• No results found

9 (Bromo­acet­yl)anthracene

N/A
N/A
Protected

Academic year: 2020

Share "9 (Bromo­acet­yl)anthracene"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1300

Kuboet al. C

16H11BrO doi:10.1107/S1600536807006770 Acta Cryst.(2007). E63, o1300–o1301

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

9-(Bromoacetyl)anthracene

Kanji Kubo,a* Kenichiro Watanabeband Tadamitsu Sakuraib

aSchool of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan, andbDepartment of Materials and Life Chemistry, Faculty of Engineering, Kanagawa University, Kanagawa-ku, Yokohama 221-0802, Japan

Correspondence e-mail: kubo-k@hoku-iryo-u.ac.jp

Key indicators

Single-crystal X-ray study

T= 153 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.032

wRfactor = 0.084

Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 31 January 2007 Accepted 8 February 2007

#2007 International Union of Crystallography All rights reserved

In the title compound, C16H11BrO, the bromoacetyl group

makes an angle of 105.8 (1)with the anthracene ring system.

The crystal packing is consolidated by C—H , Br and C—H O interactions.

Comment

Anthracene and its derivatives have been studied extensively in the fields of photochemistry and photobiology. Recently, the photochemical reaction and laser flash photolysis of the title compound, (I), have been reported (Matsumoto et al., 1974; Suzuki et al., 2004), while the crystal structures of anthracene (Brock & Dunitz, 1990) and 9-acetylanthracene (Anderssonet al., 1984) have been elucidated. We now report the structure of (I), with the aim of contributing to a deeper understanding of the photochemical reaction and molecular interactions such as C—H and Br .

The dihedral angle between the least-squares planes of the anthracene ring system (C1–C14) and the bromoacetyl group (C15/C16/O1/Br1) is 105.8 (1), which is similar to that

[91.30 (3)] in 9-acetylanthracene (Anderssonet al., 1984).

There is an intermolecular Br interaction in (I) (Fig. 2). The distance between atom Br1 and the centroid (Cg1iv) of atoms C1–C5/C14 [symmetry code: (iv)1

2x,y 1 2,

3 2z] is

3.734 A˚ . The Br1 C1ivdistance [3.317 (2) A˚ ] is shorter than the sum of the van der Waals radii (3.56 A˚ = 1.86 + 1.70 A˚; Bondi, 1964). Intermolecular C—H O interactions are observed in the crystal structure, as well as C—H inter-actions, with typical geometric parameters (Takahashi et al., 2005; Kuboet al., 1997, 2006) (Table 1 and Fig. 2;Cg2 is the centroid of the C5–C7/C12–C14 ring andCg3 is the centroid of the C7–C12 ring). The combination of intermolecular C— H , Br and C—H O interactions in (I) leads to a three-dimensional network.

Experimental

Compound (I) was synthesized by the bromination of 9-acetyl-anthracene (5.0 g) with bromine (1.4 ml) and AlCl3(0.5 g) in diethyl

(2)

Crystal data C16H11BrO Mr= 299.17

Monoclinic,P21=n a= 9.188 (2) A˚

b= 8.218 (2) A˚

c= 16.628 (4) A˚

= 100.583 (15)

V= 1234.1 (5) A˚3 Z= 4

CuKradiation

= 4.39 mm1 T= 153.1 K

0.370.210.15 mm

Data collection Rigaku R-AXIS RAPID

diffractometer

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.262,Tmax= 0.517

11429 measured reflections 2195 independent reflections 2015 reflections withI> 2(I)

Rint= 0.040

Refinement

R[F2> 2(F2)] = 0.032 wR(F2) = 0.084 S= 1.11 2195 reflections

164 parameters

H-atom parameters constrained

max= 0.93 e A˚ 3

min=0.39 e A˚ 3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C3—H3 Cg3i

0.95 3.64 4.345 133 C10—H8 Cg2ii 0.95 2.99 3.865 153 C16—H10 O1iii

0.99 2.45 3.237 (3) 136

Symmetry codes: (i) x1 2;yþ

1 2;z

1

2; (ii) xþ 1 2;yþ

1 2;zþ

3 2; (iii)

x1 2;yþ

1 2;zþ

3 2.

