• No results found

Diffusion Of Magnetospheric Protons By Turbulent Drift Waves

N/A
N/A
Protected

Academic year: 2021

Share "Diffusion Of Magnetospheric Protons By Turbulent Drift Waves"

Copied!
144
0
0

Loading.... (view fulltext now)

Full text

(1)

Diffusion Of Magnetospheric Protons By Turbulent Drift Waves

Item Type Thesis

Authors Maggs, James Edward

Download date 31/08/2021 20:52:06

Link to Item http://hdl.handle.net/11122/9237

(2)

72-13,059

I MAGGS, James Edward, 1943-

f;

DIFFUSION OF MAGNETOSPHERIC PROTONS BY TURBULENT DRIFT WAVES.

f

I University of Alaska, Ph.D., 1971

| Geophysics

I University Microfilms, A XEROX Com pany, Ann Arbor, Michigan ;

I THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(3)

DIFFUSION OF MAGNETOSPHERIC PROTONS

BY TURBULENT D RIFT WAVES

A

DISSERTATION

P resented t o th e F a c u lt y o f the

U n iv e r s it y o f A la s k a in p a r t i a l f u l f i l l m e n t

o f th e re q u ire m e n ts

f o r th e d egree o f

DOCTOR OF PHILOSOPHY

by

James E . Maggs, B . S . , M .S.

C ol le g e , A la s k a

May 1971

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4)

DIFFUSION OF MAGNETOSPHER1C PROTONS

BY TURBULENT DRIFT WAVES

APPROVED:

APPROVED:

0 , date : ^ !~l< ! l {

Dean o f th e C o lle g e o f M ath em atics, P h y s ic a l S cie nce s and E n g in e e rin g

^

V ic e P r e s id e n t f o r Research and Advanced Study

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(5)

PLEASE NOTE:

Some pages have indistinct print. Filmed as received.

UNIVERSITY MICROFILMS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(6)

A b s tr a c t

The d if f u s io n o f charged p a r t ic le s by t u r b u le n t e l e c t r o s t a t i c

o s c i l l a t io n s in th e magnetosphere is in v e s tig a te d as a p o s s ib le

mechanism f o r e n e r g iz in g and t r a n s p o r tin g r in g c u r r e n t p ro to n s . A

sim ple model o f th e magnetosphere is used t o c a r r y o u t th e i n v e s t i ­

g a t io n . In th e model th e geom agnetic f i e l d is taken to be an

a z im u th a lly sym m etric a x ia l f i e l d , th e ionosphere is taken t o be

p e r f e c t ly c o n d u c tin g , and the r in g c u r r e n t and plasmasphere plasmas

a re assumed t o have M axw ellian d is t r ib u t io n s o f v e l o c i t i e s . The

d if f u s io n process is assumed t o p re s e rv e th e m agnetic moment o r f i r s t

a d ia b a t ic in v a r ia n t o f th e p a r t i c l e s . The b e h a v io r o f low freq uency

(<< ion g y r o f re a u e n c y ), long wave length (>> ion g y r o ra d iu s )

e l e c t r o s t a t i c o s c i l l a t io n s is s tu d ie d . The e l e c t r o s t a t i c o s c i l l a t io n s

are t r e a te d as n a tu ra l modes o f th e m agnetospheric c a v i t y d r iv e n by

f lu c t u a t io n s in th e e l e c t r i c p o t e n t ia l on th e magnetopause, th e

m agn etospheric b o undary. I t is concluded t h a t d if f u s io n o f r in g

c u r r e n t p ro to ns by t h i s process is not im p o rta n t in th e ma.gnetosphere.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(7)

ACKNOWLEDGEMENTS

I would lik e t o e xp re ss my deepest g r a t it u d e t o P ro fe s s o r D. W.

S w if t f o r both h is guidance and s u p p o rt, e s p e c ia lly in c r i t i c i s i n g and

re v ie w in g t h i s t h e s is . I acknowledge my Committee Members f o r t h e i r

gen era l s u p p o rt.

I would lik e to thank the personnel o f th e G e o p h ysic a l I n s t i t u t e

D r a f tin g O f f ic e and Steno Pool f o r t h e i r su sta in e d e f f o r t s d u rin g th e

in e v it a b le la s t minute ru sh .

My s in c e r e s t thanks goes t o my w if e , Jo a n n ie , who p a t i e n t l y t o l e r a t ­

ed a l l o f th e t r i a l s and t r i b u l a t i o n s which accompanied th e w r i t i n g o f

t h i s t h e s is .

T h is work was supported by th e N a tio n a l S cie n ce F oundation G ra nts

GA-77I and GA-4597.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(8)

T a b le o f C o ntents

Chap+c ' I .

A , r i e f d is c u s s io n o f th e aims o f th e paper and th e

■'-"hod t o be used in s o lv in g the problem . A d is c u s s io n of th e req uirem ents necessa ry f o r th e mechanism w hich s u p p lie s r in g c u rre n t p a r t ic le s and a re vie w o f some o f th e d i f f u s i o n processes a lre a d y in v e s tig a t e d and t h e i r . cone I us io n s .

C h a p te r 2. A Model M agnetosphere

A g e n e ra l d is c u s s io n o f seme o f th e known fe a tu re s and p a r t i c l e p o p u la tio n s o f th e m agnetosphere. A model magnetosphere which in c o rp o ra te s th e r in g c u r r e n t , plasm asphere, magnetopause and ionosp h ere is d e s c rib e d .

C h a p te r 3. The D if f u s io n E qu atio n

A b r i e f o u t lin e o f th e method used t o develo p a d i f f u s i o n e q u a tio n f o r th e phase space d e n s it ie s o f g u id in g c e n t e r s . A d e s c r ip t io n o f th e s t a t i s t i c a l model used t o re p re s e n t tu rb u le n c e >n the model magnetosphere. An e x p r e s s io n f o r th e d if f u s io n c o e f f ic i e n t .

C h a p te r 4. D r i f t Modes in th e Model Magnetosphere A d i f f e r e n t i a l eq u a tio n f o r th e e l e c t r i c p o t e n t ia l in th e model magnetosphere is g iv e n and d is c u s s e d . The method f o r s o lv in g th e e q u a tio n and r e s t r i c t i o n s on th e s o lu t io n s are g iv e n .

C h a p te r 5. The S o lu tio n s

A d is c u s s io n o f th e computer program used t o s o lv e th e d i f f e r e n t i a l e q u a tio n and th e r e s u lt s o f th e co m pu ta tio ns are review ed in the l i g h t o f th e r e s t r i c t i o n s g iv e n in c h a p te r 4. The s o lu t io n s are d is c u s s e d .

C h a p te r 6. R e s u lts and C o n c lu s io n s

The d if f u s io n c o e f f ic i e n t f o r r a d ia l d if f u s io n is c a lc u la t e a f o r the exam ple g iv e n in c h a p te r 5 in w hich energy can be tr a n s p o r te d in t o most o f th e r in g c u r r e n t re g io n . The in e f f e c t iv e n e s s o f p a r t i c l e d if f u s io n in the magnetosphere by t u r b u le n t e l e c t r o ­ s t a t i c o s c i l l a t io n s is d is c u s s e d .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(9)

Append ic e s

'Page

A p p e n d ix A - I . 73

The d evelopm ent o f the H a m ilto n ia n f o r p a r t i c l e motion in th e model magnetosphere under th e assum ption t h a t y is c o n se rv e d .

A p p e n d ix A-1 I . 80

The d e t a i ls o f th e d e r iv a tio n o f th e d if f u s io n eq u a tio n s u it a b le f o r th e model m agnetosphere.

A p e n d ix A-1 I I . 85

The d e t a i ls o f th e c a lc u la t io n o f th e d if f u s io n c o e f f ic i e n t .

A p p e n d ix B - l . 97

The developm ent o f th e d i f f e r e n t i a l e q u a tio n f o r th e e l e c t r i c p o t e n t ia l in th e model m agnetosphere.

A p p e n d ix B - l I . 106

A b r i e f re v ie w o f th e W .K .B. method.

A p p e n d ix C . • 112

The com puter programs used to s o lv e th e d i f f e r e n t i a l . e q u a tio n f o r th e e l e c t r i c p o t e n t ia l are g iv e n in d e t a i l.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(10)

L i s t o f F ig u re s

Page

F ig u re 2 .1 . 19

A diagram o f th e model used t o re p re s e n t th e magnetosphere.

