• No results found

Cilansetron hydro­chloride monohydrate, modification B (orthorhombic)

N/A
N/A
Protected

Academic year: 2020

Share "Cilansetron hydro­chloride monohydrate, modification B (orthorhombic)"

Copied!
13
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2003). E59, o41±o43 DOI: 10.1107/S1600536802022481 Peter G. Joneset al. C20H22N3O+ClÿH2O

o41

organic papers

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Cilansetron hydrochloride monohydrate,

modification B (orthorhombic)

Peter G. Jones,a* Hedwig MoÈllerb and Emil Finnerb

aInstitut fuÈr Anorganische und Analytische

Chemie, Technische UniversitaÈt Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, andbSolvay Pharmaceuticals GmbH, Discovery

Hannover, PO Box 220, 30002 Hannover, Germany

Correspondence e-mail: jones@xray36.anchem.nat.tu-bs.de

Key indicators Single-crystal X-ray study

T= 123 K

Mean(C±C) = 0.005 AÊ Disorder in main residue

Rfactor = 0.058

wRfactor = 0.105

Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The absolute con®guration of the orthorhombic form of the

title compound, (ÿ)-5,6,9,10-tetrahydro-10-[(2-methyl-1H

--imidazol-1-yl)methyl]-4H-pyrido[3,2,1-jk]carbazol-11(8H

)-one monohydrochloride monohydrate, C20H22N3O+ClÿH2O,

was established asRat the asymmetric carbon adjacent to the

carbonyl function. This form [cf. the monoclinic form; Joneset

al. (2003). Acta Cryst. E59, o38±o40] also involves two

independent formula units with different ring conformations of the six-membered N-heterocycle, and somewhat different orientations of the imidazole ring. Classical hydrogen bonding leads to a helical chain of alternating water and chloride residues, with cations hydrogen bonded laterally to the water molecules.

Comment

In the previous paper (Jones et al., 2003), we described the

structure of the monoclinic form (modi®cation A) of cilanse-tron hydrochloride monohydrate, (I); introductory material is presented there. We describe here the structure of the orthorhombic form (modi®cation B).

In common with the monoclinic form, the title compound crystallizes with two independent formula units in the asym-metric unit (Fig. 1); the cations again differ in the ring conformation involving the methylene groups C4, C5 and C6, and in the orientation of the imidazole ring. A brief selection of relevant torsion angles is shown in Table 1. A least-squares ®t of the cations is shown in Fig. 2. Molecular dimensions may be regarded as normal.

TheRabsolute con®guration at the asymmetric centre C10

(C30 in the second molecule) was con®rmed by the Flack

(1983) parameter (seeExperimental).

The crystal packing differs signi®cantly from that in the monoclinic form. An analysis of the classical hydrogen bonds (Table 2) again reveals the presence of helical chains

[ Cl HÐOÐH ], but now with overall direction parallel

to the a axis and involving both formula units in the same

chain; the cations are again attached laterally to these helices,

but now by contacts NÐH Owater rather than NÐH Cl

(2)

(Fig. 3). The chains form hydrophilic regions atz'0.25, 0.75,

etc.

A considerable number of non-classical (weak) hydrogen

bonds of the form CÐH Cl and CÐH O are observed

(Table 2), but only one of these (C250ÐH250 Cl2) is

espe-Experimental

A single crystal was selected by IR microscopy from a mixture of modi®cations A and B crystallized from 0.1MHCl.

Crystal data

C20H22N3O+ClÿH2O

Mr= 373.87

Orthorhombic,P212121

a= 7.396 (2) AÊ

b= 16.460 (3) AÊ

c= 30.263 (6) AÊ

V= 3684.2 (14) AÊ3

Z= 8

Dx= 1.348 Mg mÿ3

MoKradiation Cell parameters from 5470

re¯ections

= 2±25

= 0.23 mmÿ1

T= 123 (2) K Lath, colourless 0.700.230.04 mm

Data collection

Stoe±Huber±Siemens area-detector diffractometer

'scans

61 630 measured re¯ections 6553 independent re¯ections 5335 re¯ections withI> 2(I)

Rint= 0.112

max= 25.1

h=ÿ8!8

k=ÿ19!19

l=ÿ36!36

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.058

wR(F2) = 0.105

S= 1.15 6553 re¯ections 500 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.018P)2

+ 3.9789P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.36 e AÊÿ3

min=ÿ0.27 e AÊÿ3

Absolute structure: Flack (1983), 2820 Friedel pairs

Flack parameter =ÿ0.03 (9)

Table 1

Selected torsion angles ().

C3AÐC4ÐC5ÐC6 ÿ50.0 (5) C4ÐC5ÐC6ÐN7 48.8 (5) C11AÐC7AÐC8ÐC9 15.6 (5)

C23AÐC24ÐC25ÐC26 47.0 (6) C24ÐC25ÐC26ÐN27 ÿ47.5 (6) C31AÐC27AÐC28ÐC29 21.4 (5)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N30ÐH30 O1Wi 0.88 (4) 1.85 (4) 2.724 (5) 170 (5)

N230ÐH230 O2Wi 0.88 (4) 1.87 (4) 2.741 (5) 167 (4)

O1WÐH01 Cl2 0.84 (3) 2.28 (3) 3.117 (3) 173 (5) O1WÐH02 Cl1ii 0.84 (3) 2.27 (3) 3.113 (4) 178 (5)

O2WÐH03 Cl1 0.85 (3) 2.24 (3) 3.076 (3) 170 (4) O2WÐH04 Cl2 0.84 (3) 2.26 (3) 3.086 (3) 165 (5) C9ÐH9A Cl1 0.99 2.88 3.797 (4) 154 C12ÐH12B Cl1 0.99 2.85 3.775 (4) 156 C13ÐH13B Cl1iii 0.98 2.91 3.685 (4) 137

C29ÐH29A Cl1 0.99 2.81 3.761 (4) 161 C32ÐH32B Cl1 0.99 2.96 3.887 (4) 156 C240ÐH240 Cl1iii 0.95 2.70 3.632 (4) 167