H atoms were positioned geometrically and refined as riding, with C—H = 0.95 A˚ for aromatic H atoms, C—H = 0.99 A˚ for methylene H atoms andUiso(H) = 1.2Ueq(C).

Data collection: CrystalClear (Rigaku Corporation, 1999); cell refinement: CrystalClear; data reduction:CrystalStructure (Rigaku/ MSC & Rigaku Corporation, 2006); program(s) used to solve struc-ture:SIR97(Altomareet al., 1999); program(s) used to refine struc-ture:SHELXL97(Sheldrick, 1997); molecular graphics:ORTEPIII

(Burnett & Johnson, 1996) andMercury(Version 1.3; Brunoet al., 2002); software used to prepare material for publication: Crystal-Structure.

This research was partially supported by a Frontier Research Project from the Ministry of Education, Sports, Culture, Science and Technology, Japan.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999).J. Appl. Cryst.32, 115–119.

Andersson, K., Becker, H. D., Engelhardt, L. M., Hansen, L. & White, A. H. (1984).Aust. J. Chem.37, 1337–1340.

Bondi, A. (1964).J. Phys. Chem.68, 441–451.

Brock, C. P. & Dunitz, J. D. (1990).Acta Cryst.B46, 795–806.

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002).Acta Cryst.B58, 389–397.

Burnett, M. N. & Johnson, C. K. (1996).ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Higashi, T. (1995).ABSCOR. Rigaku Corporation, Tokyo, Japan.

Kubo, K., Fukeda, E., Matsumoto, T., Endo, K. & Mori, A. (2006).Acta Cryst.

E62, o2986–o2987.

Kubo, K., Kato, N. & Sakurai, T. (1997).Acta Cryst.C53, 132–134. Matsumoto, T., Sato, M. & Hirayama, S. (1974).Bull. Chem. Soc. Jpn,47, 358–

363.

Rigaku Corporation (1999).CrystalClear. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC & Rigaku Corporation. (2006).CrystalStructure(Version 3.8). Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany. Suzuki, T., Kaneko, Y., Ikegami, M. & Arai, T. (2004).Bull. Chem. Soc. Jpn,77,

801–806.

[image:2.610.316.564.65.292.2]

Takahashi, H., Takechi, H., Kubo, K. & Matsumoto, T. (2005).Acta Cryst.E61, o3041–o3043.

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids.

Figure 2

Intermolecular C—H , Br and C—H O interactions in (I), indicated by dotted lines. [Symmetry codes: (i)x1

2, 1 2y,z

1 2; (ii)

1 2x, 1

2+y, 3

2z; (iii) 1 2x,

1 2+y,

3

2z; (iv) 1 2x,y

1 2, 3

2z.]Cg1,Cg2 and

[image:2.610.45.296.69.230.2]
(3)

supporting information

sup-1 Acta Cryst. (2007). E63, o1300–o1301

supporting information

Acta Cryst. (2007). E63, o1300–o1301 [https://doi.org/10.1107/S1600536807006770]

9-(Bromoacetyl)anthracene

Kanji Kubo, Kenichiro Watanabe and Tadamitsu Sakurai

9-(Bromoacetyl)anthracene

Crystal data

C16H11BrO

Mr = 299.17 Monoclinic, P21/n

Hall symbol: -P 2yn a = 9.188 (2) Å b = 8.218 (2) Å c = 16.628 (4) Å β = 100.583 (15)° V = 1234.1 (5) Å3

