamino)benzonitrile

Crystal data

C14H9ClN2O Mr = 256.68

Monoclinic, P21/c Hall symbol: -P 2ybc

a = 4.7060 (12) Å

b = 14.372 (4) Å

c = 18.225 (5) Å

β = 91.228 (4)°

V = 1232.4 (6) Å3

Z = 4

F(000) = 528

Dx = 1.383 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 7961 reflections

θ = 1.7–25.4°

µ = 0.30 mm−1

T = 292 K

Elongated prism, yellow 0.62 × 0.35 × 0.25 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.883, Tmax = 0.928

9840 measured reflections 2299 independent reflections 1696 reflections with I > 2σ(I) Rint = 0.117

θmax = 25.5°, θmin = 1.8°

h = −5→5

k = −17→17

l = −22→22

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.074 wR(F2) = 0.168

S = 1.10

2299 reflections 163 parameters 36 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.051P)2 + 0.9611P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.28 e Å−3 Δρmin = −0.26 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.5293 (8) 0.7436 (2) 0.36238 (18) 0.0449 (9)

C2 0.7384 (8) 0.7691 (3) 0.4127 (2) 0.0593 (11)

H2 0.8007 0.8305 0.4150 0.071*

C3 0.8541 (9) 0.7039 (3) 0.4593 (2) 0.0620 (12)

H3 0.9943 0.7214 0.4933 0.074*

C4 0.7651 (9) 0.6127 (3) 0.4564 (2) 0.0677 (12)

H4 0.8457 0.5687 0.4880 0.081*

C5 0.5568 (8) 0.5873 (3) 0.4067 (2) 0.0576 (11)

H5 0.4955 0.5258 0.4051 0.069*

C6 0.4353 (7) 0.6519 (2) 0.35857 (17) 0.0420 (9)

C7 0.2192 (8) 0.6226 (3) 0.30670 (18) 0.0401 (8)

H7 0.1644 0.5604 0.3063 0.048*

C8 −0.1121 (7) 0.6487 (2) 0.21032 (17) 0.0374 (8)

C9 −0.2116 (7) 0.5583 (2) 0.20228 (18) 0.0438 (9)

H9 −0.1416 0.5117 0.2330 0.053*

C10 −0.4130 (8) 0.5373 (2) 0.14916 (18) 0.0478 (10)

H10 −0.4744 0.4762 0.1435 0.057*

C11 −0.5252 (7) 0.6058 (2) 0.10406 (17) 0.0388 (8)

C12 −0.4333 (7) 0.6963 (2) 0.11130 (18) 0.0411 (9)

H12 −0.5091 0.7430 0.0814 0.049*

C13 −0.2253 (7) 0.7167 (2) 0.16398 (16) 0.0377 (8)

C14 −0.1226 (10) 0.8111 (3) 0.1696 (2) 0.0551 (11)

Cl1 −0.7739 (2) 0.57835 (7) 0.03661 (5) 0.0559 (4)

N1 0.0994 (6) 0.67831 (19) 0.26123 (15) 0.0401 (7)

O1 0.4206 (7) 0.81007 (18) 0.31778 (16) 0.0676 (9)

H1 0.3521 0.7858 0.2807 0.101*

N2 −0.0365 (11) 0.8850 (3) 0.1707 (2) 0.0891 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.046 (2) 0.052 (2) 0.0365 (19) 0.0027 (18) −0.0014 (17) −0.0068 (17)

C2 0.055 (3) 0.065 (3) 0.058 (2) 0.002 (2) −0.007 (2) −0.019 (2)

C3 0.047 (3) 0.087 (3) 0.052 (2) 0.009 (2) −0.006 (2) −0.023 (2)

C4 0.063 (3) 0.085 (3) 0.055 (3) 0.012 (2) −0.012 (2) 0.009 (2)

C5 0.060 (3) 0.060 (3) 0.053 (2) 0.002 (2) −0.005 (2) 0.011 (2)

C6 0.042 (2) 0.051 (2) 0.0330 (19) 0.0030 (17) 0.0059 (16) −0.0006 (17)

C7 0.043 (2) 0.0438 (19) 0.0341 (19) −0.0025 (17) 0.0024 (16) −0.0017 (16)

C8 0.043 (2) 0.0384 (19) 0.0312 (17) 0.0019 (16) −0.0005 (16) −0.0056 (15)

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o2417–o2418

C10 0.058 (3) 0.037 (2) 0.047 (2) −0.0044 (18) −0.0032 (19) −0.0090 (17)

C11 0.038 (2) 0.048 (2) 0.0307 (17) −0.0019 (16) 0.0021 (15) −0.0105 (15)