C12ÐH12A Cl2iv 0.99 2.88 3.528 (4) 124

C13ÐH13C Cl2iv 0.98 2.85 3.782 (4) 159

C50ÐH50 Cl2 0.95 2.73 3.507 (4) 139

C33ÐH33C Cl2 0.98 2.73 3.665 (4) 160 C250ÐH250 Cl2iv 0.95 2.55 3.438 (4) 155

C5ÐH5A O1v 0.99 2.62 3.479 (5) 145

C2ÐH2 O2vi 0.95 2.61 3.482 (5) 152

C25ÐH25B O2vii 0.99 2.54 3.398 (6) 145

C3ÐH3 O2Wv 0.95 2.53 3.479 (5) 173

C23ÐH23 O1Wvii 0.95 2.67 3.586 (5) 164 Symmetry codes: (i) 2ÿx;yÿ1

2;12ÿz; (ii) 1‡x;y;z; (iii) 1ÿx;yÿ12;12ÿz; (iv) xÿ1;y;z; (v)xÿ1;1ÿy;1ÿz; (vi)3ÿx;ÿy;1‡z; (vii)xÿ1;1ÿy;ÿz.

Figure 1

The asymmetric unit of the title compound in the crystal. Ellipsoids are drawn at the 30% probability level.

Figure 2

Least-squares ®t of both independent cations, calculated using the labelled atoms.

Figure 3

(3)

H atoms bonded to oxygen or nitrogen were re®ned freely but with chemically equivalent bond lengths restrained to be equal. Methyl H atoms were identi®ed in difference syntheses, idealized and re®ned as rigid groups allowed to rotate but not tip. Other H atoms were included using a riding model. Fixed CÐH bond lengths: methyl = 0.98, methylene = 0.99, methine = 1.00 andsp2CÐH = 0.95 AÊ. In the

second cation, the atom C25 is disordered over two positions. The major component has an occupation factor of 0.767 (12). The minor position was re®ned isotropically. Appropriate similarity restraints were employed.

Data collection:SMART(Bruker, 2002); cell re®nement:SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure:SHELXS97 (Sheldrick, 1990); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Professor G. M. Shel-drick for providing data collection facilities and Mr A. Weinkauf for technical assistance.

References

Bruker (2002).SMARTandSAINT. Development versions. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983).Acta Cryst.A39, 876±881.

Jones, P. G., MoÈller, H. & Finner, E. (2003).Acta Cryst.E59, o38±o40. Sheldrick, G. M. (1990).Acta Cryst.A46, 467±473.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Siemens (1994).XP. Version 5.03. Siemens Analytical X-ray Instruments Inc.,

Madison, Wisconsin, USA.

Acta Cryst.(2003). E59, o41±o43 Peter G. Joneset al. C20H22N3O+ClÿH2O

o43

(4)

supporting information

Acta Cryst. (2003). E59, o41–o43 [https://doi.org/10.1107/S1600536802022481]

Cilansetron hydrochloride monohydrate, modification B (orthorhombic)

Peter G. Jones, Hedwig M

ö

ller and Emil Finner

R-(-)-5,6,9,10-tetrahydro-10- [(2-methyl-1H-imidazol-1-yl)-methyl]-4H-pyrido[3,2,1-jk]-carbazol-11(8H)-one

monohydrochloride monohydrate

Crystal data

C20H22N3O+·Cl−·H2O Mr = 373.87

Orthorhombic, P212121 a = 7.396 (2) Å b = 16.460 (3) Å c = 30.263 (6) Å V = 3684.2 (14) Å3 Z = 8

F(000) = 1584

Dx = 1.348 Mg m−3

Mo Kα radiation, λ = 0.71073 Å Cell parameters from 5470 reflections θ = 2–25°

µ = 0.23 mm−1 T = 123 K Lath, colourless 0.70 × 0.23 × 0.04 mm

Data collection

Stoe-Huber-Siemens area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 8.192 pixels mm-1 φ–scan

61630 measured reflections

6553 independent reflections 5335 reflections with I > 2σ(I) Rint = 0.112

θmax = 25.1°, θmin = 2.4° h = −8→8

k = 0→19 l = 0→36

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.058 wR(F2) = 0.105 S = 1.15 6553 reflections 500 parameters 15 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.018P)2 + 3.9789P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.36 e Å−3 Δρmin = −0.27 e Å−3

Absolute structure: Flack (1983), 2820 Friedel pairs

Absolute structure parameter: −0.03 (9)

Special details

(5)

supporting information

sup-2

Acta Cryst. (2003). E59, o41–o43

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

C1 0.5799 (5) 0.1127 (2) 0.51381 (13) 0.0208 (9)

H1 0.5764 0.0623 0.4986 0.025*

C2 0.5867 (5) 0.1151 (2) 0.55962 (13) 0.0220 (9)

H2 0.5908 0.0656 0.5757 0.026*

C3 0.5877 (5) 0.1892 (2) 0.58271 (13) 0.0245 (9)

H3 0.5894 0.1888 0.6141 0.029*

C3A 0.5862 (5) 0.2629 (2) 0.56062 (13) 0.0214 (9)

C4 0.5962 (5) 0.3469 (2) 0.58063 (13) 0.0271 (9)

H4A 0.7239 0.3604 0.5871 0.033*

H4B 0.5283 0.3477 0.6088 0.033*

C5 0.5173 (6) 0.4106 (3) 0.54923 (14) 0.0333 (11)

H5A 0.3843 0.4038 0.5483 0.040*

H5B 0.5427 0.4652 0.5614 0.040*

C6 0.5887 (5) 0.4070 (2) 0.50259 (14) 0.0255 (9)

H6A 0.5154 0.4427 0.4833 0.031*

H6B 0.7152 0.4267 0.5019 0.031*

N7 0.5811 (4) 0.32330 (18) 0.48615 (10) 0.0211 (7)

C7A 0.5853 (5) 0.2956 (2) 0.44388 (13) 0.0196 (8)

C8 0.5921 (5) 0.3460 (2) 0.40364 (12) 0.0234 (8)

H8A 0.7152 0.3686 0.3999 0.028*

H8B 0.5062 0.3918 0.4064 0.028*

C9 0.5428 (5) 0.2944 (2) 0.36339 (13) 0.0258 (9)