F ig u re 5 .1 . 42

The geom agnetic f i e l d es measured by s a t e l l i t e is compared t o th e a p p ro xim a tio n l/ r ^ .

F ig u re 5 .2 . 45

The f u n c tio n s U ( r ) and q ( r ) f o r a la rg e va lu e o f m a n d -th e e xp o n e n tia l number d e n s ity model.

F ig u re 5 .3 . 47

The fu n c tio n s U ( r ) and q ( r ) w ith a t u r n in g p o in t nea r the magnetopause and the e xp o n e n tia l number d e n s ity m odel.

F ig u re 5 .4 . 52

The fu n c tio n s U ( r ) and q ( r ) f o r a power law number d e n s ity model o f th e r in g c u r r e n t.

F ig u re 5 .5 . 55

The plasma d is p e r s io n fu n c tio n f o r re a l v a lues o f th e argum ent.

F ig u re 5 .6 . 58

The graphs o f th e r a d ia l wave fu n c tio n s f o r an e x p o n e n tia l and power law number d e n s it y .

F ig u re 5 .7 . 60

The im pulse response o f th e model m agnetospheric c a v i t y .

F ig u re 5 .8 . 62

The wave len gth s o f the s lo w ly d eca yin g ra d ia l wave f u n c tio n s a t 8 R .

F ig u re 5 .9 .

A com parison o f th e models used t o re p re s e n t th e r in g c u r r e n t number d e n s it y .

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(11)

D if f u s io n o f M agnetospheric

Protons by T u rb u le n t D r i f t

Waves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(12)

C hapter I

The purpose o f t h i s paper is t o in v e s tig a t e th e d if f u s io n o f

p ro to n s in t u r b u le n t d r i f t waves as a p o s s ib le mechanism f o r

e n e r g iz in g and t r a n s p o r tin g r in g c u rre n t p a r t i c l e s . S ince the

r in g c u r r e n t seems t o p la y a b a s ic r o le in th e m agn etospheric

substorm as both a p a r t i c l e and energy r e s e r v o ir , an u n d ersta nd ing

o f th e mechanism which s u p p lie s r in g c u r r e n t p a r t i c l e s and en erg y

is b a s ic t o an und erstand ing o f th e m agnetospheric sto rm . A d is c u s s io n

o f th e m agnetospheric storm and th e concept o f a substorm is g iv e n by

S . - I . Akasofu (1968). Much o f th e f o llo w in g g enera l m a te ria l on

m agnetospheric storms is drawn from t h i s r e fe re n c e .

The m agnetospheric storm is a p p a re n tly th e p ro d u c t o f th e in t e r ­

a c tio n o f the s o la r wind w ith th e m agnetosphere. The m agnetospheric

storm can be d iv id e d in t o two p a r t s , an i n i t i a l phase and a number cpf

r e l a t i v e l y s h o rt m agnetospheric substorm s. The r in g c u r r e n t p la y s a

c e n tr a l r o le in the m agnetospheric storm in t h a t th e phase o r p ro g re s s

o f a storm can be r e la te d to th e b e h a v io r o f th e p a r t ic le s in th e r in g

c u r r e n t . O r i g i n a l l y , th e r in g c u r r e n t was co n cieved as a c u r r e n t

system su rro u n d in g th e e a rth o u ts id e th e ionosnhere which accounted

fo r th e main phase decrease o f th e m agnetospheric sto rm . The r in g

c u r r e n t was consid ere d a m a th e m a tic a lly c o n v e n ie n t r e p re s e n ta tio n o f

th e main phase decrease mechanism and not ne c e ss a ri ly a p h y s ic a l

r e a l i t y . However, a p h y s ic a l e n t i t y c a lle d th e storm tim e r a d ia tio n

b e lt which behaves v e ry much lik e th e r in g c u r r e n t has been d etected

by s a t e l l i t e measurements. The storm tim e r a d ia t io n b e lt c o n s is t s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(13)

p r i m a r i l y o f 1-50 Kev p ro to n s . The term " r i n g c u r r e n t " is now

g e n e r a lly used in te rc h a n g e a b ly w it h th e term "s to rm tim e r a d ia t io n

b e l t " t o r e f e r t o t h i s group o f m a gn eto sph eric p ro to n s . The

d i s t r i b u t i o n and t o t a l in t e n s it y o f r in g c u r r e n t p a r t i c l e s in th e

magnetosphere is g r e a t l y e ffe c te d by th e number and d u r a tio n o f

p re v io u s m a gn e to sph eric substorm s.

The co ncep t o f th e m agnetospheric substorm encompasses a number

o f a p p a re n tly in t e r r e la t e d phenomena w hich o c cu r s p o r a d ic a lly and

la s t f o r 1-3 h o u rs. The a u ro ra l su bsto rm , p o la r m a gn etic su b s to rm ,

m ic r o p u ls a tio n su bsto rm , io n o s p h e ric su bsto rm , x - r a y su bsto rm ,

p ro to n a u ro ra substorm and th e VLF em is sio n substorm are a l l c o n s id e re d

t o be p a r t o f a la r g e r w hole, the m a gn eto sph eric su bsto rm . D u rin g

a m a gn eto sph eric substorm th e t o t a l number o f p ro to n s w it h e n e r g ie s

between 1-50 Kev in c re a se s in s id e th e t r a p p in g r e g io n . The in c re a s e

in th e t o t a l number o f p a r t ic le s is n o t u n ifo rm in lo c a l t im e .

Indeed, th e e f f e c t o f th e m a gn eto sph eric substorm seems t o be t o

in c re a s e both th e asymmetry and th e t o t a l number o f r i n g c u r r e n t

p a r t i c l e s .

D u rin g th e co urse o f a m a gn eto sph eric sto rm , th e t o t a l number o f

p ro to n s in th e r in g c u r r e n t b u ild s up f a i r l y r a p i d l y v ia th e mechanism

o f th e m a gn eto sph eric substorm and then decays s lo w ly back t o p r e -s u b ­

sto rm l e v e ls . F o r a moderate storm th e b u ild up o f r in g c u r r e n t p a r t i c l e s

la s t s about 10 h o u rs. The decay ta ke s a bout 5-15 days depen din g upon

th e s iz e o f th e sto rm . The decay in th e t o t a l number o f r i n g c u r r e n t

p a r t i c l e s may be in t e r r u p t e d by th e o c cu rre n c e o f a d d itio n a l su b s to rm s .

The fo rm a tio n o f th e storm tim e r a d ia t io n b e l t in v o lv e s th e t r a n s p o r t

and /o r e n e r g iz a tio n o f la rg e numbers o f p ro to n s in th e m agnetosphere

on th e tim e s c a le o f th e m agn eto sph eric su bstorm . ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(14)

3

Many t r a n s p o r t and e n e r g iz a tio n mechanisms t h a t m igh t be fu n c t io n in g

in the m agnetosphere have been in v e s t ig a t e d . Some o f the mechanisms

proposed and s fu d ie d a r e : m agnetohydrodynam ic c o n v e c tio n o f p a r t ic le s

due to a v is c o u s in t e r a c t io n between th e s o la r wind and th e magneto­

sphere (A x f o r d and H ines 1961); c o n v e c tio n o f p a r t i c l e s due t o a s t a t i c

e l e c t r i c f i e l d a cro ss th e m agnetosphere (K e llo g o . 1959; T a y lo r and

Hones, 1965); r o t a t io n a l and g r a d ie n t d r i f t s ( S w i f t , 1971); magneto­

s p h e ric t a i l i n s t a b i l i t y (A x f o r d 1967, Dungey 1968, P id d in g to n 1968);

d if f u s io n o f p a r t i c l e s due t o s t o c h a s t ic changes in th e geom agnetic

f i e l d (P a rk e r I9 60, Nakada and Mead 1965). None o f the mechanisms

proposed t o d ate have been s u c c e s s fu l in e x p la in in g th e fo rm a tio n

o f the storm tim e r a d ia t io n b e l t . However, some o f th e mechanisms

s tu d ie d u n d o ub ted ly o p e ra te t o some degree d u rin g a m agnetospheric

substorm . Most l i k e l y , th e m a g n eto sph eric substorm invokes a

complex c o m b in a tio n o f t r a n s p o r t mechanisms.

