• No results found

5 Chloro 6 nitroso 2 norbornene dimer as a motif for supramolecular assembly

N/A
N/A
Protected

Academic year: 2020

Share "5 Chloro 6 nitroso 2 norbornene dimer as a motif for supramolecular assembly"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o218

Srdjan Milovacet al. C14H16Cl2N2O2 DOI: 101107/S160053680100232X Acta Cryst.(2001). E57, o218±o219 Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

5-Chloro-6-nitroso-2-norbornene dimer as a motif for

supramolecular assembly

Srdjan Milovac,a* Vesna SÆimunicÂ-MezÏnaricÂ,aHrvoj VancÏik,aAleksandar VisÏnjevacb and Biserka KojicÂ-ProdicÂb

aDepartment of Chemistry, Faculty of Science,

University of Zagreb, Strossmayerov trg 14, HR-10000 Zagreb, Croatia, andbRudjer BosÏkovicÂ

Institute, PO Box 180, HR-10002 Zagreb, Croatia

Correspondence e-mail: aleksandar.visnjevac@irb.hr

Key indicators

Single-crystal X-ray study

T= 100 K

Mean(C±C) = 0.003 AÊ

Rfactor = 0.030

wRfactor = 0.083

Data-to-parameter ratio = 10.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2001 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, 1,2-bis(5-chloronorbornen-6-yl)diazene 1,2-dioxide, C14H16Cl2N2O2, has a crystallographic centre of symmetry. The norbornane cages aretrans-oriented and the nitroso groups are in positions 3 and 6. This compound might be used as a starting point for the construction of two different polymeric structures due to the photochromism observed in the solid state.

Comment

Recently, we found that the monomer±dimer equilibrium of C-nitroso compounds could be used as a system for supra-molecular self-assembly (see below, monomer±dimer equili-brium of C-nitroso compounds), because the azodioxide dimer affords photochromism in the solid state (VancÏiket al., 2001). Basic nitroso monomeric units convenient for the construction of supramolecular structures should have a rigid carbon skeleton with two azo groups which serve as chemical recep-tors oriented in proper spatial positions.

Here we propose the polymeric structures that may have nitroso groups on 2- and (MOTIF 1) or on 3- and 6-(MOTIF 2) positions of the norbornane skeleton.

(2)

Possibilities of such structures depend on the stereo-chemistry of the basic motif, such as the title structure, (I) (see below), which has only one azodioxide group. The C C double bond on each norbornene unit is a functionality on which additional nitroso groups, necessary for the polymer formation, could be added.

The inversion centre is located at the midpoint of the N N bond which connects two monomeric units into the dimer structure (Fig. 1). The norbornene cages aretrans-oriented.

Experimental

The title compound was prepared by direct addition of NOCl to norbornadiene (Ciattoniet al., 1964; Metzger & Meier, 1971, 1990; Miller, 1961). Crystals of (I) were obtained by evaporation from a dichloromethane solution containing a few drops of tetrahydrofuran at 277 K.

Crystal data

C14H16Cl2N2O2

Mr= 315.19

Monoclinic,P21/n

a= 5.9247 (7) AÊ

b= 13.5925 (11) AÊ

c= 8.3407 (7) AÊ = 95.452 (8)

V= 668.7 (7) AÊ3

Z= 2

Dx= 1.565 Mg mÿ3

MoKradiation Cell parameters from 25

re¯ections = 18.5±25.3 = 0.49 mmÿ1

T= 100 (5) K Prism, colourless 0.180.160.12 mm

Data collection

Enraf±Nonius CAD-4 diffract-ometer

/2scans

Absorption correction: scan (Northet al., 1968)

Tmin= 0.920,Tmax= 0.968

1527 measured re¯ections 1364 independent re¯ections 1076 re¯ections withI> 2(I)

Rint= 0.025

max= 26.3

h=ÿ7!7

k=ÿ16!0

l= 0!10

3 standard re¯ections frequency: 120 min intensity decay: none

Re®nement

Re®nement onF2

R[F2> (F2)] = 0.030

wR(F2) = 0.083

S= 1.02 1364 re¯ections 132 parameters

All H-atom parameters re®ned

w= 1/[2(F

o2) + (0.0407P)2

+ 0.40P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.011

max= 0.32 e AÊÿ3

min=ÿ0.24 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0055 (12)

Table 1

Selected geometric parameters (AÊ,).

Cl1ÐC5 1.796 (2)

O2ÐN3 1.268 (2) N3ÐC8N3ÐN3i 1.481 (2)1.315 (2)

O2ÐN3ÐC8 123.01 (14) O2ÐN3ÐN3i 120.92 (10)

N3iÐN3ÐC8 116.02 (12)

Cl1ÐC5ÐC6 110.55 (12)

Cl1ÐC5ÐC8 112.90 (11) N3ÐC8ÐC5 113.24 (15) N3ÐC8ÐC7 111.39 (14)

Symmetry code: (i) 1ÿx;1ÿy;1ÿz.