H9A 0.5761 0.3244 0.3362 0.031*

H9B 0.4103 0.2860 0.3629 0.031*

C10 0.6374 (5) 0.2111 (2) 0.36299 (12) 0.0200 (8)

H10 0.7708 0.2208 0.3617 0.024*

C11 0.5978 (5) 0.1635 (2) 0.40515 (12) 0.0204 (8)

O1 0.5855 (4) 0.08844 (15) 0.40521 (9) 0.0254 (6)

C11A 0.5822 (5) 0.2108 (2) 0.44469 (12) 0.0177 (8)

C11B 0.5783 (5) 0.1859 (2) 0.49066 (12) 0.0184 (8)

C11C 0.5796 (5) 0.2582 (2) 0.51502 (12) 0.0188 (8)

C12 0.5820 (6) 0.1668 (2) 0.32048 (12) 0.0275 (9)

H12A 0.4495 0.1586 0.3210 0.033*

H12B 0.6099 0.2025 0.2950 0.033*

C13 0.3995 (5) −0.0009 (3) 0.32620 (12) 0.0260 (8)

H13A 0.3754 0.0122 0.3572 0.031*

H13B 0.3739 −0.0585 0.3209 0.031*

H13C 0.3220 0.0324 0.3072 0.031*

N1′ 0.6692 (4) 0.0878 (2) 0.31312 (11) 0.0231 (8)

(6)

N3′ 0.7150 (5) −0.0401 (2) 0.30683 (11) 0.0287 (8)

H3′ 0.689 (7) −0.092 (2) 0.3064 (18) 0.08 (2)*

C4′ 0.8770 (5) −0.0030 (3) 0.29733 (13) 0.0328 (10)

H4′ 0.9872 −0.0292 0.2897 0.039*

C5′ 0.8491 (6) 0.0786 (3) 0.30102 (14) 0.0325 (12)

H5′ 0.9351 0.1205 0.2963 0.039*

C21 0.7671 (5) 0.1054 (2) −0.01679 (12) 0.0206 (8)

H21 0.7644 0.0544 −0.0021 0.025*

C22 0.7743 (5) 0.1094 (2) −0.06242 (12) 0.0243 (9)

H22 0.7764 0.0603 −0.0790 0.029*

C23 0.7786 (5) 0.1839 (2) −0.08498 (12) 0.0233 (9)

H23 0.7860 0.1842 −0.1163 0.028*

C23A 0.7723 (5) 0.2575 (2) −0.06235 (11) 0.0204 (8)

C24 0.7767 (5) 0.3422 (2) −0.08171 (12) 0.0273 (9)

H24A 0.7049 0.3432 −0.1093 0.033* 0.767 (12)

H24B 0.9029 0.3567 −0.0892 0.033* 0.767 (12)

H24C 0.8633 0.3427 −0.1067 0.033* 0.233 (12)

H24D 0.6556 0.3548 −0.0938 0.033* 0.233 (12)

C25 0.6996 (8) 0.4054 (3) −0.04893 (17) 0.0251 (17) 0.767 (12)

H25A 0.7274 0.4604 −0.0603 0.030* 0.767 (12)

H25B 0.5664 0.3997 −0.0483 0.030* 0.767 (12)

C26 0.7678 (6) 0.3997 (2) −0.00283 (13) 0.0291 (9)

H26A 0.8940 0.4197 −0.0016 0.035* 0.767 (12)

H26B 0.6932 0.4344 0.0167 0.035* 0.767 (12)

H26C 0.8542 0.4307 0.0157 0.035* 0.233 (12)

H26D 0.6470 0.4248 0.0006 0.035* 0.233 (12)

C25" 0.826 (2) 0.4052 (9) −0.0514 (4) 0.014 (5)* 0.233 (12)

H25C 0.7782 0.4569 −0.0633 0.017* 0.233 (12)

H25D 0.9596 0.4095 −0.0518 0.017* 0.233 (12)

N27 0.7609 (4) 0.31583 (16) 0.01259 (9) 0.0184 (6)

C27A 0.7618 (5) 0.2865 (2) 0.05449 (11) 0.0188 (8)

C28 0.7631 (5) 0.3363 (2) 0.09559 (11) 0.0208 (8)

H28A 0.6388 0.3546 0.1026 0.025*

H28B 0.8397 0.3850 0.0913 0.025*

C29 0.8375 (5) 0.2850 (2) 0.13354 (13) 0.0211 (9)

H29A 0.8159 0.3140 0.1617 0.025*

H29B 0.9698 0.2793 0.1298 0.025*

C30 0.7533 (5) 0.2000 (2) 0.13663 (11) 0.0183 (7)

H30 0.6221 0.2068 0.1438 0.022*

C31 0.7670 (5) 0.1530 (2) 0.09276 (11) 0.0180 (7)

O2 0.7765 (4) 0.07851 (14) 0.09180 (8) 0.0248 (6)

C31A 0.7633 (5) 0.2021 (2) 0.05346 (11) 0.0168 (8)

C31B 0.7638 (5) 0.1786 (2) 0.00754 (11) 0.0177 (7)

C31C 0.7640 (5) 0.2510 (2) −0.01673 (11) 0.0189 (8)

C32 0.8427 (5) 0.1569 (2) 0.17555 (12) 0.0202 (8)

H32A 0.9741 0.1529 0.1697 0.024*

H32B 0.8269 0.1908 0.2023 0.024*

(7)

supporting information

sup-4

Acta Cryst. (2003). E59, o41–o43

H33A 1.0686 0.0105 0.1362 0.028*

H33B 1.0930 −0.0599 0.1722 0.028*

H33C 1.1309 0.0327 0.1854 0.028*

N21′ 0.7736 (4) 0.07546 (17) 0.18488 (9) 0.0180 (7)

C22′ 0.8645 (5) 0.0059 (3) 0.18070 (11) 0.0197 (8)

N23′ 0.7529 (5) −0.0544 (2) 0.19179 (10) 0.0239 (7)

