• No results found

Azido{4,4′ di­bromo 2,2′ [ethane 1,2 diyl­bis­(nitrilo­methanylyl­idene)]diphenol­ato κ4O,N,N′,O′}manganese(III)

N/A
N/A
Protected

Academic year: 2020

Share "Azido{4,4′ di­bromo 2,2′ [ethane 1,2 diyl­bis­(nitrilo­methanylyl­idene)]diphenol­ato κ4O,N,N′,O′}manganese(III)"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Azido{4,4

000

-dibromo-2,2

000

-[ethane-1,2-

diylbis(nitrilomethanylylidene)]diphenol-ato-

j

4

O,N,N

000

,O

000

}manganese(III)

Yingxia Liu

School of Environmental and Material Engineering, Yantai University, Yantai 264005, People’s Republic of China

Correspondence e-mail: liuyxytu@gmail.com

Received 13 January 2011; accepted 7 February 2011

Key indicators: single-crystal X-ray study;T= 153 K; mean(C–C) = 0.004 A˚;

Rfactor = 0.030;wRfactor = 0.074; data-to-parameter ratio = 16.9.

In the title compound, [Mn(C16H12Br2N2O2)(N3)], the Mn III

ion is chelated by a tetradentate Schiff base ligand and coordinated by the N atom of an azide ligand in a distorted square-pyramidal arrangement. It forms phenolate-bridged out-of-plane dimers with Mn Ophenolate distances of 2.667 (2) A˚ between pairs of inversion-related molecules. In the crystal, there are offset inter-complex face-to-face – interactions [centroid–centroid distances = 3.598 (2) A˚ ] invol-ving one of the benzene rings of the ligands.

Related literature

For related structures, see: Mikuriya et al. (1992); Li et al.

(1997); Luet al.(2006); Wanget al.(2008).

Experimental

Crystal data

[Mn(C16H12Br2N2O2)(N3)]

Mr= 1042.13

Monoclinic,P21=n

a= 8.7068 (17) A˚

b= 15.269 (3) A˚

c= 13.684 (3) A˚

= 107.47 (3)

V= 1735.4 (6) A˚3

Z= 2

MoKradiation

= 5.39 mm1

T= 153 K

0.200.170.10 mm

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan

(SORTAV; Blessing, 1995)

Tmin= 0.352,Tmax= 0.583

7747 measured reflections 3961 independent reflections 3093 reflections withI> 2(I)

Rint= 0.015

Refinement

R[F2> 2(F2)] = 0.030

wR(F2) = 0.074

S= 1.04 3961 reflections

235 parameters

H-atom parameters constrained

max= 0.82 e A˚

3

min=0.90 e A˚

3

Data collection: COLLECT (Nonius, 1998); cell refinement:

SCALEPACK (Otwinowski & Minor, 1997); data reduction:

DENZO (Otwinowski & Minor, 1997) andmaXus (Mackay et al., 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure:SHELXL97(Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication:SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2299).

References

Blessing, R. H. (1995).Acta Cryst. A51, 33–38.

Li, H., Zhong, Z. J., Duan, C.-Y., You, X.-Z., Mak, T. C. W. & Wu, B. (1997).J. Coord. Chem.41, 183–189.

Lu, Z. H., Yuan, M., Pan, F., Gao, S., Zhang, D. Q. & Zhu, D. B. (2006).Inorg. Chem.45, 3538–3548.

Mackay, S., Gilmore, C. J., Edwards, C., Tremayne, M., Stewart, N. & Shankland, K. (1998).maXus. University of Glasgow, Scotland, Nonius BV, Delft, The Netherlands, and MacScience Co. Ltd, Yokohama, Japan. Mikuriya, M., Yamato, Y. & Tokii, T. (1992).Bull. Chem. Soc. Jpn,65, 1466–

1468.

Nonius (1998).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008).Acta Cryst.A64, 112–122.