Z = 4

F(000) = 600.00 Dx = 1.610 Mg m−3

Cu radiation, λ = 1.54187 Å Cell parameters from 11265 reflections θ = 4.9–68.2°

µ = 4.40 mm−1

T = 153 K Prism, yellow

0.37 × 0.21 × 0.15 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Detector resolution: 10.00 pixels mm-1

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.262, Tmax = 0.517

11429 measured reflections

2195 independent reflections 2015 reflections with I > 2σ(I) Rint = 0.040

θmax = 68.2°

h = −10→11 k = −9→9 l = −19→20

Refinement

Refinement on F2

R[F2 > 2σ(F2)] = 0.032

wR(F2) = 0.084

S = 1.11 2195 reflections 164 parameters

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0378P)2 + 0.9847P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.93 e Å−3

Δρmin = −0.39 e Å−3

Special details

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor

(gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(4)

C2 −0.3113 (3) 0.2443 (3) 0.47552 (17) 0.0331 (6) C3 −0.2236 (3) 0.3299 (3) 0.42718 (17) 0.0364 (7) C4 −0.0749 (3) 0.3237 (3) 0.44565 (16) 0.0318 (6) C5 −0.0006 (2) 0.2357 (3) 0.51524 (15) 0.0252 (5) C6 0.1533 (2) 0.2306 (3) 0.53641 (16) 0.0273 (6) C7 0.2256 (2) 0.1466 (3) 0.60443 (15) 0.0254 (5) C8 0.3831 (2) 0.1412 (3) 0.62644 (17) 0.0317 (6) C9 0.4519 (3) 0.0577 (4) 0.69298 (18) 0.0352 (7) C10 0.3671 (3) −0.0296 (3) 0.74191 (18) 0.0311 (6) C11 0.2171 (3) −0.0282 (3) 0.72365 (16) 0.0264 (6) C12 0.1400 (2) 0.0618 (3) 0.65551 (15) 0.0225 (5) C13 −0.0143 (2) 0.0693 (3) 0.63550 (15) 0.0214 (5) C14 −0.0884 (2) 0.1515 (3) 0.56525 (15) 0.0216 (5) C15 −0.1051 (2) −0.0048 (3) 0.69328 (17) 0.0244 (6) C16 −0.1062 (2) 0.0987 (3) 0.76817 (15) 0.0259 (6) H1 −0.3054 0.1006 0.5737 0.032* H2 −0.4162 0.2477 0.4612 0.040* H3 −0.2706 0.3919 0.3815 0.044* H4 −0.0182 0.3788 0.4117 0.038* H5 0.2106 0.2866 0.5031 0.033* H6 0.4412 0.1975 0.5937 0.038* H7 0.5569 0.0576 0.7069 0.042* H8 0.4160 −0.0895 0.7879 0.037* H9 0.1623 −0.0882 0.7568 0.032* H10 −0.1717 0.1937 0.7527 0.031* H11 −0.0049 0.1401 0.7884 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3 Acta Cryst. (2007). E63, o1300–o1301

Geometric parameters (Å, º)

Br1—C16 1.933 (2) C12—C13 1.397 (3) O1—C15 1.209 (3) C13—C14 1.411 (3) C1—C2 1.361 (3) C13—C15 1.511 (3) C1—C14 1.427 (3) C15—C16 1.510 (3) C2—C3 1.424 (4) C1—H1 0.950 C3—C4 1.346 (4) C2—H2 0.950 C4—C5 1.427 (3) C3—H3 0.950 C5—C6 1.394 (3) C4—H4 0.950 C5—C14 1.437 (3) C6—H5 0.950 C6—C7 1.386 (3) C8—H6 0.950 C7—C8 1.427 (3) C9—H7 0.950 C7—C12 1.439 (3) C10—H8 0.950 C8—C9 1.356 (3) C11—H9 0.950 C9—C10 1.420 (4) C16—H10 0.990 C10—C11 1.356 (3) C16—H11 0.990 C11—C12 1.428 (3)