H23′ 0.785 (6) −0.106 (2) 0.1950 (14) 0.042 (14)*

C24′ 0.5871 (5) −0.0225 (2) 0.20293 (13) 0.0269 (10)

H24′ 0.4835 −0.0523 0.2120 0.032*

C25′ 0.5987 (5) 0.0581 (2) 0.19870 (13) 0.0233 (9)

H25′ 0.5051 0.0963 0.2041 0.028*

Cl1 0.75471 (13) 0.34232 (6) 0.25214 (3) 0.0264 (2)

Cl2 1.22607 (12) 0.15229 (6) 0.24328 (3) 0.0255 (2)

O1W 1.4041 (5) 0.30365 (19) 0.19926 (11) 0.0353 (7)

H01 1.354 (6) 0.265 (2) 0.2129 (15) 0.057 (18)*

H02 1.501 (5) 0.313 (3) 0.2129 (15) 0.065 (19)*

O2W 1.0985 (4) 0.29336 (18) 0.30276 (10) 0.0296 (7)

H03 0.998 (4) 0.301 (3) 0.2899 (14) 0.044 (15)*

H04 1.154 (6) 0.258 (3) 0.2875 (16) 0.07 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.019 (2) 0.015 (2) 0.029 (2) 0.0009 (16) −0.0006 (18) 0.0008 (17)

C2 0.020 (2) 0.024 (2) 0.022 (2) 0.0008 (17) 0.0027 (18) 0.0086 (18)

C3 0.022 (2) 0.030 (2) 0.022 (2) −0.0021 (18) 0.0019 (17) −0.0021 (18)

C3A 0.016 (2) 0.024 (2) 0.025 (2) −0.0013 (17) −0.0007 (17) −0.0014 (18)

C4 0.029 (2) 0.028 (2) 0.025 (2) 0.000 (2) −0.0036 (18) −0.0085 (19)

C5 0.035 (2) 0.026 (2) 0.039 (3) −0.005 (2) 0.006 (2) −0.009 (2)

C6 0.028 (2) 0.0122 (19) 0.036 (3) −0.0013 (18) 0.004 (2) −0.0040 (18)

N7 0.0238 (17) 0.0170 (18) 0.0225 (18) −0.0027 (14) 0.0034 (14) 0.0013 (14)

C7A 0.0168 (19) 0.016 (2) 0.026 (2) −0.0008 (16) 0.0009 (17) 0.0000 (17)

C8 0.025 (2) 0.016 (2) 0.029 (2) 0.0012 (18) 0.0023 (18) 0.0080 (19)

C9 0.030 (2) 0.025 (2) 0.023 (2) 0.0016 (18) −0.0020 (18) 0.0095 (19)

C10 0.021 (2) 0.025 (2) 0.0142 (19) −0.0023 (17) −0.0013 (16) 0.0010 (17)

C11 0.0160 (19) 0.020 (2) 0.025 (2) −0.0010 (16) −0.0053 (16) 0.0061 (18)

O1 0.0365 (16) 0.0186 (15) 0.0210 (15) −0.0015 (13) −0.0020 (13) 0.0003 (12)

C11A 0.0168 (19) 0.019 (2) 0.018 (2) −0.0014 (16) −0.0025 (16) −0.0016 (16)

C11B 0.0099 (18) 0.019 (2) 0.026 (2) −0.0002 (15) 0.0023 (16) 0.0004 (17)

C11C 0.0173 (19) 0.016 (2) 0.023 (2) 0.0017 (17) 0.0041 (16) −0.0007 (17)

C12 0.034 (2) 0.028 (2) 0.021 (2) −0.006 (2) −0.0038 (18) 0.0032 (18)

C13 0.027 (2) 0.023 (2) 0.028 (2) −0.005 (2) 0.0007 (17) −0.001 (2)

N1′ 0.0235 (18) 0.027 (2) 0.0192 (19) −0.0045 (15) −0.0002 (14) −0.0008 (16)

C2′ 0.032 (2) 0.026 (2) 0.011 (2) −0.0028 (19) −0.0047 (17) −0.0008 (17)

N3′ 0.031 (2) 0.031 (2) 0.0239 (19) 0.0002 (18) −0.0032 (16) −0.0042 (16)

C4′ 0.029 (2) 0.042 (3) 0.028 (2) −0.001 (2) 0.0036 (18) −0.006 (2)

C5′ 0.025 (2) 0.057 (3) 0.016 (2) −0.013 (2) 0.0024 (18) −0.001 (2)

(8)

C22 0.022 (2) 0.024 (2) 0.027 (2) 0.0020 (19) −0.0004 (19) −0.0099 (17)

C23 0.021 (2) 0.033 (2) 0.0156 (19) 0.0011 (18) 0.0017 (17) −0.0006 (16)

C23A 0.0162 (19) 0.023 (2) 0.022 (2) −0.0014 (18) −0.0028 (17) 0.0029 (16)

C24 0.023 (2) 0.033 (2) 0.026 (2) 0.003 (2) 0.0033 (18) 0.0114 (19)

C25 0.022 (3) 0.019 (3) 0.035 (3) −0.003 (2) −0.003 (2) 0.009 (2)

C26 0.037 (2) 0.017 (2) 0.033 (2) −0.001 (2) 0.006 (2) 0.0072 (17)

N27 0.0204 (16) 0.0140 (15) 0.0208 (16) 0.0000 (15) −0.0016 (15) −0.0005 (12) C27A 0.0157 (18) 0.0195 (19) 0.0211 (19) 0.0005 (18) 0.0031 (18) −0.0012 (15) C28 0.0232 (19) 0.0115 (18) 0.0278 (19) −0.0012 (18) −0.0009 (19) −0.0021 (16)

C29 0.023 (2) 0.020 (2) 0.021 (2) 0.0004 (16) 0.0012 (17) −0.0066 (18)

C30 0.0131 (17) 0.0201 (19) 0.0218 (18) −0.0005 (17) −0.0014 (18) 0.0021 (15)

C31 0.0118 (17) 0.021 (2) 0.0211 (18) 0.0003 (18) −0.0015 (17) −0.0011 (17)