All H-atom positional and Uisoparameters were re®ned. CÐH bond lengths lie between 0.91 (2) and 0.99 (2) AÊ.

Data collection: CAD-4 Software (Enraf±Nonius, 1989); cell re®nement:SET4 andCELDIMinCAD-4Software(Enraf±Nonius, 1989); data reduction:HELENA(Spek, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication:PLATON(Spek, 1990).

References

Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1997).SIR97. University of Bari, Italy.

Ciattoni, P., Lorenzini, A. & Gallinella, E. (1964).Chim. Ind.46, 286±291. Enraf±Nonius (1989).CAD-4Software. Version 5.0. Enraf±Nonius, Delft, The

Netherlands.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Metzger, H. & Meier, H. (1971).Methoden der Organischen Chemie, Houben-Weyl, Band 11, pp. 926±938..

Metzger, H. & Meier, H. (1990).Methoden der Organischen Chemie, Houben-Weyl, Band E16a, pp. 958±959.

Miller, J. B. (1961).J. Org. Chem.26, 4905±4907.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351± 359.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Spek, A. L. (1990).Acta Cryst.A46, C-34.

Spek, A. L. (1997).HELENA.Utrecht University, The Netherlands. VancÏik, H., SÆimunicÂ-MezÏnaricÂ, V., CÏaleta, I., MlinaricÂ-Majerski, K. &

VeljkovicÂ, J. (2001). In preparation.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2001). E57, o218–o219

supporting information

Acta Cryst. (2001). E57, o218–o219 [doi:10.1107/S160053680100232X]

5-Chloro-6-nitroso-2-norbornene dimer as a motif for supramolecular assembly

Srdjan Milovac, Vesna

Š

imuni

ć

-Me

ž

nari

ć

, Hrvoj Van

č

ik, Aleksandar Vi

š

njevac and Biserka Koji

ć

-Prodi

ć

S1. Comment

Recently, we found that the monomer–dimer equilibrium of C-nitroso compounds could be used as a system for

supramolecular self-assembly (see below, monomer–dimer equilibrium of C-nitroso compounds), because the azodioxyde

dimer affords photochromism in the solid state (Vančik et al., 2001). Basic nitroso monomeric units convenient for the

construction of supramolecular structures should have a rigid carbon skeleton with two azo groups which serve as

chemical receptors oriented in proper spatial positions.

Here we propose the polymeric structures that may have nitroso groups on 2- and 6- (MOTIF 1) or on 3- and 6-

(MOTIF 2) positions of the norbornane skeleton. Possibilities of such structures depend on the stereochemistry of the

basic motif, such as the title structure, (I) (see below), which has only one azodioxide group. The C═C double bond on

each norbornene unit is a functionality on which additional nitroso groups, necessary for the polymer formation, could be

added.

The inversion centre is located in the midpoint of the N═N bond which connects two monomeric units into the dimer

structure (Fig. 1). The norbornene cages are trans-oriented.

S2. Experimental

The title compound was prepared by direct addition of NOCl to norbornadiene (Ciattoni et al., 1964; Metzger et al.,

1971, ibid. 1990; Miller, 1961). Crystals of (I) were obtained by evaporation from a dichloromethane solution containing

a few drops of tetrahydrofuran at 277 K.

S3. Refinement

(4)
[image:4.610.129.484.73.257.2]

Figure 1

An ORTEPII (Johnson, 1976) drawing of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the

30% probability level.

5-chloro-6-nitroso-2-norbornene dimer or 1,2-bis(5-chloronorbornen-6-yl)diazene 1,2-dioxide

Crystal data C14H16Cl2N2O2 Mr = 315.19 Monoclinic, P21/n Hall symbol: -P 2yn a = 5.9247 (7) Å b = 13.5925 (11) Å c = 8.3407 (7) Å β = 95.452 (8)° V = 668.7 (7) Å3 Z = 2

F(000) = 328 Dx = 1.565 Mg m−3

Mo radiation, λ = 0.71069 Å Cell parameters from 25 reflections θ = 18.5–25.3°

µ = 0.49 mm−1 T = 100 K Prism, colourless 0.18 × 0.16 × 0.12 mm

Data collection Enraf-Nonius CAD-4

diffractometer

Radiation source: X-ray tube Graphite monochromator θ/2θ scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.920, Tmax = 0.968 1527 measured reflections