Br1···O1 3.073 (2) C12···H6 3.317 Br1···O1i 3.493 (2) C12···H8 3.282

Br1···C1ii 3.317 (2) C12···H8x 3.088

Br1···C2ii 3.446 (2) C12···H9 2.067

Br1···C15 2.878 (2) C12···H9x 3.567

O1···Br1 3.073 (2) C12···H11 2.855 O1···Br1ii 3.493 (2) C13···H1 2.695

O1···C1 3.259 (3) C13···H8x 3.143

O1···C12 3.373 (3) C13···H9 2.679 O1···C13 2.396 (3) C13···H10 2.822 O1···C14 3.174 (3) C13···H11 2.595 O1···C16 2.405 (3) C14···H1 2.067 O1···C16ii 3.237 (3) C14···H2 3.283

C1···Br1i 3.317 (2) C14···H4 3.320

C1···O1 3.259 (3) C14···H5 3.300 C1···C3 2.416 (4) C14···H8x 3.403

C1···C4 2.797 (4) C14···H10 3.361 C1···C5 2.459 (3) C15···H1 2.598 C1···C7iii 3.521 (3) C15···H7viii 3.196

C1···C13 2.499 (3) C15···H9 2.582 C1···C15 2.929 (3) C15···H10 2.058 C2···Br1i 3.446 (2) C15···H10ii 3.440

C2···C4 2.406 (4) C15···H11 2.058 C2···C5 2.810 (3) C16···H1 3.411 C2···C8iii 3.597 (4) C16···H2v 3.589

C2···C14 2.425 (3) C16···H3v 3.306

C3···C1 2.416 (4) C16···H7viii 3.094

C3···C5 2.416 (3) C16···H8x 3.329

(6)

C3···C14 2.814 (3) H1···Br1i 3.3630

C4···C1 2.797 (4) H1···O1 2.704 C4···C2 2.406 (4) H1···C2 2.007 C4···C4iv 3.556 (3) H1···C3 3.274

C4···C6 2.469 (3) H1···C5 3.319 C4···C12iii 3.585 (3) H1···C8viii 3.161

C4···C14 2.462 (3) H1···C9viii 3.264

C5···C1 2.459 (3) H1···C13 2.695 C5···C2 2.810 (3) H1···C14 2.067 C5···C3 2.416 (3) H1···C15 2.598 C5···C7 2.434 (3) H1···C16 3.411 C5···C12 2.836 (3) H1···H2 2.302 C5···C13 2.445 (3) H1···H5iii 3.595

C5···C13iii 3.565 (3) H1···H6viii 2.540

C6···C4 2.469 (3) H1···H7viii 2.768

C6···C8 2.465 (3) H1···H10 3.100 C6···C12 2.439 (3) H2···Br1i 3.5711

C6···C13 2.789 (3) H2···Br1ix 3.4800

C6···C14 2.444 (3) H2···C1 2.010 C6···C14iii 3.565 (3) H2···C3 2.067

C7···C1iii 3.521 (3) H2···C4 3.254

C7···C5 2.434 (3) H2···C8iii 3.549

C7···C9 2.429 (3) H2···C9iii 3.560

C7···C10 2.815 (3) H2···C14 3.283 C7···C11 2.461 (3) H2···C16ix 3.589

C7···C13 2.439 (3) H2···H1 2.302 C7···C14 2.839 (3) H2···H3 2.367 C8···C2iii 3.597 (4) H2···H6viii 2.793

C8···C6 2.465 (3) H2···H11ix 2.984

C8···C10 2.404 (4) H3···C1 3.266 C8···C11 2.790 (4) H3···C2 2.067 C8···C12 2.458 (3) H3···C4 1.996 C9···C7 2.429 (3) H3···C5 3.274 C9···C11 2.412 (4) H3···C6iv 3.479