The t r a n s p o r t o f p a r t i c l e s in th e m agnetosphere due t o d if f u s io n in

random e l e c t r i c and m a gn etic f i e l d s has been e x t e n s iv e ly in v e s tig a t e d .

Many in v e s t ig a t o r s (P a r k e r I960, D a vis and Chang 1962, Dungey 1965,

Nakada and Mead 1965, Faltham mar 1965, 1968; C o n ra th 1967, S c h u ltz

and E v ia t a r 1969) have s tu d ie d d i f f u s i o n d r iv e n by p re s su re changes

in th e s o la r wind w hich s u b s e q u e n tly cause changes in th e p o s itio n o f

the magnetopause. R a d ia l d if f u s i o n o f p a r t i c l e s o c cu rs th ro ugh v i o l a t i o n

o f th e t h i r d ( f l u x ) a d ia b a t ic i n v a r i a n t . The d if f e r e n c e s in the t r e a t ­

ment o f th e problem a re u s u a lly th e method f o r o b ta in in g th e d if f u s io n

e q u a tio n and th e c o n d itio n s imposed upon th e m a g n eto sph eric plasma. A

d is c u s s io n o f th e w ork o f Nakada and Mead (1965) and S c h u lz and E v ia t a r

(1969) i l l u s t r a t e s th e d i f f e r e n t approaches t o th e problem .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(15)

Nakada and Mead use th e Mead (1964) model o f th e geom agnetic

f i e l d . The e f f e c t on th e main f i e l d o f the p o s it io n o f th e magneto­

pause is taken in to a ccount in t h i s model o f the f i e l d . The d if f u s io n

mechanism is assumed t o work in the f o llo w in g manner. A com pression

o f the magnetosphere ( i . e . an inward motion o f th e magnetopause) is

assumed t o take pla ce on a tim e s c a le s h o r t in com parison w it h th e tim e

i t ta ke s an e q u a t o r ia lly tra p p e d (J=0 ) p a r t i c l e t o d r i f t around th e

e a rth . Depending upon the p a r t i c l e 's p o s it io n in lo c a l tim e when the

com pression o c c u rs , p a r t i c l e s which were d r i f t i n g on the same s h e ll

o f c o n s ta n t B w i l l f o llo w th e lin e o f fo r c e t o a d i f f e r e n t v a lu e

o f B and d r i f t on d if f e r e n t s h e lls o f c o n s ta n t B - thus v i o l a t i n g

th e t h i r d a d ia b a tic in v a r ia n t , i f the decay o f th e f i e l d t o i t s

o r i g i n a l c o n fia u r a tio n is slow in com parison w ith th e tim e i t ta k es a

p a r t i c l e t o d r i f t around th e e a r t h , th e t h i r d in v a r ia n t w i l l be conserved

and th e p a r t i c l e w i l l remain on i t s new s h e ll o f c o n s ta n t B. The t o t a l

e f f e c t is t o spread o u t p a r t ic le s on n e ig h b o rin g s h e lls o f c o n s ta n t

B. T h a t i s , th e p a r t ic le s undergo r a d ia l d i f f u s i o n .

Such sudden com pressions in the f i e l d w ith slo w re c o v e ry do

indeed o c c u r. They a re c a lle d sudden im pulses o r sudden commencements.

Nakada and Mead c a lc u la te d a d is p e rs io n c o e f f ic i e n t by u s in g an

ensemble o f these impulses com piled from a c tu a l o b s e r v a t io n s .

Nakada and Mead use a F o k k e r-P la n k e q u a tio n t o d e s c rib e the

e v o lu t io n o f th e d i s t r i b u t i o n o f p a r t i c l e s tra p p e d in th e magneto­

sp h e re. P a r t ic l e en ergy lo ss e s due t o Coulomb s c a t t e r in g and charge

exchange c o l l is i o n s w ith n e u tr a ls a re taken in t o account in the

s o lu t io n o f th e e q u a tio n . The c o e f f ic i e n t o f dynam ical f r i c t i o n is

assumed to be p ro p o rtio n a l t o th e d is p e r s io n c o e f f ic i e n t . The v a lu e used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(16)

f o r th e d is p e rs io n c o e f f ic ie n t was .031 (|J^/L® ) (e a r th r a d ii) ^ / d a y .

Lq is the d is ta n c e from the c e n te r o f th e e a rth to th e magnetopause

a lo n g th e ea rth sun l i n e . The eq ua tio n was so lv e d u sin g measured .

v a lu e s o f p a r t i c l e f lu x e s > 100 Kev f o r an i n i t i a l d i s t r i b u t i o n .

A lth o u g h some q u a l i t a t i v e agreement w ith measured e q u ilib r iu m p a r t i c l e

f lu x e s was ob ta in e d f o r high energy p a r t ic le s (>50 K e v ), a la r g e r d is ­

p e rs io n c o e f f ic i e n t than the one c a lc u la te d is needed t o o b ta in q u a n ti­

t a t i v e agreement between the th e o ry and o b s e r v a tio n .

I t was i m p l i c i t in the d is c u s s io n o f th e d if f u s io n mechanism

above t h a t the com pression o f the magnetopause was so sudden t h a t

a l l p a r t ic le s on a f i e l d lin e moved w ith i t , re g a rd le s s o f t h e i r

y v a lu e (y is th e magnetic moment). T h is , o f c o u rs e , is no t s t r i c t l y

t r u e and a d if f u s io n equation and d if f u s io n c o e f f ic i e n t f o r which

t h i s assum ption is n o t made has been d e riv e d by S ch ulz and E v ia t a r

(1969). They do, however, assume J=0 and E*B=0. The e v o lu t io n o f th e

d i s t r i b u t i o n f u n c tio n is given by a d if f u s io n eq ua tio n r a t h e r than the

F o k k e r-P la n k e q u a tio n . The d if f u s io n eq u a tio n is d e riv e d u s in g the

Mead (1964) model o f th e f i e l d , but the unperturbed d r i f t o r b i t s o f the

p a r t i c l e around th e e a rth are assumed t o be n o n - c ir c u la r . The d if f u s io n

c o e f f ic i e n t depends upon the power spectrum o f the f lu c t u a t io n s in

th e s t a n d -o f f d is ta n c e o f the magnetopause (L Q) . I f an in v e rs e

power law is assumed f o r the power spectrum the e xp re s s io n f o r th e

d if f u s io n c o e f f ic i e n t is s im ila r t o Nakada and Mead’ s f o r L<<Lo .

A d i f f e r e n t mechanism f o r d if f u s io n o f p a r t ic le s in th e magneto­

sphere has been in v e s tig a te d by Birmingham (1969). He su gg ests

t h a t d if f u s io n is not d riv e n by th e induced e l e c t r i c f i e l d caused .

by f lu c t u a t io n s in th e geom agnetic f i e l d b u t by v a r ia t io n s in th e 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(17)

e l e c t r i c p o t e n t ia l f ie ld s (Vx?=0) governed by +he dynamics o f low energy

(<8Kev) trapped p a r t i c l e s . The p o te n tia l nas wave le n g th s on th e o rd e r o f

the dim ensions o f the magnetosphere. T h a t i s , Birmingham assumes th e low

energy component o f trapped p a r t i c l e f lu x e s produces an e l e c t r i c p o t e n t ia l

V such t h a t ? = - W = - ~ x ^ where v is th e h ydrom agnetic flo w v e l o c i t y o f the

low energy plasma. Birmingham uses the c u t - o f f energy o f 6 Kev because

p a r t ic le s below t h i s energy are dominated by e l e c t r i c f i e l d d r i f t s o f

" t y p i c a l " f i e l d s found in the magnetosphere w h ile p a r t ic le s above 8 Kev

a re dominated by g ra d ie n t and c u rv a tu re d r i f t s . .