O2 0.0375 (16) 0.0140 (14) 0.0229 (14) 0.0013 (13) −0.0020 (14) 0.0004 (11) C31A 0.0178 (18) 0.0117 (18) 0.0211 (19) 0.0026 (17) 0.0011 (18) −0.0023 (14) C31B 0.0135 (17) 0.0189 (18) 0.0208 (18) 0.0023 (17) −0.0029 (17) 0.0019 (15) C31C 0.0145 (18) 0.0204 (19) 0.0217 (19) 0.0026 (18) −0.0014 (17) −0.0014 (15)

C32 0.024 (2) 0.016 (2) 0.021 (2) −0.0013 (16) −0.0018 (16) 0.0004 (18)

C33 0.027 (2) 0.021 (2) 0.023 (2) 0.002 (2) 0.0014 (16) 0.0035 (19)

N21′ 0.0181 (17) 0.0182 (16) 0.0176 (16) −0.0023 (15) 0.0013 (15) 0.0014 (12)

C22′ 0.027 (2) 0.023 (2) 0.0088 (17) −0.0026 (19) −0.0019 (15) 0.0002 (18)

N23′ 0.031 (2) 0.0212 (18) 0.0191 (17) −0.0015 (18) −0.0020 (18) 0.0018 (14)

C24′ 0.023 (2) 0.034 (3) 0.023 (2) −0.0072 (19) 0.0049 (18) −0.0015 (18)

C25′ 0.018 (2) 0.033 (2) 0.019 (2) 0.0028 (18) 0.0068 (18) 0.0000 (18)

Cl1 0.0266 (5) 0.0304 (5) 0.0221 (5) 0.0052 (5) 0.0005 (5) −0.0019 (4)

Cl2 0.0222 (5) 0.0237 (5) 0.0305 (5) 0.0016 (4) −0.0030 (4) −0.0050 (4)

O1W 0.039 (2) 0.0326 (19) 0.0345 (19) −0.0074 (16) −0.0041 (16) 0.0073 (15) O2W 0.0290 (17) 0.0280 (17) 0.0318 (18) 0.0078 (15) −0.0094 (15) −0.0071 (14)

Geometric parameters (Å, º)

C1—C2 1.388 (5) C23—C23A 1.392 (5)

C1—C11B 1.394 (5) C23—H23 0.9500

C1—H1 0.9500 C23A—C31C 1.386 (5)

C2—C3 1.406 (5) C23A—C24 1.513 (5)

C2—H2 0.9500 C24—C25 1.547 (6)

C3—C3A 1.385 (5) C24—H24A 0.9900

C3—H3 0.9500 C24—H24B 0.9900

C3A—C11C 1.383 (5) C24—H24C 0.9900

C3A—C4 1.511 (5) C24—H24D 0.9900

C4—C5 1.531 (6) C25—C26 1.487 (6)

C4—H4A 0.9900 C25—H25A 0.9900

C4—H4B 0.9900 C25—H25B 0.9900

C5—C6 1.508 (6) C26—N27 1.458 (4)

C5—H5A 0.9900 C26—H26A 0.9900

C5—H5B 0.9900 C26—H26B 0.9900

C6—N7 1.467 (5) C26—H26C 0.9900

C6—H6A 0.9900 C26—H26D 0.9900

(9)

supporting information

sup-6

Acta Cryst. (2003). E59, o41–o43

N7—C7A 1.359 (5) C25"—H25D 0.9900

N7—C11C 1.383 (5) N27—C27A 1.357 (4)

C7A—C11A 1.396 (5) N27—C31C 1.387 (4)

C7A—C8 1.474 (5) C27A—C31A 1.390 (5)

C8—C9 1.529 (5) C27A—C28 1.490 (5)

C8—H8A 0.9900 C28—C29 1.529 (5)

C8—H8B 0.9900 C28—H28A 0.9900

C9—C10 1.540 (5) C28—H28B 0.9900

C9—H9A 0.9900 C29—C30 1.534 (5)

C9—H9B 0.9900 C29—H29A 0.9900

C10—C11 1.525 (5) C29—H29B 0.9900

C10—C12 1.534 (5) C30—C32 1.526 (5)

C10—H10 1.0000 C30—C31 1.540 (5)

C11—O1 1.239 (4) C30—H30 1.0000

C11—C11A 1.432 (5) C31—O2 1.228 (4)

C11A—C11B 1.450 (5) C31—C31A 1.438 (5)

C11B—C11C 1.400 (5) C31A—C31B 1.442 (5)

C12—N1′ 1.468 (5) C31B—C31C 1.400 (5)

C12—H12A 0.9900 C32—N21′ 1.462 (5)

C12—H12B 0.9900 C32—H32A 0.9900

C13—C2′ 1.475 (5) C32—H32B 0.9900

C13—H13A 0.9800 C33—C22′ 1.474 (5)

C13—H13B 0.9800 C33—H33A 0.9800

C13—H13C 0.9800 C33—H33B 0.9800

N1′—C2′ 1.319 (5) C33—H33C 0.9800

N1′—C5′ 1.389 (5) N21′—C22′ 1.334 (5)

C2′—N3′ 1.331 (5) N21′—C25′ 1.389 (5)

N3′—C4′ 1.375 (5) C22′—N23′ 1.334 (5)

N3′—H3′ 0.88 (4) N23′—C24′ 1.376 (5)

C4′—C5′ 1.364 (7) N23′—H23′ 0.88 (4)

C4′—H4′ 0.9500 C24′—C25′ 1.335 (6)

C5′—H5′ 0.9500 C24′—H24′ 0.9500

C21—C22 1.383 (5) C25′—H25′ 0.9500

C21—C31B 1.413 (5) O1W—H01 0.84 (3)

C21—H21 0.9500 O1W—H02 0.84 (3)

C22—C23 1.405 (5) O2W—H03 0.85 (3)

C22—H22 0.9500 O2W—H04 0.84 (3)

C2—C1—C11B 118.6 (4) C31C—C23A—C24 117.2 (3)

C2—C1—H1 120.7 C23—C23A—C24 127.6 (3)

C11B—C1—H1 120.7 C25"—C24—C23A 115.1 (7)