C9···C12 2.819 (3) H3···C10ix 3.057

C10···C7 2.815 (3) H3···C11iii 3.542

C10···C8 2.404 (4) H3···C11ix 2.837

C10···C12 2.425 (3) H3···C16ix 3.306

C11···C3iii 3.535 (4) H3···H2 2.367

C11···C7 2.461 (3) H3···H4 2.283 C11···C8 2.790 (4) H3···H5iv 3.252

C11···C9 2.412 (4) H3···H8ix 2.996

C11···C13 2.483 (3) H3···H9ix 2.610

C11···C15 2.916 (3) H3···H11ix 2.424

C11···C16 3.357 (4) H4···O1iii 3.249

C12···O1 3.373 (3) H4···C2 3.263 C12···C4iii 3.585 (3) H4···C3 1.992

(7)

supporting information

sup-5 Acta Cryst. (2007). E63, o1300–o1301

C12···C6 2.439 (3) H4···C5 2.066 C12···C8 2.458 (3) H4···C5iv 3.386

C12···C9 2.819 (3) H4···C6 2.658 C12···C10 2.425 (3) H4···C10ix 3.086

C12···C14 2.458 (3) H4···C14 3.320 C12···C15 2.507 (3) H4···H3 2.283 C12···C16 3.206 (3) H4···H4iv 3.512

C13···O1 2.396 (3) H4···H5 2.476 C13···C1 2.499 (3) H4···H8ix 2.673

C13···C5 2.445 (3) H5···Br1xii 3.4311

C13···C5iii 3.565 (3) H5···O1iii 3.247

C13···C6 2.789 (3) H5···C3iv 3.353

C13···C7 2.439 (3) H5···C4 2.639 C13···C11 2.483 (3) H5···C4iv 3.596

C13···C16 2.514 (3) H5···C5 2.032 C14···O1 3.174 (3) H5···C7 2.024 C14···C2 2.425 (3) H5···C8 2.637 C14···C3 2.814 (3) H5···C12 3.295 C14···C4 2.462 (3) H5···C14 3.300 C14···C6 2.444 (3) H5···H1iii 3.595

C14···C6iii 3.565 (3) H5···H3iv 3.252

C14···C7 2.839 (3) H5···H4 2.476 C14···C12 2.458 (3) H5···H6 2.474 C14···C15 2.515 (3) H6···Br1x 3.1700

C14···C16 3.436 (3) H6···C1xi 3.166

C15···Br1 2.878 (2) H6···C2xi 3.289

C15···C1 2.929 (3) H6···C6 2.655 C15···C11 2.916 (3) H6···C7 2.064 C15···C12 2.507 (3) H6···C9 1.999 C15···C14 2.515 (3) H6···C10 3.262 C16···O1 2.405 (3) H6···C12 3.317 C16···O1i 3.237 (3) H6···H1xi 2.540

C16···C11 3.357 (4) H6···H2xi 2.793

C16···C12 3.206 (3) H6···H5 2.474 C16···C13 2.514 (3) H6···H7 2.294 C16···C14 3.436 (3) H6···H9x 3.325

Br1···H1ii 3.3630 H7···Br1xi 3.2211

Br1···H2ii 3.5711 H7···O1xi 3.018

Br1···H2v 3.4800 H7···O1x 3.260

Br1···H5vi 3.4311 H7···C7 3.286

Br1···H6vii 3.1700 H7···C8 2.007

Br1···H7viii 3.2211 H7···C10 2.065

Br1···H10 2.443 H7···C11 3.262 Br1···H10ii 3.147 H7···C15xi 3.196

Br1···H11 2.442 H7···C16xi 3.094

O1···H1 2.704 H7···H1xi 2.768

O1···H4iii 3.249 H7···H6 2.294

(8)