Birmingham uses a d if f u s io n equa tio n developed by Birm ingham ,

N o rth ro p and Faltnammar (1967). The e q ua tio n is v a lid f o r p a r t ic le s w ith

a r b i t r a r y va lu es o f p and J . A ga in d if f u s io n o ccu rs as a r e s u lt o f

v i o l a t i o n o f the f l u x in v a r ia n t . A sim ple model is used t o d e r iv e an

e x p l i c i t e xp re ss io n f o r th e d if f u s io n c o e f f ic i e n t s . A d ip o le m agnetic f i e l d is assumed and a p o t e n t ia l o f th e form V = A ( t ) r sin<f>/sin 20 is

used t o d e s c rib e the e l e c t r i c p o t e n t ia l in s p h e ric a l c o o r d in a te s . The

flo w p a tte rn o f th e low energy component o f the plasma Is s i m i l a r t o the

c o n v e c tiv e flo w p a tte rn s envisaged by Levy e t a l . (1964) and, t o some

e x t e n t , o th e r c o n v e c tiv e flo w models ( e . g . A x fo rd and Hines 1961). I t

is shown t h a t the d if f u s io n c o e f f ic i e n t is p ro p o r tio n a l t o and the

v a lu e o f the power spectrum o f the tim e dependent c o e f f ic i e n t A ( t )

e va lu a te d a t th e azim uthal d r i f t fre q u e n c y, i f th e a u t o c o r r e la t io n

fu n c tio n o f A ( t ) ( i . e . th e in v e rs e F o u r ie r tra n sfo rm o f the power spectrum ) is assumed to have the form C exp ( . - t 2 2 where t c is

th e c o r r e la t io n tim e , then the d if f u s io n c o e f f ic i e n t is p ro p o r tio n a l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(18)

+o L^Tc exp (-W p F o r p a r t i c l e s w it h azim uth a l d r i f t fre q u e n c ie s

nip much le ss than — i t is p r o p o r tio n a l t o and th u s independant

o f y and J .

Birm ingham s o lv e s a one dim ensional d i f f u s i o n e q u a tio n w it h no

lo s s term s u s in g th e a p p ro xim a tio n t o th e d i f f u s i o n c o e f f i c i e n t w it h UpTc « I . 2 2 Thus the r e s u lt s a re a p p lic a b le t o p a r t i c l e s w it h

d r i f t p e rio d s 2ir (.= 4.4*10^ CL x [e n e rg y in K ev^)- - m in u te s) much

“ D

la r g e r th a n th e c o r r e la t io n tim e . Birmingham uses a v a lu e o f one h o ur f o r th e c o r r e la t io n tim e . C h oosing a v a lu e o f (2x10 ^ v/m )^ f o r th e

c o e f f ic i e n t C in th e c o r r e la t io n fu n c t io n , Birm ingham shows t h a t an

i n i t i a l d e lt a fu n c tio n d i s t r i b u t i o n in number d e n s it y a t 8 R (e a r th

' e

r a d i i ) w i l l y i e l d a s i g n i f i c a n t number o f p a r t i c l e s a t 5 Rg in a bout

18 h ours (see Birmingham 1969, f i g u r e 1 ). A s i m i l a r a n a ly s is

u s in g th e d if f u s io n c o e f f ic i e n t g iv e n by Nakada and Mead ta k e s o v e r

100 days t o produce the same r e s u lt s . Thus a s u b s ta n t ia l in c re a s e

in th e d i f f u s i o n ra te s can be o b ta in e d by u s in g th e v a r i a t i o n s in

th e c o n v e c t iv e e l e c t r i c f i e l d a s s o c ia te d w ith th e flo w o f th e low

energy component o f the m agn eto sph eric plasm a. The d i f f u s i o n r a te s

a pp ea r, how ever, t o be s t i l l to o slo w t o t r a n s p o r t p a r t i c l e s s e v e ra l

e a rth r a d ii on th e tim e s c a le o f th e m agn eto sph eric su b sto rm . I f

d i f f u s i o n p rocesses are t o be im p o rta n t d u rin g a su bstorm an in c re a s e

in th e d i f f u s i o n ra te is n e c e ss a ry.

Most o f th e s tu d ie s o f d i f f u s i o n processes in th e m agnetosphere

have c o n c e n tra te d on v e ry low fre q u e n c y v a r ia t io n s in th e m a g n etic

f i e l d . The fre q u e n c ie s a re low enough t h a t th e second a d ia b a t ic

in v a r ia n t o f th e p a r t ic le s ( J ) can be assumed t o be c o n s e rv e d .

T h is s tu d y w i l l co n ce n tra te on e l e c t r o s t a t i c o s c i l l a t i o n s whose

- 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(19)

8

fre q u e n c ie s a re near th e bounce freq u en cy o f a t y p ic a l r in g c u r r e n t

p ro to n b ut much le s s than i t s g y r o fre c u e n c y . The in t e r a c t io n o f a

p ro to n w ith e l e c t r o s t a t i c o s c i l l a t io n s in t h i s fre q u e n c y range w i l l

v i o l a t e th e second ( lo n g i t u d i n a l ) and t h i r d a d ia b a t ic in v a r ia n t s o f

th e p a r t i c l e . The f i r s t in v a r ia n t , y , is assumed t o be c o n se rv e d .

Such e l e c t r o s t a t i c o s c i l l a t io n s which can e x i s t in plasmas w ith

number a n d /o r te m p e ra tu re g r a d ie n t s , such as th e m agn eto sph eric

plasm a, a re g e n e r a lly c a lle d d r i f t waves. D r i f t waves c h a r a c t e r ­

i s t i c a l l y have wave le n g th s p a r a lle l t o th e m agnetic f i e l d , 3, much l a r g e r than t h e i r wave le n g th s p e rp e n d ic u la r to B. T h is is an

Id e a l p r o p e r t y in th e re sp e ct t h a t th e req uirem ent o f c o n s e rv in g th e

f i r s t a d ia b a t ic in v a r ia n t demands t h a t th e p a r a l l e l e l e c t r i c f i e l d

be sm all b u t f o r s tro n g d if f u s io n th e e l e c t r i c f i e l d p e r p e n d ic u la r

t o th e m agn etic f i e l d must be la rg e so t h a t th e ExB d r i f t o f th e

p a r t i c l e s is la r g e . The e q u a tio n f o r th e e l e c t r i c p o t e n t ia l a s s o c ia te d

w ith th e d r i f t waves w i l l be d eveloped under th e assum ption t h a t th e

wave le n gth p e r p e n d ic u la r to is la r g e r than an ion g y r o ra d iu s and th e

wave fre q u e n c y is le s s than th e ion g y ro fre q u e n c y b u t g r e a t e r than

U is th e a zim u th a l wave number in t h a t is th e wave le n g th o f

th e o s c i l l a t i o n in th e azim uth al d ir e c t io n and is th e a zim u th a l ion 2t

d r i f t fre q u e n c y s in c e — is th e tim e i t ta kes an io n t o d r i f t around

UD '

th e e a r t h . ) The en e rgy source f o r th e d if f u s io n is assumed t o be near

ste a d y ( i n tim e ) f lu c t u a t io n s in th e e l e c t r i c p o t e n t ia l a t th e magnet­

o s p h e r ic b o u n d a ry, th e magnetopause. Thus th e s o lu t io n s o f p rim a ry

in t e r e s t w i l l be undamped o r o n ly s l i g h t l y damped o s c i l l a t io n s which

have s i g n i f i c a n t e l e c t r i c f i e l d s th ro u g h o u t a la rg e p a r t o f th e mag­

n e to sp h e re .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(20)

Filmed as received without page(s) 9

UNIVERSITY MICROFILMS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(21)

C h a pter 2

A Model Magnetosphere

The in t e r a c t io n o f the s o la r wind w ith th e e a r t h 's m agnetic f i e l d

c re a te s a m agnetic c a v i t y . The confinem ent o f th e e a r t h 's f i e l d by

th e s o la r plasma was in v e s tig a te d t h e o r e t ic a l l y as e a r ly as 1931 by

Chapman and F e rra ro . W ith th e advent o f th e space age and s a t e l l i t e

borne magnetometers the confinem ent o f th e e a r t h 's f ie ld - in space

was dem onstrated.

In te n s iv e in v e s tig a t io n o f the p a r t ic le s and f i e l d s su rro u n d in g

th e e a rth has revealed most o f th e s a lie n t fe a tu re s o f th e magneto­

s p h e ric c a v i t y . However, th e re is s t i l l disagreem ent o v e r whether

th e c a v it y is open (geom agnetic f i e l d lin e s connected to in t e r p la n e t a r y

f i e l d lin e s ) o r closed (no c o n n e c tio n ). F u r t h e r , some re g io n s o f th e

m agnetosphere have y e t t o be in v e s tig a t e d . S evera l general fe a tu re s

o f th e magnetosphere have been f ir m ly e s t a b lis h e d , however.