Wang, S.-B., Tang, K., Yang, B.-H. & Li, S. (2008).Acta Cryst.E64, m543. Acta Crystallographica Section E

Structure Reports Online

(2)

supporting information

Acta Cryst. (2011). E67, m322 [doi:10.1107/S1600536811004594]

Azido{4,4

-dibromo-2,2

-[ethane-1,2-diylbis(nitrilomethanylyl-idene)]diphenolato-

κ

4

O

,

N

,

N

,

O

}manganese(III)

Yingxia Liu

S1. Comment

In the past decade there has been much interest in the magneto-chemistry of manganese because of its special magnetic

properties. As is well known, manganese (III) Schiff base complexes display interesting structural, magnetic properties

and electronic effects which rank it among the most appealing candidates as a building paramagnetic motif for

multidimensional expanded structures. The variation of in-plane chelating and axial sites often leads to a change in the

spin state of the metal ions: high-spin, low-spin or spin-crossover state. The nature and the tuning of magnetic

interactions between metal centers are crucial points in the conception of molecular-based magnetic materials.

The molecular structure of the title compound is shown in Figure 1. The MnIII ion is involved in a distorted

square-pyramidal arrangement by a N3O2 unit, in which the four basal sites are occupied by two N atoms and two O atoms from

the Schiff base ligand, and the apical position is occupied by the N atom of an azido ligand. The bond distances are

comparable to those found in related structures (Lu, et al., 2006; Mikuriya, et al., 1992; Li, et al., 1997; Wang, et al.,

2008). The MnIII ion lies above the basal plane formed by N2O2 unit by 0.228 (1) Å. The short intermolecular distance of

Mn···Ophenolate 2.667 (2) Å indicates that there exists weak interaction between the two complexes related by inversion

centers in the crystal (Figure 2). The phenyl groups of the Schiff base are involved in an offset face-to-face π-π

inter-complexes stacking interaction (ring centroid separation Cg···Cgi, 3.598 (2) Å) [symmetry code: 2 - x,1 - y,1 - z].

S2. Experimental

This compound was synthesized by mixing a solution of Schiff base (2,2′-((1E,1′E)-(ethane-1,2-diylbis(azanylylidene))

bis(methanylylidene))bis(4-bromophenol)) (0.5 mmol) in methanol (5 ml) with a solution of MnCl2.4H2O (0.5 mmol) in

methanol (5 ml), followed by the dropwise addition of an aqueous solution NaN3(0.6 mmol, 2 mL) without stirring. The

black mixture was allowed to stand for several days until good quality black block crystals of the compound were

obtained in a yield of 68.3%.

S3. Refinement

All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL97 (Sheldrick, 2008) with C—

(3)
[image:3.610.126.484.75.256.2]

Figure 1

The molecular structure (30% thermal probability ellipsoids) of the compound showing the atom numbering.

Figure 2

A pair of inversion-related molecules, showing the intermolecular weak interactions between Mn and Ophenolate atoms. The

′A′ molecule is related to the ′B′ molecule by [A: (x, y, z) —> B: (2-x, 1-y, -z)].

Azido{4,4′-dibromo-2,2′-[ethane-1,2- diylbis(nitrilomethanylylidene)]diphenolato- κ4O,N,N,O}manganese(III)

Crystal data

[Mn(C16H12Br2N2O2)(N3)]

Mr = 1042.13

Monoclinic, P21/n

Hall symbol: -P 2yn

a = 8.7068 (17) Å

b = 15.269 (3) Å

c = 13.684 (3) Å

β = 107.47 (3)°

V = 1735.4 (6) Å3

Z = 2

F(000) = 1016

Dx = 1.994 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 19417 reflections

θ = 3.4–27.5°

[image:3.610.131.482.298.513.2]
(4)

T = 153 K Block, black

0.20 × 0.17 × 0.10 mm

Data collection

Nonius KappaCCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SORTAV; Blessing, 1995)

Tmin = 0.352, Tmax = 0.583

7747 measured reflections 3961 independent reflections 3093 reflections with I > 2σ(I)