1364 independent reflections 1076 reflections with I > 2σ(I) Rint = 0.025

θmax = 26.3°, θmin = 2.0° h = −7→7

k = −16→0 l = 0→10

3 standard reflections every 120 min intensity decay: none

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.030 wR(F2) = 0.083 S = 1.02 1364 reflections 132 parameters

0 restraints 0 constraints

All H-atom parameters refined w = 1/[σ2(Fo2) + (0.0407P)2 + 0.4P]

where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.011

(5)

supporting information

sup-3

Acta Cryst. (2001). E57, o218–o219

Δρmin = −0.24 e Å−3 Extinction correction: SHELXL97,

Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0055 (12)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Examination of the data with PLATON (Spek, 1990) showed that there was no solvent accesible voids inside the structure.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 0.07717 (8) 0.54022 (4) 0.29490 (7) 0.0200 (2) O2 0.3945 (2) 0.39708 (10) 0.58190 (10) 0.0185 (4) N3 0.4637 (3) 0.45571 (11) 0.47899 (10) 0.0142 (4)

C4 0.5147 (3) 0.30110 (15) 0.1130 (2) 0.0206 (6)

C5 0.2828 (3) 0.47482 (14) 0.1910 (2) 0.0144 (5)

C6 0.1749 (3) 0.38287 (15) 0.1062 (2) 0.0176 (5)

C7 0.4425 (3) 0.31681 (14) 0.2817 (2) 0.0176 (5)

C8 0.4774 (3) 0.42849 (14) 0.3083 (2) 0.0144 (5)

C9 0.3574 (3) 0.34093 (15) 0.0093 (2) 0.0195 (6)

C10 0.1834 (3) 0.30986 (15) 0.2465 (2) 0.0181 (5)

H1 0.652 (5) 0.275 (2) 0.090 (3) 0.036 (7)*

H2 0.345 (3) 0.5219 (14) 0.121 (2) 0.004 (4)*

H3 0.030 (4) 0.3962 (16) 0.048 (3) 0.020 (6)*

H4 0.511 (4) 0.2745 (16) 0.364 (2) 0.014 (5)*

H5 0.616 (4) 0.4480 (15) 0.282 (2) 0.013 (5)*

H6 0.358 (4) 0.3484 (17) −0.103 (3) 0.022 (6)*

H7 0.138 (4) 0.2416 (17) 0.216 (3) 0.016 (5)*

H8 0.105 (4) 0.3324 (15) 0.336 (2) 0.012 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

C10 0.0215 (9) 0.0164 (10) 0.0165 (9) −0.0046 (8) 0.0022 (8) −0.0021 (8)

Geometric parameters (Å, º)

Cl1—C5 1.796 (2) C7—C8 1.545 (3)

O2—N3 1.268 (2) C7—C10 1.538 (3)

N3—C8 1.481 (2) C4—H1 0.92 (3)

N3—N3i 1.315 (2) C5—H2 0.963 (18)

C4—C7 1.524 (3) C6—H3 0.96 (2)

C4—C9 1.325 (3) C7—H4 0.96 (2)

C5—C6 1.544 (3) C8—H5 0.91 (2)

C5—C8 1.571 (3) C9—H6 0.94 (2)

C6—C9 1.522 (3) C10—H7 0.99 (2)

C6—C10 1.531 (3) C10—H8 0.97 (2)

Cl1···N3 2.873 (3) C6···H4ix 3.04 (2)

Cl1···O2i 3.312 (3) C9···H2x 2.851 (18)

Cl1···N3i 3.160 (3) C9···H4ix 2.77 (2)

Cl1···O2ii 3.184 (3) C9···H5 2.996 (19)

Cl1···H5iii 3.00 (2) H1···O2viii 2.75 (3)

Cl1···H8 2.85 (2) H1···H8viii 2.57 (3)

Cl1···H3iv 3.00 (2) H2···C9x 2.851 (18)

O2···C10 3.183 (3) H2···H6x 2.51 (3)

O2···Cl1ii 3.184 (3) H3···Cl1iv 3.00 (2)

O2···Cl1i 3.312 (3) H4···O2 2.61 (2)

O2···C5i 3.096 (3) H4···C6vii 3.04 (2)

O2···H4 2.61 (2) H4···C9vii 2.77 (2)

O2···H6v 2.74 (2) H5···Cl1xi 3.00 (2)

O2···H8 2.69 (2) H5···C9 2.996 (19)

O2···H5i 2.40 (2) H5···O2i 2.40 (2)

O2···H1vi 2.75 (3) H6···O2xii 2.74 (2)

O2···H7vii 2.56 (2) H6···H2x 2.51 (3)

N3···Cl1 2.873 (3) H7···O2ix 2.56 (2)

N3···Cl1i 3.160 (3) H8···Cl1 2.85 (2)

N3···H8 2.88 (2) H8···O2 2.69 (2)