C12 0.044 (2) 0.043 (2) 0.0365 (19) 0.0077 (16) −0.0010 (16) −0.0006 (15)

C13 0.045 (2) 0.0328 (18) 0.0354 (18) −0.0020 (16) 0.0032 (16) −0.0031 (15)

C14 0.072 (3) 0.040 (2) 0.053 (2) −0.004 (2) −0.014 (2) 0.0040 (18)

Cl1 0.0512 (6) 0.0660 (7) 0.0501 (6) −0.0012 (5) −0.0110 (4) −0.0148 (5)

N1 0.0461 (18) 0.0398 (16) 0.0344 (15) 0.0001 (14) 0.0005 (14) −0.0037 (13)

O1 0.094 (2) 0.0423 (15) 0.0649 (19) −0.0081 (15) −0.0241 (17) −0.0048 (14)

N2 0.126 (4) 0.043 (2) 0.096 (3) −0.016 (2) −0.036 (3) 0.008 (2)

Geometric parameters (Å, º)

C1—O1 1.348 (4) C8—C9 1.387 (3)

C1—C2 1.381 (4) C8—C13 1.390 (3)

C1—C6 1.392 (4) C8—N1 1.412 (4)

C2—C3 1.370 (4) C9—C10 1.374 (4)

C2—H2 0.9300 C9—H9 0.9300

C3—C4 1.377 (4) C10—C11 1.380 (4)

C3—H3 0.9300 C10—H10 0.9300

C4—C5 1.370 (4) C11—C12 1.376 (3)

C4—H4 0.9300 C11—Cl1 1.725 (3)

C5—C6 1.392 (4) C12—C13 1.387 (3)

C5—H5 0.9300 C12—H12 0.9300

C6—C7 1.437 (5) C13—C14 1.443 (5)

C7—N1 1.275 (4) C14—N2 1.137 (5)

C7—H7 0.9300 O1—H1 0.8200

O1—C1—C2 117.9 (3) C9—C8—C13 118.0 (3)

O1—C1—C6 121.7 (3) C9—C8—N1 125.7 (3)

C2—C1—C6 120.4 (3) C13—C8—N1 116.3 (3)

C3—C2—C1 119.9 (4) C10—C9—C8 120.4 (3)

C3—C2—H2 120.1 C10—C9—H9 119.8

C1—C2—H2 120.1 C8—C9—H9 119.8

C2—C3—C4 120.8 (4) C9—C10—C11 120.8 (3)

C2—C3—H3 119.6 C9—C10—H10 119.6

C4—C3—H3 119.6 C11—C10—H10 119.6

C5—C4—C3 119.4 (4) C12—C11—C10 120.1 (3)

C5—C4—H4 120.3 C12—C11—Cl1 119.4 (2)

C3—C4—H4 120.3 C10—C11—Cl1 120.4 (2)

C4—C5—C6 121.2 (4) C11—C12—C13 118.8 (3)

C4—C5—H5 119.4 C11—C12—H12 120.6

C6—C5—H5 119.4 C13—C12—H12 120.6

C1—C6—C5 118.3 (3) C12—C13—C8 121.8 (3)

C1—C6—C7 122.0 (3) C12—C13—C14 118.5 (3)

C5—C6—C7 119.7 (3) C8—C13—C14 119.7 (3)

N1—C7—C6 122.7 (3) N2—C14—C13 176.7 (5)

N1—C7—H7 118.6 C7—N1—C8 122.2 (3)

(6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H1···N1 0.82 1.98 2.620 (4) 135

C10—H10···O1i 0.93 2.50 3.321 (4) 147

Figure

Figure 2

References

Related documents

We first test the co-integration relationships between selected variables, and then we determine the structural monetary shocks, highlighting the significant role

Our key results also use separate estimates of counties’ effects on test scores for high- and low-income children, which are constructed by further restricting this sample average

In this paper, we will apply a hybrid approach for finding the correct splits of words and aug- menting a morphological database. In Section 2, we provide a concise overview of

It also appears from the table that, those employees in the private sector, belonging to higher percentile of wage distribution, were able to adjust to the changed scenario

Where this was not available (e.g. in the English-Irish Dictionary, all expressions were un- der an English headword), the first word of the Irish entry was used.. As Irish is

Para ello hemos querido conocer la percepción de los estudiantes del entorno híbrido frente al exclusivamente online, así como su opinión sobre la aplicación de la

Looking at the growth rate series, we observe significant negative trends in three countries: Chad, Equatorial Guinea and Mozambique, and evidence of mean reversion,

Gate Layer : The concatenation of word representations and POS tag embeddings is used as input to a sigmoid dense layer.. The value of the sigmoid output controls the