C1—C2—C3 121.4 (4) C23A—C24—C25 111.3 (3)

C1—C2—H2 119.3 C23A—C24—H24A 109.4

C3—C2—H2 119.3 C25—C24—H24A 109.4

C3A—C3—C2 121.3 (4) C23A—C24—H24B 109.4

C3A—C3—H3 119.3 C25—C24—H24B 109.4

C2—C3—H3 119.3 H24A—C24—H24B 108.0

(10)

C11C—C3A—C4 116.9 (3) C23A—C24—H24C 108.5

C3—C3A—C4 127.4 (3) C25"—C24—H24D 108.5

C3A—C4—C5 111.1 (3) C23A—C24—H24D 108.5

C3A—C4—H4A 109.4 H24C—C24—H24D 107.5

C5—C4—H4A 109.4 C26—C25—C24 115.7 (4)

C3A—C4—H4B 109.4 C26—C25—H25A 108.3

C5—C4—H4B 109.4 C24—C25—H25A 108.3

H4A—C4—H4B 108.0 C26—C25—H25B 108.3

C6—C5—C4 114.9 (3) C24—C25—H25B 108.3

C6—C5—H5A 108.5 H25A—C25—H25B 107.4

C4—C5—H5A 108.5 N27—C26—C25 110.4 (4)

C6—C5—H5B 108.5 N27—C26—C25" 111.8 (6)

C4—C5—H5B 108.5 N27—C26—H26A 109.6

H5A—C5—H5B 107.5 C25—C26—H26A 109.6

N7—C6—C5 109.9 (3) N27—C26—H26B 109.6

N7—C6—H6A 109.7 C25—C26—H26B 109.6

C5—C6—H6A 109.7 H26A—C26—H26B 108.1

N7—C6—H6B 109.7 N27—C26—H26C 109.3

C5—C6—H6B 109.7 C25"—C26—H26C 109.3

H6A—C6—H6B 108.2 N27—C26—H26D 109.3

C7A—N7—C11C 109.6 (3) C25"—C26—H26D 109.3

C7A—N7—C6 129.4 (3) H26C—C26—H26D 107.9

C11C—N7—C6 121.0 (3) C24—C25"—C26 120.0 (10)

N7—C7A—C11A 108.6 (3) C24—C25"—H25C 107.3

N7—C7A—C8 126.1 (3) C26—C25"—H25C 107.3

C11A—C7A—C8 125.3 (4) C24—C25"—H25D 107.3

C7A—C8—C9 109.7 (3) C26—C25"—H25D 107.3

C7A—C8—H8A 109.7 H25C—C25"—H25D 106.9

C9—C8—H8A 109.7 C27A—N27—C31C 108.9 (3)

C7A—C8—H8B 109.7 C27A—N27—C26 129.5 (3)

C9—C8—H8B 109.7 C31C—N27—C26 121.5 (3)

H8A—C8—H8B 108.2 N27—C27A—C31A 109.6 (3)

C8—C9—C10 113.1 (3) N27—C27A—C28 125.7 (3)

C8—C9—H9A 109.0 C31A—C27A—C28 124.7 (3)

C10—C9—H9A 109.0 C27A—C28—C29 109.0 (3)

C8—C9—H9B 109.0 C27A—C28—H28A 109.9

C10—C9—H9B 109.0 C29—C28—H28A 109.9

H9A—C9—H9B 107.8 C27A—C28—H28B 109.9

C11—C10—C12 114.0 (3) C29—C28—H28B 109.9

C11—C10—C9 111.3 (3) H28A—C28—H28B 108.3

C12—C10—C9 107.9 (3) C28—C29—C30 113.8 (3)

C11—C10—H10 107.8 C28—C29—H29A 108.8

C12—C10—H10 107.8 C30—C29—H29A 108.8

C9—C10—H10 107.8 C28—C29—H29B 108.8

O1—C11—C11A 122.3 (3) C30—C29—H29B 108.8

O1—C11—C10 121.8 (3) H29A—C29—H29B 107.7

C11A—C11—C10 115.8 (3) C32—C30—C29 107.2 (3)

(11)

supporting information

sup-8

Acta Cryst. (2003). E59, o41–o43

C7A—C11A—C11B 107.4 (3) C29—C30—C31 112.3 (3)

C11—C11A—C11B 130.6 (3) C32—C30—H30 107.8

C1—C11B—C11C 118.0 (3) C29—C30—H30 107.8

C1—C11B—C11A 136.5 (3) C31—C30—H30 107.8

C11C—C11B—C11A 105.4 (3) O2—C31—C31A 122.8 (3)

N7—C11C—C3A 125.9 (3) O2—C31—C30 121.7 (3)

N7—C11C—C11B 109.0 (3) C31A—C31—C30 115.4 (3)

C3A—C11C—C11B 125.0 (4) C27A—C31A—C31 122.9 (3)

N1′—C12—C10 115.5 (3) C27A—C31A—C31B 106.8 (3)

N1′—C12—H12A 108.4 C31—C31A—C31B 130.3 (3)

C10—C12—H12A 108.4 C31C—C31B—C21 116.9 (3)

N1′—C12—H12B 108.4 C31C—C31B—C31A 106.1 (3)

C10—C12—H12B 108.4 C21—C31B—C31A 136.9 (3)

H12A—C12—H12B 107.5 C23A—C31C—N27 125.4 (3)

C2′—C13—H13A 109.5 C23A—C31C—C31B 126.0 (3)

C2′—C13—H13B 109.5 N27—C31C—C31B 108.6 (3)

H13A—C13—H13B 109.5 N21′—C32—C30 115.1 (3)

C2′—C13—H13C 109.5 N21′—C32—H32A 108.5

H13A—C13—H13C 109.5 C30—C32—H32A 108.5

H13B—C13—H13C 109.5 N21′—C32—H32B 108.5

C2′—N1′—C5′ 109.9 (4) C30—C32—H32B 108.5

C2′—N1′—C12 126.2 (3) H32A—C32—H32B 107.5

C5′—N1′—C12 123.9 (4) C22′—C33—H33A 109.5

N1′—C2′—N3′ 107.8 (4) C22′—C33—H33B 109.5

N1′—C2′—C13 127.1 (4) H33A—C33—H33B 109.5

N3′—C2′—C13 125.1 (4) C22′—C33—H33C 109.5

C2′—N3′—C4′ 109.7 (4) H33A—C33—H33C 109.5

C2′—N3′—H3′ 122 (4) H33B—C33—H33C 109.5

C4′—N3′—H3′ 128 (4) C22′—N21′—C25′ 108.7 (3)