O1···H7viii 3.018 H7···H10xi 2.711

O1···H7vii 3.260 H7···H10vii 3.201

O1···H9 3.145 H7···H11vii 3.467

O1···H10 2.927 H8···C3v 3.557

O1···H10ii 2.450 H8···C4v 3.403

O1···H11 3.102 H8···C5vii 3.528

C1···H2 2.010 H8···C6vii 3.436

C1···H3 3.266 H8···C7vii 3.234

C1···H6viii 3.166 H8···C8 3.255

C1···H10 3.454 H8···C9 2.063 C2···H1 2.007 H8···C11 2.004 C2···H3 2.067 H8···C12 3.282 C2···H4 3.263 H8···C12vii 3.088

C2···H6viii 3.289 H8···C13vii 3.143

C2···H11ix 3.422 H8···C14vii 3.403

C3···H1 3.274 H8···C16vii 3.329

C3···H2 2.067 H8···H3v 2.996

C3···H4 1.992 H8···H4v 2.673

C3···H5iv 3.353 H8···H7 2.365

C3···H8ix 3.557 H8···H9 2.293

C3···H9ix 3.542 H8···H10vii 3.119

C3···H11ix 3.142 H8···H11vii 2.756

C4···H2 3.254 H9···O1 3.145 C4···H3 1.996 H9···C3v 3.542

C4···H4iv 3.404 H9···C7 3.320

C4···H5 2.639 H9···C7vii 3.203

C4···H5iv 3.596 H9···C8vii 3.031

C4···H8ix 3.403 H9···C9 3.268

C5···H1 3.319 H9···C9vii 3.254

C5···H3 3.274 H9···C10 2.001 C5···H4 2.066 H9···C12 2.067 C5···H4iv 3.386 H9···C12vii 3.567

C5···H5 2.032 H9···C13 2.679 C5···H8x 3.528 H9···C15 2.582

C6···H3iv 3.479 H9···C16 2.942

C6···H4 2.658 H9···H3v 2.610

C6···H6 2.655 H9···H6vii 3.325

C6···H8x 3.436 H9···H8 2.293

C7···H5 2.024 H9···H11 2.541 C7···H6 2.064 H10···Br1 2.443 C7···H7 3.286 H10···Br1i 3.147

C7···H8x 3.234 H10···O1 2.927

C7···H9 3.320 H10···O1i 2.450

C7···H9x 3.203 H10···C1 3.454

C8···H1xi 3.161 H10···C9viii 3.596

C8···H2iii 3.549 H10···C10x 3.594

(9)

supporting information

sup-7 Acta Cryst. (2007). E63, o1300–o1301

C8···H8 3.255 H10···C15 2.058 C8···H9x 3.031 H10···C15i 3.440

C9···H1xi 3.264 H10···H1 3.100

C9···H2iii 3.560 H10···H7viii 2.711

C9···H6 1.999 H10···H7x 3.201

C9···H8 2.063 H10···H8x 3.119

C9···H9 3.268 H10···H11 1.600 C9···H9x 3.254 H11···Br1 2.442

C9···H10xi 3.596 H11···O1 3.102

C9···H11vii 3.472 H11···C2v 3.422

C10···H3v 3.057 H11···C3v 3.142

C10···H4v 3.086 H11···C9x 3.472

C10···H6 3.262 H11···C10x 3.076

C10···H7 2.065 H11···C11 2.836 C10···H9 2.001 H11···C12 2.855 C10···H10vii 3.594 H11···C13 2.595

C10···H11vii 3.076 H11···C15 2.058

C11···H3iii 3.542 H11···H2v 2.984

C11···H3v 2.837 H11···H3v 2.424

C11···H7 3.262 H11···H7x 3.467

C11···H8 2.004 H11···H8x 2.756

C11···H11 2.836 H11···H9 2.541 C12···H5 3.295 H11···H10 1.600

(10)

O1—C15—C13 123.2 (2) H10—C16—H11 107.8 O1—C15—C16 124.1 (2)