Rint = 0.015

θmax = 27.5°, θmin = 3.5°

h = −11→11

k = −19→19

l = −17→17

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.030

wR(F2) = 0.074

S = 1.04

3961 reflections 235 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0376P)2 + 0.8161P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.82 e Å−3

Δρmin = −0.90 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Mn1 0.85052 (5) 0.50918 (2) 0.38001 (3) 0.02912 (10)

Br1 1.11255 (4) 0.95137 (2) 0.37896 (3) 0.05433 (11)

Br2 0.43251 (4) 0.106181 (19) 0.44904 (2) 0.04785 (10)

C1 0.9787 (3) 0.67065 (17) 0.46365 (19) 0.0282 (5)

C2 0.9438 (3) 0.74469 (17) 0.5129 (2) 0.0323 (6)

H2 0.8919 0.7381 0.5627 0.039*

C3 0.9851 (3) 0.82750 (18) 0.4890 (2) 0.0358 (6)

H3 0.9580 0.8764 0.5208 0.043*

C4 1.0675 (3) 0.83713 (17) 0.4168 (2) 0.0336 (6)

C5 1.1113 (3) 0.76578 (18) 0.3710 (2) 0.0321 (6)

H5 1.1715 0.7732 0.3258 0.039*

C6 1.0655 (3) 0.68135 (17) 0.39187 (19) 0.0279 (5)

C7 1.1100 (3) 0.60754 (17) 0.33963 (19) 0.0307 (5)

(5)

C8 1.0902 (4) 0.45714 (18) 0.2823 (2) 0.0403 (7)

H8A 1.1603 0.4191 0.3333 0.048*

H8B 1.1476 0.4763 0.2354 0.048*

C9 0.9380 (4) 0.4093 (2) 0.2250 (2) 0.0446 (7)

H9A 0.8813 0.4411 0.1634 0.054*

H9B 0.9636 0.3512 0.2056 0.054*

C10 0.7619 (3) 0.33187 (17) 0.30160 (19) 0.0314 (5)

H10 0.7730 0.2845 0.2615 0.038*

C11 0.6617 (3) 0.32053 (16) 0.36746 (19) 0.0274 (5)

C12 0.6028 (3) 0.23581 (17) 0.37468 (19) 0.0309 (5)

H12 0.6289 0.1898 0.3380 0.037*

C13 0.5066 (3) 0.22139 (16) 0.4361 (2) 0.0316 (6)

C14 0.4649 (3) 0.28895 (18) 0.4908 (2) 0.0348 (6)

H14 0.3986 0.2780 0.5315 0.042*

C15 0.5215 (3) 0.37191 (18) 0.4848 (2) 0.0344 (6)

H15 0.4912 0.4173 0.5204 0.041*

C16 0.6248 (3) 0.38931 (16) 0.4256 (2) 0.0285 (5)

N1 1.0407 (3) 0.53307 (14) 0.33190 (16) 0.0304 (5)

N2 0.8372 (3) 0.40293 (14) 0.29446 (16) 0.0314 (5)

N3 0.7109 (3) 0.60055 (17) 0.2717 (2) 0.0449 (6)

N4 0.5810 (3) 0.62722 (17) 0.26329 (18) 0.0412 (6)

N5 0.4533 (4) 0.6552 (3) 0.2518 (3) 0.0747 (10)

O1 0.9342 (2) 0.59151 (11) 0.48779 (14) 0.0333 (4)

O2 0.6852 (2) 0.46910 (12) 0.42930 (15) 0.0362 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Mn1 0.0366 (2) 0.02311 (19) 0.0337 (2) −0.00517 (16) 0.01976 (18) −0.00327 (16)

Br1 0.0655 (2) 0.02778 (16) 0.0791 (3) −0.00838 (14) 0.03595 (19) 0.00547 (15)

Br2 0.0672 (2) 0.02952 (16) 0.05173 (19) −0.01626 (14) 0.02536 (16) −0.00135 (13)