C5′—C4′—N3′ 106.7 (4) C22′—N21′—C32 126.3 (3)

C5′—C4′—H4′ 126.6 C25′—N21′—C32 124.9 (3)

N3′—C4′—H4′ 126.6 N21′—C22′—N23′ 107.7 (3)

C4′—C5′—N1′ 105.9 (4) N21′—C22′—C33 126.7 (4)

C4′—C5′—H5′ 127.0 N23′—C22′—C33 125.6 (4)

N1′—C5′—H5′ 127.0 C22′—N23′—C24′ 109.1 (3)

C22—C21—C31B 118.7 (3) C22′—N23′—H23′ 125 (3)

C22—C21—H21 120.6 C24′—N23′—H23′ 125 (3)

C31B—C21—H21 120.6 C25′—C24′—N23′ 107.4 (4)

C21—C22—C23 121.8 (3) C25′—C24′—H24′ 126.3

C21—C22—H22 119.1 N23′—C24′—H24′ 126.3

C23—C22—H22 119.1 C24′—C25′—N21′ 107.1 (4)

C23A—C23—C22 121.3 (3) C24′—C25′—H25′ 126.5

C23A—C23—H23 119.3 N21′—C25′—H25′ 126.5

C22—C23—H23 119.3 H01—O1W—H02 106 (5)

C31C—C23A—C23 115.2 (3) H03—O2W—H04 106 (5)

C11B—C1—C2—C3 1.5 (6) C22—C23—C23A—C24 179.7 (4)

(12)

C2—C3—C3A—C11C 1.4 (6) C23—C23A—C24—C25" −160.8 (8)

C2—C3—C3A—C4 −176.8 (4) C31C—C23A—C24—C25 −21.6 (5)

C11C—C3A—C4—C5 24.5 (5) C23—C23A—C24—C25 159.5 (4)

C3—C3A—C4—C5 −157.4 (4) C23A—C24—C25—C26 47.0 (6)

C3A—C4—C5—C6 −50.0 (5) C24—C25—C26—N27 −47.5 (6)

C4—C5—C6—N7 48.8 (5) C23A—C24—C25"—C26 −34.9 (16)

C5—C6—N7—C7A 160.7 (4) N27—C26—C25"—C24 32.9 (15)

C5—C6—N7—C11C −23.5 (5) C25—C26—N27—C27A −160.0 (4)

C11C—N7—C7A—C11A 1.4 (4) C25"—C26—N27—C27A 161.2 (8)

C6—N7—C7A—C11A 177.5 (4) C25—C26—N27—C31C 24.4 (6)

C11C—N7—C7A—C8 −178.6 (4) C25"—C26—N27—C31C −14.4 (9)

C6—N7—C7A—C8 −2.5 (6) C31C—N27—C27A—C31A −0.7 (5)

N7—C7A—C8—C9 −164.4 (4) C26—N27—C27A—C31A −176.7 (4)

C11A—C7A—C8—C9 15.6 (5) C31C—N27—C27A—C28 178.6 (4)

C7A—C8—C9—C10 −45.0 (4) C26—N27—C27A—C28 2.6 (7)

C8—C9—C10—C11 56.1 (4) N27—C27A—C28—C29 −157.9 (4)

C8—C9—C10—C12 −178.1 (3) C31A—C27A—C28—C29 21.4 (5)

C12—C10—C11—O1 24.5 (5) C27A—C28—C29—C30 −47.4 (4)

C9—C10—C11—O1 146.9 (3) C28—C29—C30—C32 179.5 (3)

C12—C10—C11—C11A −157.6 (3) C28—C29—C30—C31 53.9 (4)

C9—C10—C11—C11A −35.2 (4) C32—C30—C31—O2 28.7 (5)

N7—C7A—C11A—C11 −175.7 (3) C29—C30—C31—O2 150.6 (3)

C8—C7A—C11A—C11 4.3 (6) C32—C30—C31—C31A −152.7 (3)

N7—C7A—C11A—C11B −0.8 (4) C29—C30—C31—C31A −30.8 (4)

C8—C7A—C11A—C11B 179.2 (3) N27—C27A—C31A—C31 179.2 (3)

O1—C11—C11A—C7A −176.0 (4) C28—C27A—C31A—C31 −0.2 (6)

C10—C11—C11A—C7A 6.1 (5) N27—C27A—C31A—C31B 0.1 (5)

O1—C11—C11A—C11B 10.4 (6) C28—C27A—C31A—C31B −179.2 (4)

C10—C11—C11A—C11B −167.5 (4) O2—C31—C31A—C27A −176.6 (4)

C2—C1—C11B—C11C −1.4 (5) C30—C31—C31A—C27A 4.8 (5)

C2—C1—C11B—C11A 175.7 (4) O2—C31—C31A—C31B 2.1 (6)

C7A—C11A—C11B—C1 −177.5 (4) C30—C31—C31A—C31B −176.4 (4)

C11—C11A—C11B—C1 −3.2 (7) C22—C21—C31B—C31C 1.4 (5)

C7A—C11A—C11B—C11C −0.1 (4) C22—C21—C31B—C31A −177.2 (4)

C11—C11A—C11B—C11C 174.2 (4) C27A—C31A—C31B—C31C 0.5 (4)

C7A—N7—C11C—C3A 175.9 (4) C31—C31A—C31B—C31C −178.4 (4)

C6—N7—C11C—C3A −0.6 (6) C27A—C31A—C31B—C21 179.2 (4)

C7A—N7—C11C—C11B −1.5 (4) C31—C31A—C31B—C21 0.2 (8)

C6—N7—C11C—C11B −178.0 (3) C23—C23A—C31C—N27 178.4 (4)