C5···O2i 3.096 (3) H8···N3 2.88 (2)

C10···O2 3.183 (3) H8···C4vi 3.025 (19)

C4···H8viii 3.025 (19) H8···H1vi 2.57 (3)

O2—N3—C8 123.01 (14) Cl1—C5—H2 106.3 (11)

O2—N3—N3i 120.92 (10) C6—C5—H2 115.2 (11)

N3i—N3—C8 116.02 (12) C8—C5—H2 110.1 (11)

C7—C4—C9 107.68 (16) C5—C6—H3 112.9 (13)

Cl1—C5—C6 110.55 (12) C9—C6—H3 116.5 (15)

Cl1—C5—C8 112.90 (11) C10—C6—H3 118.1 (14)

C6—C5—C8 102.00 (15) C4—C7—H4 116.2 (12)

C5—C6—C9 105.21 (15) C8—C7—H4 116.5 (12)

(7)

supporting information

sup-5

Acta Cryst. (2001). E57, o218–o219

C9—C6—C10 100.95 (15) N3—C8—H5 107.0 (11)

C4—C7—C8 102.99 (14) C5—C8—H5 111.0 (12)

C4—C7—C10 100.24 (13) C7—C8—H5 111.3 (13)

C8—C7—C10 101.84 (15) C4—C9—H6 128.6 (15)

N3—C8—C5 113.24 (15) C6—C9—H6 123.9 (14)

N3—C8—C7 111.39 (14) C6—C10—H7 114.9 (14)

C5—C8—C7 102.95 (14) C6—C10—H8 113.7 (12)

C4—C9—C6 107.29 (15) C7—C10—H7 110.3 (14)

C6—C10—C7 93.77 (14) C7—C10—H8 112.2 (13)

C7—C4—H1 125.1 (16) H7—C10—H8 110.9 (19)

C9—C4—H1 126.8 (16)

O2—N3—C8—C5 104.52 (19) C6—C5—C8—N3 −123.96 (15)

O2—N3—C8—C7 −10.9 (2) C6—C5—C8—C7 −3.56 (16)

N3i—N3—C8—C5 −78.0 (2) C8—C5—C6—C10 39.13 (16)

N3i—N3—C8—C7 166.55 (15) Cl1—C5—C8—N3 −5.3 (2)

O2—N3—N3i—O2i 180.0 (4) C5—C6—C10—C7 −58.46 (15)

O2—N3—N3i—C8i −2.4 (3) C5—C6—C9—C4 72.25 (19)

C8—N3—N3i—O2i 2.4 (3) C10—C6—C9—C4 −32.6 (2)

C8—N3—N3i—C8i −180.00 (15) C9—C6—C10—C7 49.61 (16)

C9—C4—C7—C10 33.6 (2) C4—C7—C8—C5 70.61 (16)

C7—C4—C9—C6 −0.8 (2) C10—C7—C8—N3 88.69 (16)

C9—C4—C7—C8 −71.17 (19) C4—C7—C10—C6 −49.76 (16)

C8—C5—C6—C9 −65.59 (16) C8—C7—C10—C6 55.98 (15)

Cl1—C5—C6—C9 174.11 (12) C10—C7—C8—C5 −32.97 (16)

Cl1—C5—C6—C10 −81.18 (14) C4—C7—C8—N3 −167.74 (14)

Cl1—C5—C8—C7 115.09 (13)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) x−1, y, z; (iv) −x, −y+1, −z; (v) x, y, z+1; (vi) x−1/2, −y+1/2, z+1/2; (vii) x+1/2, −y+1/2,

Figure

Figure 1An ORTEPII (Johnson, 1976) drawing of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the

References

Related documents

It can, therefore, be concluded that a relationship exists between credit reference bureau information and the level of financial intermediation as shown through

This paper describes our contribution to the low-resource track of the BEA 2019 shared task on Grammatical Error Correction (GEC). Our approach to GEC builds on the theory of the

This paper presents the University of Sydney’s NMT systems for WMT2019 Finnish → English news translation task. We leveraged multi- dimensional strategies to improve translation

In conclusion, working in a dusty environment, having a history of pneumonia, history of respiratory infection and having contact with people who had respiratory infections are

One of the advantages of the approach used by the author is that, before estimating the series at a sub-national level, he looks at how the model works on highly aggregated

Elsnosy and colleagues reported that maternal dexamethasone administration, to pregnant women at risk of preterm labor, improves the blood flow of the maternal

We aim to implement and evaluate the impact of an evidence-based strategy to promote early mobilization and prevent functional decline in older patients admitted

Each Co atom is also chelated by a cyanobenzoate unit and the two remaining coordination sites, trans to each other in the distorted octahedron, are occupied by the N atoms of