C1 0.0296 (12) 0.0273 (13) 0.0273 (12) −0.0038 (10) 0.0079 (11) 0.0013 (10)

C2 0.0329 (13) 0.0305 (13) 0.0362 (14) −0.0032 (11) 0.0147 (12) −0.0028 (11)

C3 0.0336 (14) 0.0287 (14) 0.0472 (16) −0.0010 (11) 0.0154 (13) −0.0036 (12)

C4 0.0332 (14) 0.0243 (12) 0.0417 (15) −0.0062 (11) 0.0090 (12) 0.0028 (11)

C5 0.0304 (13) 0.0330 (14) 0.0331 (14) −0.0066 (11) 0.0096 (11) 0.0033 (11)

C6 0.0284 (12) 0.0273 (13) 0.0285 (13) −0.0026 (10) 0.0092 (11) 0.0025 (10)

C7 0.0322 (13) 0.0331 (14) 0.0293 (13) −0.0012 (11) 0.0129 (11) 0.0040 (11)

C8 0.0549 (18) 0.0305 (14) 0.0490 (17) 0.0016 (13) 0.0359 (15) −0.0012 (12)

C9 0.070 (2) 0.0367 (16) 0.0416 (16) −0.0095 (14) 0.0383 (16) −0.0092 (13)

C10 0.0389 (14) 0.0269 (13) 0.0282 (13) 0.0003 (11) 0.0101 (11) −0.0034 (10)

C11 0.0288 (12) 0.0250 (13) 0.0282 (13) −0.0032 (10) 0.0080 (11) −0.0008 (10)

C12 0.0363 (14) 0.0244 (13) 0.0305 (13) −0.0038 (11) 0.0076 (11) −0.0027 (10)

C13 0.0355 (14) 0.0239 (13) 0.0327 (13) −0.0065 (10) 0.0061 (12) 0.0009 (10)

C14 0.0326 (14) 0.0335 (14) 0.0417 (15) −0.0060 (11) 0.0162 (13) −0.0004 (12)

C15 0.0349 (14) 0.0295 (14) 0.0438 (16) −0.0020 (11) 0.0194 (13) −0.0047 (12)

C16 0.0290 (12) 0.0219 (12) 0.0357 (14) −0.0037 (10) 0.0112 (11) −0.0011 (10)

(6)

N2 0.0432 (12) 0.0282 (11) 0.0283 (11) −0.0045 (10) 0.0190 (10) −0.0033 (9)

N3 0.0442 (15) 0.0419 (15) 0.0490 (15) −0.0026 (12) 0.0146 (12) 0.0109 (12)

N4 0.0473 (15) 0.0413 (14) 0.0349 (13) −0.0036 (12) 0.0121 (12) 0.0038 (11)

N5 0.061 (2) 0.105 (3) 0.060 (2) 0.028 (2) 0.0223 (17) 0.0147 (19)

O1 0.0480 (11) 0.0255 (9) 0.0327 (9) −0.0090 (8) 0.0215 (9) −0.0016 (7)

O2 0.0427 (11) 0.0239 (9) 0.0514 (12) −0.0061 (8) 0.0283 (10) −0.0083 (8)

Geometric parameters (Å, º)

Mn1—O2 1.8669 (18) C8—C9 1.511 (4)

Mn1—O1 1.9083 (19) C8—H8A 0.9700

Mn1—N2 1.984 (2) C8—H8B 0.9700

Mn1—N1 1.991 (2) C9—N2 1.478 (3)

Mn1—N3 2.130 (3) C9—H9A 0.9700

Br1—C4 1.894 (3) C9—H9B 0.9700

Br2—C13 1.900 (2) C10—N2 1.286 (3)

C1—O1 1.340 (3) C10—C11 1.441 (3)

C1—C2 1.396 (4) C10—H10 0.9300

C1—C6 1.418 (3) C11—C12 1.406 (3)

C2—C3 1.381 (4) C11—C16 1.411 (3)

C2—H2 0.9300 C12—C13 1.371 (4)