C3—C3A—C11C—N7 −178.4 (4) C24—C23A—C31C—N27 −0.5 (6)

C4—C3A—C11C—N7 0.0 (6) C23—C23A—C31C—C31B 0.8 (6)

C3—C3A—C11C—C11B −1.4 (6) C24—C23A—C31C—C31B −178.2 (4)

C4—C3A—C11C—C11B 176.9 (4) C27A—N27—C31C—C23A −177.0 (4)

C1—C11B—C11C—N7 178.9 (3) C26—N27—C31C—C23A −0.5 (6)

C11A—C11B—C11C—N7 0.9 (4) C27A—N27—C31C—C31B 1.0 (4)

C1—C11B—C11C—C3A 1.5 (6) C26—N27—C31C—C31B 177.4 (4)

C11A—C11B—C11C—C3A −176.5 (4) C21—C31B—C31C—C23A −1.9 (6)

(13)

supporting information

sup-10

Acta Cryst. (2003). E59, o41–o43

C9—C10—C12—N1′ 176.3 (3) C21—C31B—C31C—N27 −179.9 (3)

C10—C12—N1′—C2′ 108.6 (4) C31A—C31B—C31C—N27 −0.9 (4)

C10—C12—N1′—C5′ −72.7 (5) C29—C30—C32—N21′ 177.5 (3)

C5′—N1′—C2′—N3′ 1.0 (4) C31—C30—C32—N21′ −57.8 (4)

C12—N1′—C2′—N3′ 179.8 (3) C30—C32—N21′—C22′ 113.7 (4)

C5′—N1′—C2′—C13 −177.4 (4) C30—C32—N21′—C25′ −64.6 (5)

C12—N1′—C2′—C13 1.4 (6) C25′—N21′—C22′—N23′ −0.5 (4)

N1′—C2′—N3′—C4′ −0.7 (4) C32—N21′—C22′—N23′ −179.1 (3)

C13—C2′—N3′—C4′ 177.7 (3) C25′—N21′—C22′—C33 −178.9 (3)

C2′—N3′—C4′—C5′ 0.1 (5) C32—N21′—C22′—C33 2.6 (6)

N3′—C4′—C5′—N1′ 0.5 (5) N21′—C22′—N23′—C24′ 0.5 (4)

C2′—N1′—C5′—C4′ −0.9 (5) C33—C22′—N23′—C24′ 178.8 (3)

C12—N1′—C5′—C4′ −179.7 (3) C22′—N23′—C24′—C25′ −0.2 (5)

C31B—C21—C22—C23 0.1 (6) N23′—C24′—C25′—N21′ −0.1 (5)

C21—C22—C23—C23A −1.2 (6) C22′—N21′—C25′—C24′ 0.4 (4)

C22—C23—C23A—C31C 0.8 (6) C32—N21′—C25′—C24′ 179.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N3′—H3′···O1Wi 0.88 (4) 1.85 (4) 2.724 (5) 170 (5)

N23′—H23′···O2Wi 0.88 (4) 1.87 (4) 2.741 (5) 167 (4)

O1W—H01···Cl2 0.84 (3) 2.28 (3) 3.117 (3) 173 (5)

O1W—H02···Cl1ii 0.84 (3) 2.27 (3) 3.113 (4) 178 (5)

O2W—H03···Cl1 0.85 (3) 2.24 (3) 3.076 (3) 170 (4)

O2W—H04···Cl2 0.84 (3) 2.26 (3) 3.086 (3) 165 (5)

C9—H9A···Cl1 0.99 2.88 3.797 (4) 154

C12—H12B···Cl1 0.99 2.85 3.775 (4) 156

C13—H13B···Cl1iii 0.98 2.91 3.685 (4) 137

C29—H29A···Cl1 0.99 2.81 3.761 (4) 161

C32—H32B···Cl1 0.99 2.96 3.887 (4) 156

C24′—H24′···Cl1iii 0.95 2.70 3.632 (4) 167

C12—H12A···Cl2iv 0.99 2.88 3.528 (4) 124

C13—H13C···Cl2iv 0.98 2.85 3.782 (4) 159

C5′—H5′···Cl2 0.95 2.73 3.507 (4) 139

C33—H33C···Cl2 0.98 2.73 3.665 (4) 160

C25′—H25′···Cl2iv 0.95 2.55 3.438 (4) 155

C5—H5A···O1v 0.99 2.62 3.479 (5) 145

C2—H2···O2vi 0.95 2.61 3.482 (5) 152

C25—H25B···O2vii 0.99 2.54 3.398 (6) 145

C3—H3···O2Wv 0.95 2.53 3.479 (5) 173

C23—H23···O1Wvii 0.95 2.67 3.586 (5) 164

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x+1, y, z; (iii) −x+1, y−1/2, −z+1/2; (iv) x−1, y, z; (v) x−1/2, −y+1/2, −z+1; (vi) −x+3/2, −y, z+1/2; (vii)

References

Related documents

While standard coreference corpora do not con- tain IS annotation, some corpora annotated for bridging are emerging (Poesio, 2004; Korzen and Buch-Kromann, 2011) but they are (i)

Our similarity measure wmfvec exploits the same information (sense defini- tions) elesk and ldavec use, and outperforms them significantly on four standardized data sets.. To our

a) The empirical test of total and “footloose” trade structures shows that a more stringent environmental policy has a significant negative impact on exports while such an

Para concluir, es importante resaltar, que a pesar de la disminución de la pobreza, según el criterio de línea de pobreza, durante el periodo de estudio alrededor el 33% de

All in all, user behaviors (Zheng et al., 2009; Zheng et al., 2010; Zheng et al., 2011b) in Chinese Pinyin input method provide novel per- spectives for natural language

We got slightly less mean values in parasympathetic tests in Type D when compared to non-Type D and got slight decrease in mean value of fall in systolic BP on standing in Type

These evaluations made available sets of anno- tated data for English and other languages, used for training and evaluation. One natural question to ask is whether it is feasible

This paper focuses on an exact implementation of the linearised form of lattice minimum Bayes- risk (LMBR) decoding using general purpose weighted finite state transducer (WFST)