C2—C1—C14—C5 −1.5 (4) C12—C7—C8—C9 0.6 (4) C2—C1—C14—C13 177.3 (2) C7—C8—C9—C10 1.1 (4) C14—C1—C2—C3 0.4 (4) C8—C9—C10—C11 −1.2 (4) C1—C2—C3—C4 1.4 (4) C9—C10—C11—C12 −0.6 (4) C2—C3—C4—C5 −1.9 (4) C10—C11—C12—C7 2.4 (4) C3—C4—C5—C6 −178.6 (2) C10—C11—C12—C13 −178.7 (2) C3—C4—C5—C14 0.7 (4) C7—C12—C13—C14 2.6 (3) C4—C5—C6—C7 179.4 (2) C7—C12—C13—C15 −173.9 (2) C4—C5—C14—C1 1.0 (3) C11—C12—C13—C14 −176.4 (2) C4—C5—C14—C13 −177.9 (2) C11—C12—C13—C15 7.1 (4) C6—C5—C14—C1 −179.7 (2) C12—C13—C14—C1 178.4 (2) C6—C5—C14—C13 1.4 (3) C12—C13—C14—C5 −2.8 (3) C14—C5—C6—C7 0.0 (3) C12—C13—C15—O1 −107.4 (3) C5—C6—C7—C8 −179.9 (2) C12—C13—C15—C16 75.8 (3) C5—C6—C7—C12 −0.2 (4) C14—C13—C15—O1 76.0 (3) C6—C7—C8—C9 −179.7 (2) C14—C13—C15—C16 −100.8 (2) C6—C7—C12—C11 178.0 (2) C15—C13—C14—C1 −5.1 (3) C6—C7—C12—C13 −1.1 (3) C15—C13—C14—C5 173.7 (2) C8—C7—C12—C11 −2.3 (3) O1—C15—C16—Br1 19.3 (3) C8—C7—C12—C13 178.6 (2) C13—C15—C16—Br1 −163.94 (16)

Symmetry codes: (i) −x−1/2, y+1/2, −z+3/2; (ii) −x−1/2, y−1/2, −z+3/2; (iii) −x, −y, −z+1; (iv) −x, −y+1, −z+1; (v) x+1/2, −y+1/2, z+1/2; (vi) x−1/2, −y+1/2, z+1/2; (vii) −x+1/2, y−1/2, −z+3/2; (viii) x−1, y, z; (ix) x−1/2, −y+1/2, z−1/2; (x) −x+1/2, y+1/2, −z+3/2; (xi) x+1, y, z; (xii) x+1/2, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C3—H3···Cg3ix 0.95 3.64 4.345 133

C10—H8···Cg2x 0.95 2.99 3.865 153

C16—H10···O1i 0.99 2.45 3.237 (3) 136

Figure

Figure 2

References

Related documents

COMITE ECONOMICO Y SOCIAL de las Comunidades Europeas De Europeiske Fellesskabers OKONOMISKE OG SOCIALE UDVALG WIRTSCHAFTS- UND SOZIALAUSSCHUSS der Europaischen

The three annotators who performed the utterance annotation further annotated the surprise utterances into either positive or negative sentiment classes.. The entire

image-grounded vocabulary constructor builds a vocabulary related to a given image by consider- ing the visual information encoded and the rela- tionships among words.. The

экономики, при котором осуществляется снятие социальной напряженности внутри государства посредством роста благосостояния населения, возрастания престижа страны

Same Entity Type Confusion / Unit Confusion: This error category includes those cases where the question is about an entity type which is present multiple times in the passage and

This paper attempts to provide an explanation to the debate whether infrastructure development is more effective than direct cash transfer to reduce wage disparity between skilled

In this study we have discussed the global hyperbolic space-time manifold and the singularities therein. Here we have discussed two types of singularities: i) Big Bang

The standard SMT lexicon can be viewed as a cluster- ing with each type observed in the parallel training corpus assigned to a distinct cluster and all other types assigned to a