The magnetosphere is g e n e r a lly d iv id e d up in t o v a rio u s re g io n s

such as the m a g n e to ta il, the tr a p p in g r e g io n , th e pIasm asphere,

e t c . Regions in th e magnetosphere are i d e n t i f i e d by changes in the

c h a r a c te r o f th e magnetic f i e l d o r by v a r io u s c h a r a c t e r is t ic s o f the

lo c a l p a r t i c l e po p u la tion o r energy spectrum . S u rro u n d in g the

magnetosphere is a regio n c a lle d the m agnetosheath. The magnetosheath

Is e s s e n t i a l l y a t r a n s it io n between the re g io n dominated by the

geom agnetic f i e l d and th e o rd ered fle w o f th e s o la r w in d . The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(22)

11

magnetosheath is c h a ra c te riz e d by t h e .t u r b u le n t n a tu re o f the m agnetic

f i e l d whose f lu c tu a tio n s can be as la rg e as 100$ o f th e average f i e l d

(Sm ith and D a v is , 1970). The bow shock marks th e o u t e r boundary o f

th e magnetosheath on the sunward sid e o f the m agnetosphere. The bow

shock is an e s s e n t ia lly permanent, col I i s i o n l e s s , s ta n d in g shock

wave whose th in n e s s (much le ss than an ion c y c lo tr o n ra d iu s (Heppner

e t a l . , 1967)) su ggests th a t i t is an e l e c t r o s t a t i c a l l y generated

phenomenon. The in n e r boundary o f th e m agnetosheath, th e magnetopause,

s e p a ra tes the d iso rd e re d f i e l d o f th e magnetosheath from th e ord ered

f i e l d o f th e e a r t h . On the day sid e o f the magnetosphere the

magnetopause is e a s i l y id e n t if ie d by a change in f i e l d m agnitude

and d ir e c t io n o v e r a d ista n c e o f a few hundred k ilo m e t e r s . The

magnetopause is more d i f f i c u l t t o id e n t i f y in th e t a i l re g io n o f

th e magnetosphere.

The geom agnetic f i e l d c lo s e t o the e a rth is alm ost d ip o la r but

d e v ia te s c o n s id e ra b ly from a d ip o le f i e l d near the magnetopause

and in the m a g n e to ta il. On th e day sid e the f i e l d is compressed and

lin e s o f c o n sta n t 3 in the e q u a to ria l plane are d is p la c e d outward

(away from the e a rth ) from those o f a d ip o le f i e l d . In th e a n t is o la r

d ir e c t io n th e f i e l d is in f la t e d and lin e s o f c o n sta n t B are d is p la c e d

inward from those o f a d ip o le f i e l d . Near the m agnetospheric

e q u a to r ia l plane th e f ie ld changes d ir e c t io n a b r u p t ly fo rm in g a

r e g io n c a lle d th e ne u tra l s h e e t. The n e u tra l sheet exten d s acro ss

most o f th e m agnetospheric t a i l in th e m agnetospheric e q u a to r ia l

p la n e . The in n e r edge o f th e n e u tra l sheet b eg in s a t about 10-15 Rg

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(23)

in th e a n t i s o l a r d ir e c t io n . The h ig h la t it u d e f i e l d lin e s a l l e xte n d

in th e a n t i s o l a r d ir e c t io n and c o n s t it u t e most o f th e m a g n etic f i e l d

in th e t a i I . '

P a r t ic l e p o p u la tio n s in and n ea r th e m agnetosphere are id e n t i f i e d

by th e shape o f t h e i r energy s p e c tra and t h e i r number d e n s it ie s .

U s u a lly , the in te rn a l energy o f a plasma can be used to d e fin e a

• 3kT

te m p e ra tu re ( - ^ — = in te rn a l e n e r g y ). The a c tu a l p a r t i c l e d i s t r i b u t i o n

f u n c t io n can then be a pproxim ated by a M a xw e llia n d i s t r i b u t i o n o f

v e l o c i t i e s c o rre sp o n d in g t o t h i s te m p e ra tu re . The a c tu a l measured

plasma v e l o c i t y d is t r ib u t io n can th en be compared t o th e a s s o c ia te d

M a xw ellia n d i s t r i b u t i o n . F o r e x a m p le ,-th e magnetosheath e le c tr o n

v e l o c i t y d is t r i b u t i o n is b ro a d e r and has few er low e n e rg y p a r t i c l e s

than i t s a s s o c ia te d M a xw e IIia n d i s t r i b u t i o n . The magnetosheath p ro to n

d i s t r i b u t i o n s i m i l a r l y la cks low en ergy p a r t i c l e s and a ls o has a

sm all peak in the number o f p a r t i c l e s lo cated a t about 2 -3 tim e s th e

a verage p a r t i c l e e n e rg y. The average p ro to n e n e rg y is a few hundred eV

and th e average e le c tro n energy 1-2 hundred eV (M ontgom ery e t a l . , 1970).

The t r a n s i t i o n from the s o la r wind plasma to th e m agnetosheath plasma

which o c cu rs a t o r near th e bow shock is a ls o d isc u ss e d by Montgomery

e t a l .

Frank (1970) has id e n t i f i e d two c h a r a c t e r i s t i c p ro to n e n e rg y

s p e c tra in th e magnetotai I . One spectrum is q u it e s i m i l a r t o t h a t

.o f magnetosheath pro to ns w hich s u g g e sts t h a t m agnetosheath p a r t i c l e s

have access t o the t a i l . The o th e r group o f p a r t i c l e s id e n t i f i e d

by Frank has a much bro a de r c h a r a c t e r i s t i c sp ectrum w it h an a vera ge

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(24)

13

e n e rg y nea r 5 Kev. Both o f th ese gro up s o f io n s a re g e n e r a lly taken

t o be members o f th e plasma s h e e t. The plasma sh eet is a p a r t i c l e

p o p u la tio n cen tered about th e n e u tra l s h e e t. In th e t a i l re g io n i t

is ab o ut 4-6 Rg t h i c k , measured p e rp e n d ic u la r t o th e n e u tra l s h e e t.

I t e xte n d s near th e e a r t h in t o th e dawn and dusk s e c to r s where i t is

6-12 Rg t h i c k . The in n e r edge o f th e plasma sh e e t is u s u a lly

id e n t i f i e d by th e b e h a v io r o f th e e le c t r o n s . The e le c tr o n v e l o c i t y

d i s t r i b u t i o n is ro u g h ly M a xw e llia n but has a h ig h e n e rg y t a i l . The

a ve ra g e e le c tr o n en ergy is near 1 Kev b ut can range up o r down by an

o r d e r o f magnitude C V e tte , 19705. The b e s t in d ic a t o r o f th e in n e r

edge seems t o be a d ecre ase in th e t o t a l e n e rg y d e n s it y o r a decrease

in th e number d e n s it y o f a l l p a r t ic le s w ith e n e rg ie s g r e a t e r than

700 eV. The d e te rm in a tio n o f th e in n e r edge depends upon th e energy

o f th e e le c tr o n s o b served (S c h ie ld and F ra n k , 1970). The in n e r edge

o f th e plasma sheet has not been o b served t o p e n e tra te th e plasmasphere

even d u rin g d is tu rb e d tim e s . However, th e c h a r a c t e r o f th e e le c tr o n

en e rg y d e n s it y and th e p o s it io n o f th e in n e r edge is a p p a r e n tly q u ite

d i f f e r e n t d u rin g q u ie t and d is tu rb e d tim e s . V a s y lin n a s CI968) pu ts

th e in n e r edge o f th e plasma sh eet d u rin g q u ie t tim e s a t I I + I Rg .

S c h ie ld and Frank p la c e th e in n e r edge 1-5 Rg from th e plasmapause.

The d if f e r e n c e in th e tw o r e s u lt s may be due t o a la t i t u d i n a l dependence

(.S c h ie ld and F ra nk, 1970).