C3—C4 1.392 (4) C12—H12 0.9300

C3—H3 0.9300 C13—C14 1.385 (4)

C4—C5 1.367 (4) C14—C15 1.371 (4)

C5—C6 1.404 (4) C14—H14 0.9300

C5—H5 0.9300 C15—C16 1.405 (4)

C6—C7 1.448 (4) C15—H15 0.9300

C7—N1 1.277 (3) C16—O2 1.322 (3)

C7—H7 0.9300 N3—N4 1.175 (3)

C8—N1 1.472 (3) N4—N5 1.157 (4)

O2—Mn1—O1 95.38 (8) N2—C9—C8 107.2 (2)

O2—Mn1—N2 91.73 (8) N2—C9—H9A 110.3

O1—Mn1—N2 159.40 (9) C8—C9—H9A 110.3

O2—Mn1—N1 171.04 (9) N2—C9—H9B 110.3

O1—Mn1—N1 88.41 (9) C8—C9—H9B 110.3

N2—Mn1—N1 82.06 (9) H9A—C9—H9B 108.5

O2—Mn1—N3 97.19 (10) N2—C10—C11 124.5 (2)

O1—Mn1—N3 96.43 (10) N2—C10—H10 117.7

N2—Mn1—N3 101.83 (10) C11—C10—H10 117.7

N1—Mn1—N3 90.43 (9) C12—C11—C16 119.7 (2)

O1—C1—C2 119.4 (2) C12—C11—C10 117.2 (2)

O1—C1—C6 121.9 (2) C16—C11—C10 123.1 (2)

C2—C1—C6 118.7 (2) C13—C12—C11 119.6 (2)

C3—C2—C1 121.2 (2) C13—C12—H12 120.2

C3—C2—H2 119.4 C11—C12—H12 120.2

C1—C2—H2 119.4 C12—C13—C14 121.3 (2)

(7)

C2—C3—H3 120.3 C14—C13—Br2 119.22 (19)

C4—C3—H3 120.3 C15—C14—C13 119.9 (2)

C5—C4—C3 121.0 (2) C15—C14—H14 120.0

C5—C4—Br1 119.94 (19) C13—C14—H14 120.0

C3—C4—Br1 119.0 (2) C14—C15—C16 120.9 (2)

C4—C5—C6 120.2 (2) C14—C15—H15 119.6

C4—C5—H5 119.9 C16—C15—H15 119.6

C6—C5—H5 119.9 O2—C16—C15 117.9 (2)

C5—C6—C1 119.3 (2) O2—C16—C11 123.6 (2)

C5—C6—C7 118.7 (2) C15—C16—C11 118.5 (2)

C1—C6—C7 122.0 (2) C7—N1—C8 122.9 (2)

N1—C7—C6 123.0 (2) C7—N1—Mn1 123.72 (18)

N1—C7—H7 118.5 C8—N1—Mn1 113.33 (16)

C6—C7—H7 118.5 C10—N2—C9 121.2 (2)

N1—C8—C9 106.7 (2) C10—N2—Mn1 125.88 (17)

N1—C8—H8A 110.4 C9—N2—Mn1 112.66 (17)

C9—C8—H8A 110.4 N4—N3—Mn1 128.8 (2)

N1—C8—H8B 110.4 N5—N4—N3 177.5 (3)

C9—C8—H8B 110.4 C1—O1—Mn1 118.36 (16)

H8A—C8—H8B 108.6 C16—O2—Mn1 128.97 (16)

O1—C1—C2—C3 −178.9 (3) O1—Mn1—N1—C7 −33.1 (2)

C6—C1—C2—C3 3.3 (4) N2—Mn1—N1—C7 165.2 (2)

C1—C2—C3—C4 −2.1 (4) N3—Mn1—N1—C7 63.3 (2)

C2—C3—C4—C5 −1.4 (4) O2—Mn1—N1—C8 34.1 (7)

C2—C3—C4—Br1 176.4 (2) O1—Mn1—N1—C8 149.32 (19)