The plasmasphere is a c o ld dense plasma (compared t o th e r in g

c u r r e n t ) t h a t c o ro ta te s w it h th e e a r t h . The o u t e r boundary o f th e plasma­

sp h e re , th e plasmapause, is most e a s i l y i d e n t i f i e d b y an a b ru p t change in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(25)

14

number d e n s ity o f plasmasphere io n s . The change in th e number d e n s it y

is t y p i c a l l y o ve r an o rd e r o f m agnitude. Several examples o f plasmapause

c r o s s in g s and r e p re s e n ta tiv e number d e n s ity p r o f i l e s are g iv e n by T a y l o r

e t a l . (1968) and Chappell e t a l . (1970). The d e n s ity o f c o ld ions

3 4 3

(10 -10 °K) j u s t o u ts id e th e plasmapause is t y p i c a l l y I-I0 / c m and

in s id e th e d e n s ity r is e s a b r u p t ly t o 100-1000/cm^ and c o n tin u e s t o

in c re a s e a t a slo w e r ra te w ith d e c re a s in g L v a lu e . The s tu d ie s

by T a y l o r and Chappell both in d ic a te d th a t th e plasmapause

tended t o move inwards w ith in c re a s in g magnetic a c t i v i t y . R e c e n t ly ,

R u s se ll and Thorne (1970) have re p o rte d th a t th e plasmapause a c t u a lly

c o in c id e s v e ry c lo s e ly w ith the lo c a tio n o f th e maximum d e n s it y o f

th e storm tim e r a d ia tio n b e l t .

The development o f s e n s it iv e d i f f e r e n t i a l energy a n a ly s e rs by

L .A . Frank has enabled him t o stu d y v e ry low en e rg y pro to n s in the

e n e rgy range 200 eV to 50 Kev (F ra nk 1967, 1970). P ro to n s in t h is

e n e rgy range were su bse qu en tly found to be an im p o rta n t p a r t i c l e

p o p u la tio n in the magnetosphere. The storm tim e r a d ia tio n b e l t , p r im a r ily

com prised o f p a r t ic le s in the 1-50 Kev range, is la r g e ly re s p o n s ib le

f o r th e main phase decrease d u rin g m agnetic storms (F ra n k , 1967) and

th u s can be c lo s e ly i d e n t if ie d w ith the r in g c u r r e n t . The r in g c u rre n t

p ro to n s in the 1-50 Kev range a re re c o g n ize d by t h e i r c h a r a c t e r i s t i c

en e rgy spectrum and r a d ia l number d e n s ity p r o f i l e . The d i f f e r e n t i a l

e n e rg y spectrum hardens s l i g h t l y as L d ecre ases. The spectrum a t 6 o r

7 Rg is alm ost f l a t from 3 t o 30 Kev. The average en ergy is t y p i c a l l y

between 5-20 Kev. The number d e n s ity o f these low e n e rg y pro to n s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(26)

15

depends upon th e magnetic a c t i v i t y and the lo c a l tim e . S a t e l l i t e

and ground based magnetometer measurements ( C u m m i n g s e t a l .1968) in d ic a t e

t h a t d u rin g a m a gn eto sph e ric. substorm th e re may be a decrease o f

r in g c u r r e n t p a r t ic le s in the m id n ig h t t o dawn s e c to r (2400-0500

lo c a l tim e ) w h ile in the e a r ly even in g t o m id n ig h t s e c to r (1500-2400

lo c a l tim e ) an increa se o f r in g c u r r e n t p a r t ic le s has been d i r e c t l y

measured by s a t e l l i t e (Frank and Owens, 1970). F u rth e rm o re , Frank

(1970) has measured the number d e n s ity a t d i f f e r e n t lo c a l tim es

d u rin g v a rio u s phases o f a magnetic storm and found th e re e x is t s an

asymmetry in th e number d e n s ity d u rin g a l l phases o f a storm . The

asymmetry appears t o be la rg e s t d u rin g th e e a r ly development o f th e

main phase, F ra nk and Owens (1970) Have in v e s tig a +ed th e proton

d i s t r i b u t i o n in th e m id nigh t s e c to r and found the p e r s is t e n t presence

o f a " q u ie t tim e r in g c u r r e n t" w ith peak pro to n energy d e n s itie s

near L=6.5. S everal ty p ic a l f l u x p r o f i l e s i . e . th e L dependence o f

th e f l u x are given by Frank (1967b) f o r v a rio u s energy ranges. These

p r o f i l e s a l l have th e same q u a lit a t iv e b e h a v io r as fu n c tio n s o f L . S ince

th e shape o f th e d i f f e r e n t i a l e nergy spectrum changes o n ly s l i g h t l y w ith

L and is n e a rly f l a t , the number d e n s ity as a fu n c tio n o f L wi 11 be

p ro p o r tio n a l to th e f l u x p r o f i l e f o r energy ranges near the average e n e rg y .

Thus the f l u x p r o f i l e f o r the energy range 16-25 Kev sh o uld have th e same

L dependence as th e number d e n s it y . Peak number d e n s it ie s in the

storm tim e b e lt v a ry w ith the m agnetic a c t i v i t y . Frank (1967)

re p o rts a measurement o f the peak number d e n s ity o f 8 + 2 protons/cm ^

a t m agnetic la t it u d e 27° f o r the main phase o f a moderate sto rm . A .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(27)

16

s l i g h t l y la r g e r v a lu e is excected f o r th e e q u a to ria l number d e n s it y .

The e le c tr o n energy d e n s ity is o n ly about 7 5 % o f th e p ro to n e n e rg y -

d e n s ity in the storm tim e r a d ia tio n b e l t .

The upper re g io n s o f the e a r t h 's atmosphere are p a r t i a l l y io n iz e d

by s o l a r r a d ia tio n and e n e rg e tic p a r t i c l e bombardment fo rm in g a

co n d u ctin g la y e r known as th e io n o sp h ere. The c o n d u c t iv it y o f the

ionosphere must be expressed as a t e n s o r . The components o f the

c o n d u c t iv it y te n s o r are fu n c tio n s o f e le c tr o n d e n s it y , c o l l i s i o n fre q u e n c y,

g y ro fre q u e n c y , la t itu d e and lo c a l tim e . R a th er than use a complex model

o f th e io nosp h ere, i t w i l l be represented in th e model magnetosphere

as a p e r f e c t c o n d u cto r.

Id e a lly a model o f the magnetosphere should r e f l e c t a l l o f th e

s i g n i f i c a n t fe a tu re s o f the a ctu a l magnetosphere but s t i l l be sim ple

enough t o work w it h . Models o f the geom agnetic f i e l d in p o p ula r

use are formed by a d ip o le , image d ip o le and t a i l c u r r e n t and account

f o r th e gro ss fe a tu re s o f the m agnetospheric f i e l d , th e magnetopause

and th e m a g n e to ta il. However, such e f f e c t s as f i e l d i n f l a t i o n due

t o p a r t i c l e p o p u la tio n s are not taken in t o a cco u n t.

To f a c i l i t a t e the study o f d if f u s io n in the magnetosphere i t is

b e st to chose the sim p le s t model p o s s ib le which a d e q u a te ly d e s c rib e s

th e p h y s ic a l s i t u a t i o n . Thus Nakada and Mead as w e ll as S ch ulz and

E v ia t a r chose a model which accounts f o r th e magnetopause s in c e th e y

a re c o n s id e r in g d if f u s io n d riv e n by induced e l e c t r i c f i e l d s produced

by changes in the magnetopause p o s it io n . Birm ingham, how ever,

chooses a d ip o le f i e l d modol s in c e he is c o n s id e rin g d if f u s io n ‘

d r iv e n by an in t e r n a l l y generated e l e c t r i c p o t e n t i a l . The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(28)

17

d e te rm in in g f a c t o r in c h o o s in g a mode I . sui tab le f o r t r e a t i n g c a v i t y

modes i s . t h e ease w ith which boundary c o n d itio n s can be s p e c if ie d .

T h is f a c t o r e lim in a t e s the c o n s id e r a tio n o f num erica l models and

d isc o u ra g e s th e use o f complex g e o m e trie s .

The model t h a t w i l l be used f o r c a lc u la t in g th e f u n c t io n a l depen­

dence o f th e c a v i t y modes is ro u g h ly e q u iv a le n t t o a t i n can f i l l e d

w ith a lo s s y d i e l e c t r i c . The model is b e st d e s c rib e d in term s o f th e

usual c y l i n d r i c a l c o o rd in a te s ( r , 0, z ) . An a z im u th a lly sym m etric

a x ia l m a gn etic f i e l d is assumed. The f i e l d is ta ken t o be in th e z

d ir e c t io n and th us i t s magnitude is a fu n c tio n o f r o n l y . The

magnetopause is represented by th e c y l i n d r i c a l s u r f a c e , r = 10 Rg (e a r t h r a d i i ) .

The iono sp h e re is represented by p e r f e c t ly c o n d u c tin g e n d p la te s

a t z = + A Rg . The plasmasphere is an in n e r c o re o f c o ld , M a x w e llia n ,

e le c tr o n -p r o t o n plasma w ith T . (th e ion te m p e ra tu re ) = T (th e

i e

4

e le c tr o n te m p e ra tu re ) = 10 °K. The storm tim e b e l t is re p re s e n te d

by a h o t, M a xw e llia n , e le c tr o n -p r o t o n plasma w ith T . = 10® °K.

The plasmapause is assumed t o be lo c a te d a t r = 5.9 Rg

and is re p re s e n te d by a sharp decrease in th e number d e n s it y

o f th e c o ld plasma. The hot r in g c u r r e n t plasma number d e n s it y

has a maximum va lu e a t 6 Rg . The b e h a v io r o f th e r i n g c u r r e n t

number d e n s it y on r between th e lo c a tio n o f th e peak number

d e n s ity (6 Rg ) and th e magnetopause (10 Rg ) is g iv e n by e i t h e r an e x p o n e n tia l model (k je x p - ( r -6Rg ) /a ) o r a power law model 2 2

( k | / ( r ^ ) ^ ) . The use o f these models is d isc u ss e d in C h a p te r 5.

A sch e m a tic r e p re s e n ta tio n o f th e b e h a v io r o f th e r i n g c u r r e n t

and plasm asphere number d e n s it ie s is g iv e n in F ig u r e 2 .1 . •

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(29)

F ig u r e 2.1 A diagram o f th e model used t o re p re s e n t

th e m agnetosphere. The model is a z im u th a lly sy m m e tric .

The f i e l d lin e s are s t r a i g h t and d ir e c te d p e rp e n d ic u la r

t o th e io n o sp h e re s. The ionospheres are re p re s e n te d by

p e r f e c t l y co n d u ctin g d is k s a t e it h e r end o f th e c y l i n d e r .

The o u t e r c y l i n d r i c a l s u rfa c e re p re s e n ts th e magnetopause

and th e in n e r c y l i n d r i c a l s u rfa c e s in d ic a t e th e lo c a t io n

o f th e plasmapause. The c a v i t y is 2A long and 20 Rg in

d ia m e te r. The schem atic dependence o f th e number d e n s it ie s

o f th e r in g c u rre n t and plasmasphere plasmas on r a d ia l

d is ta n c e a re g iv e n in s e m i-lo g p lo t s .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(30)

M ag ne top au se

Figure 2J

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(31)

20

The c y l i n d r i c a l geometry o f the model makes i t v e ry easy t o a p p ly

boundary c o n d itio n s . Since th e magnitude o f th e m agnetic f i e l d '

depends upon r o n ly , the g ra d ie n t d r i f t is in th e azim uthal d ir e c t io n

o n ly . Since the f i e l d lin e s are s t r a i g h t , th e re is no c u rv a tu re

d r i f t nor m ir r o r fo rc e on the p a r t i c l e s . The m ir r o r in g m otion o f

p a r t ic le s in the magnetosphere is sim u la ted by c o n s id e r in g the

ionosphere as p e r f e c t ly e l a s t i c . Th at i s , p a r t ic le s a re r e f le c te d a t

z = +_ A w ith no lo ss o f e n e rg y . The q u e s tio n o f w hether o r no t t h i s

model ad equ ately rep re s e n ts th e e s s e n tia l fe a tu re s o f any d if f u s io n

processes th a t might be d riv e n by d r i f t modes in th e magnetosphere is

b est taken up a f t e r t h i s sim ple model has been in v e s tig a t e d .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(32)

C h a pter 3

The D if f u s io n Equation

D if f u s io n in th e magnetosphere is assumed t o r e s u lt from th e plasm a’ s

in t e r a c t io n w ith wave tu rb u le n c e p resen t in th e plasma. The tu rb u le n c e

in th e plasma is assumed to be weak enough th a t i t can be tre a te d as a

p e r tu r b a tio n e f f e c t on the p a r t i c l e 's b e h a v io r in th e absence o f tu rb u le n c e .

Changes in th e phase space d e n s ity o f p a r t ic le s due t o p e r tu r b a tio n s in

th e p a r t i c l e 's o r b it s can be expressed by means o f a d if f u s io n eq u a tio n

in a manner s i m ila r t o th a t used by Birmingham, N o rth ro p and Falthammar

(1967). The a ctu a l wave tu rb u le n c e in th e magnetosphere is represented

by a s t a t i s t i c a l model in which th e phases o f th e v a rio u s F o u r ie r com­

ponents o f th e p e rtu rb a tio n wave f i e l d s a re assumed t o v a ry randomly w ith

tim e . The phase space o r b i t o f a t e s t p a r t i c l e is exp ressed in terms o f

th e a m p litu de s and phases o f th e p e rtu rb in g wave f i e l d s and th e d if f u s io n

c o e f f ic ie n t s used in th e d if f u s io n e q u a tio n can then be expressed in terms

o f th e random phase v a r ia b le s . A f in a l e xp re ss io n f o r th e d if f u s io n

c o e f f ic ie n t s is o b ta in e d by ensemble a v e ra g in g .

The d if f u s io n eq ua tio n w i l l be developed r e s t r i c t i n g th e d is c u s s io n

to th e m agnetic f i e l d o f the model magnetosphere and e l e c t r o s t a t i c o s c i l ­

la t io n s . The development o f th e equation which is based on Birm ingham,

N o rth ro p and FSIthammar (1967) is o u tlin e d here and th e d e t a ils a re g iv e n

in A ppen d ix A - l I . F i r s t the m agnetic f i e l d , B ( r ) T ^ , is exp ressed in th e

usual E u le r c o o rd in a te s a and 3: B ( r ) = Va x 73. The r e s t r i c t i o n t h a t

the m agnetic moment o f th e p a r t i c l e , u , be conserved is used t o o b ta in

the H a m ilto n ia n (see appendix A - l )

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(33)

s is th e measure o f d is ta n c e a lo n g a f i e l d lin e fro m a f ix e d re fe re n c e

p la n e . The f i e l d lin e is g iv e n by th e in t e r s e c t io n o f s u rfa c e s o f

co n s ta n t a and 6. pg is th e momentum c o n ju g a te t o s . The c o n t i n u i t y

e q u a tio n in th e phase space ( a ,3, s , p s ,p ) f o r th e d e n s it y o f g u id in g c e n te rs Q

$ + 5 ^ ’ + & iSq> + & ,iQ> + s i K 5 ’ = 0 can be w r it t e n as a L i o u v i l l e eq u a tio n

i 32. + + c + n - 0

3t 3a e3S 3s Ps3ps

s in c e a , 3 and s , pg are ca n o n ica l v a r ia b le s (s e e a p p e n d ix A - l ) .

I f Q, , a, e t c . are c o n sid e re d as random v a r i a b l e s , th e y can be

c o n v e n ie n t ly w r it t e n in the form x = <x> + <5x. The b r a c k e ts < >

in d ic a t e th e ensemble average and 6 th e f lu c t u a t in g p a r t o f th e

v a r ia b le s . I f th e p e r tu r b a tio n s in th e p a r t i c l e ’ s phase space o r b i t s

d u rin g a tim e in t e r v a l which is le ss than o r equal t o th e c o r r e l a t i o n

tim e o f th e random process a re assumed smal I compared t o th e s c a le

s iz e o f th e a verage phase space d e n s ity <Q>, i t can be shown (see

a pp end ix A - l I ) t h a t <Q> s a t i s f i e s a d i f f u s i o n e q u a tio n :

4 4 4

3 <Q> V • ° <Q> _ v V 3 /n 3 <Q> * vF £ <* i > T x ~ " “ ay v x 3x

i= l 1 3xi i = l j= l 3 x i X i Xj 3xj

where th e n o t a t io n x (=a; x2=3; x^=:

phase space c o o r d in a te s . The d i f f u s i o n c o e f f ic i e n t s D a re i J g iv e n by th e e x p re s s io n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(34)

23

Dv .

- < 1 ^ ' « i < « .6. s , p s , t )

The un p ertu rb ed o r ze ro o rd e r o r b i t s o f th e p a r t i c l e in phase space

as a f u n c t io n o f the param eter t ' - t = x which measures tim e "ba ck w a rd s"

a lo n g th e o r b i t a re denoted by w .. The w. must s a t i s f y c e r t a in

c o n d it io n s :

The n o t a t io n w in d ic a te s d i f f e r e n f i a t ion w ith re s p e c t t o th e tim e

argum ent. S in c e th e f lu c t u a t io n s 6x can be exp re ss e d in term s o f

th e Hami I to n i an ( f o r examp I e , 6 a = - J j y - j ^ <H>

J

th e d if f u s io n c o e f f ic i e n t s can be expressed in term s o f th e H a m ilto n ia n . B e fo re

p ro c e e d in g w it h th e c a lc u la t io n o f th e d if f u s io n c o e f f ic i e n t s , a

s t a t i s t i c a l model o f th e tu rb u le n c e must be d e v e lo p e d .

Suppose we a re c o n s id e r in g th e i n t e r a c t io n o f a group o f p a r t i c l e s

w ith a c o h e re n t e le c t r o s t a t i c pla ne wave o f wave le n g th X = 2m/k and

fre q u e n c y w. Suppose a ls o t h a t th e p a r t i c l e s have a v e l o c i t y

d i s t r i b u t i o n g ( v ) and g(to/k) i 0 . ' Then some o f th e p a r t i c l e s w i l l

undergo s u b s ta n t ia l tx 3 d r i f t s sin ce ' th e y see th e wave as an alm o st

c o n s ta n t e l e c t r i c f i e l d . A f t e r a tim e T , th e number o f p a r t i c l e s

t h a t undergo a s u b s ta n tia l d r i f t is ro u g h ly g(oi/k) X /J. So th e

number o f p a r t i c l e s t h a t see th e wave as c o n s ta n t becomes a r b i t r a r i l y

sm all a f t e r a s u f f i c i e n t l y long tim e . As a r e s u l t e s s e n t i a l l y no

p a r t i c l e s , on th e average, a re tra n s p o rte d by th e wave. T u rb u le n ce

e f f e c t i v e l y p u ts an upper l i m i t T c on T , so t h a t even f o r long tim es

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(35)

24

a group o f ro u g h ly g(^0 j ~ p a r t ic le s in t e r a c t s w ith th e wave and is c

tra n s p o rte d by i t . T h is e f f e c t can be reproduced by u s in g a s t a t i s t i c a l

model to re p re s e n t th e tu rb u le n c e . A common p r a c t ic e is t o assume t h a t

th e phase o f th e wave is changing random ly. An example o f a

re p re s e n ta tio n o f tu rb u le n c e w ith a random wave phase s t a t i s t i c a l

model is g iv e n in a d isc u ss io n o f plasma h e a tin g by s t o c h a s t ic e l e c t r i c

f i e l d s by P u ri (1966). P uri assumes t h a t th e wave phase can change

by an a r b i t r a r y amount a t in t e r v a ls o f tim e which a re randomly

d is t r ib u t e d . The s t a t i s t i c a l model employed here wi I I be s i m i l a r in

t h a t th e wave phase w i l l be co n sid ered a random v a r ia b le b u t th e phase

w i l l be assumed t o change o n ly a sm alI amount in a sm alI tim e .

I t w i l l be shown la t e r t h a t the e l e c t r i c p o t e n t ia l a s s o c ia te d w ith

th e e l e c t r o s t a t i c flu c tu a tio n s in the model magnetosphere can be

w r it t e n as

$ ( r ,0, z , t ) = £ A (£ ,m ,n ,r ) exp i (w t+jt,0-kz+i{i(ll,m ,n) ) 3-1

£,m,n

k = ^ ' s The p a r a lle l wave number, o = u)(£,m ,n) is th e wave freq uency

and i|i(2,,mf n) is th e phase o f th e wave. I t is c o n v e n ie n t t o in tro d u c e

th e shorthand n o ta tio n

£ f ( U and g (L ) f o r £ f(£ ,m ,n ) and g (£ ,m ,n )

L £,m,n

The phase 4i(L) is considered a random v a r ia b le . The random process can be

c o m p le te ly d e sc rib e d by g iv in g e x p l i c i t e xp re ss io n s f o r th e h ie r a r c h y o f

p r o b a b i l i t y d is t r ib u t io n s

W ( * , ( ! ) , < » , (2) ,111,(3) •••t( ; i|i2<l),i|i2( 2 ) ,*2( 3 ) - - - t 2;

♦n ( l ) , * n ( 2 ) ,* n( 3 ) - + n )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(36)

(see Wang and U hlenbeck, 1945 as a general r e f e r e n c e ). Aga in i t is

'c o n v e n ie n t t o in tro d u ce a s h o rt hand n o ta tio n and w i l l be used t o denote

« ( I ) , 4 (2 );* (3) m m m m( » )

I t w i l l be assumed, as is u s u a l, th a t th e e n t ir e process is

s t a t io n a r y and M a rk o ff. So th e h e ira rc h y o f p r o b a b i l i t y d e n s it ie s

can be e xpressed in term s o f th e second o r d e r p r o b a b i l i t y d e n s ity

|» 11 ; Rt/2, t 2) . A ls o , i t is assumed t h a t th e second o rd e r

p r o b a b i l i t y d e n s it y f o r th e whole process can be w r it t e n as a pro d u c t

o f th e second o rd e r p r o b a b ilit y d e n s it ie s f o r in d iv id u a l wave

components:

W2(R ^ |, t |; R<|>2, t 2) = 7T W2 ( iji j ( i ) , t ! ; ^ 2 ( i ) , t 2) 3-2

W2(i|i|( L ) , t1; ^2C L ) , t2)di|i|(L) dif»2( L ) is th e p r o b a b i l i t y t h a t th e phase o f

th e component has a value between tpj ( L ) and ij>| (L)+d<i>| (L ) a t th e tim e

t j and a v a lu e between anc*0 2^-)+diJJ2(L ) "*"'me ^2' P h y s ic a lly

th e assum ption 3-2 means the p a r t ic le s see th e phase o f each component

ind epe nd e ntly o f any o t h e r . L e t i|)|,^2» ’ denote th e phase a n g les

o f any p a r t i c u l a r component a t t| »+2’ "iV ‘ * r e s p e c t iv e ly . Then i t f o llo w s from assum ption 3-2 and th e assumption t h a t th e e n t ir e process is M a rko ff t h a t the process f o r an in d iv id u a l wave component is

a ls o M a rk o ff, sin c e

W3 (W W W = / W3(R ^ |, t |;R ^2, t2;R ^3, t 3)

= / W2 <R^j , t j ;R02 , t 2 )P2 (R^2, t 2 | R4»3,+ 3 ) - W2 |>t | ; ^2*^7) ?2(^2' t2 I ^3*^3^

where / denotes in t e g r a t io n o v e r the phase v a r ia b le s o f a l l

components e xc e p t | *^2 *^3 anc* ‘ s second o r d e r c o n d itio n a l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

Related documents

12919 2018 152 Article 1 7 PROCEEDINGS Open Access An efficient analytic approach in genome wide identification of methylation quantitative trait loci response to fenofibrate

BioMed Central World Journal of Surgical Oncology ss Open AcceResearch Is the thymidine labeling index a good prognostic marker in breast cancer? Ebru Sen Oran*1,4, Vahit Ozmen1,

Earth Planets Space, 56, 39?45, 2004 Geomagnetic fluctuations during the 1999 Chi Chi earthquake in Taiwan Horng Yuan Yen1, Chieh Hung Chen1, Yih Hsiung Yeh3, Jann Yeng Liu2, Chin Ren

The intended goals of the change plan are to develop realistic expectations and scope of work for building level administration (for example, assessment schedules, personal

In this paper, we argue that much of the small business strategic management literature has drawn too heavily from work done on large, established firms. We build upon the notions of

business executives and 62 Korean business executives, we find empirical support for the persistence of cross-cultural differences in the decision criteria used in project evaluation

Resource dependence theory explains the importance of outside directors on corporate boards, especially for small- and mid-sized companies.. Attracting qualified board members is