C3—C4—C5—C6 3.6 (4) N2—Mn1—N1—C8 −12.37 (19)

Br1—C4—C5—C6 −174.3 (2) N3—Mn1—N1—C8 −114.3 (2)

C4—C5—C6—C1 −2.3 (4) C11—C10—N2—C9 179.9 (3)

C4—C5—C6—C7 178.2 (2) C11—C10—N2—Mn1 6.0 (4)

O1—C1—C6—C5 −178.9 (2) C8—C9—N2—C10 −137.6 (3)

C2—C1—C6—C5 −1.2 (4) C8—C9—N2—Mn1 37.1 (3)

O1—C1—C6—C7 0.6 (4) O2—Mn1—N2—C10 −13.6 (2)

C2—C1—C6—C7 178.3 (2) O1—Mn1—N2—C10 96.7 (3)

C5—C6—C7—N1 −161.0 (3) N1—Mn1—N2—C10 159.9 (2)

C1—C6—C7—N1 19.5 (4) N3—Mn1—N2—C10 −111.3 (2)

N1—C8—C9—N2 −45.4 (3) O2—Mn1—N2—C9 172.0 (2)

N2—C10—C11—C12 −173.0 (3) O1—Mn1—N2—C9 −77.7 (3)

N2—C10—C11—C16 5.3 (4) N1—Mn1—N2—C9 −14.4 (2)

C16—C11—C12—C13 1.7 (4) N3—Mn1—N2—C9 74.3 (2)

C10—C11—C12—C13 −179.9 (2) O2—Mn1—N3—N4 12.9 (3)

C11—C12—C13—C14 0.5 (4) O1—Mn1—N3—N4 −83.4 (3)

C11—C12—C13—Br2 −178.1 (2) N2—Mn1—N3—N4 106.2 (3)

C12—C13—C14—C15 −0.7 (4) N1—Mn1—N3—N4 −171.8 (3)

Br2—C13—C14—C15 178.0 (2) Mn1—N3—N4—N5 −177 (100)

C13—C14—C15—C16 −1.5 (4) C2—C1—O1—Mn1 139.8 (2)

C14—C15—C16—O2 −174.8 (3) C6—C1—O1—Mn1 −42.5 (3)

(8)

C12—C11—C16—O2 174.7 (2) N2—Mn1—O1—C1 112.3 (3)

C10—C11—C16—O2 −3.6 (4) N1—Mn1—O1—C1 50.12 (18)

C12—C11—C16—C15 −3.8 (4) N3—Mn1—O1—C1 −40.14 (19)

C10—C11—C16—C15 177.9 (2) C15—C16—O2—Mn1 168.3 (2)

C6—C7—N1—C8 −177.5 (2) C11—C16—O2—Mn1 −10.2 (4)

C6—C7—N1—Mn1 5.1 (4) O1—Mn1—O2—C16 −144.9 (2)

C9—C8—N1—C7 −142.4 (3) N2—Mn1—O2—C16 15.7 (2)

C9—C8—N1—Mn1 35.2 (3) N1—Mn1—O2—C16 −30.2 (7)

Figure

Figure 1

References

Related documents

RESULTS: Five variables were identified as the most significant, including the extent of resection, mass effect, volume of enhancing tumor, maximum B0 intensity, and mean

According to the database, the iden- tified proteins were classified by Gene Ontology Tool ( http://www.uniprot.org). K.AAESPPHPLEESEVLVEK.S) indicating similarity to

Gar- rison & Anderson’s (2003) Community of Inquiry (COI) framework was used as the basis for evaluation of student and tutor experiences to explore in what ways learning could

The purpose of this study was to identify imaging features of laryngeal lymphoma that could differentiate it from the far more common squamous cell carcinoma of the larynx and thus

Patients and methods: This was a retrospective and descriptive study over a period of 6 years from January 2011 to December 2016, which covered 54 pa- tients hospitalized in

The objective of the current study was to determine the prevalence of parasitic diseases in a pop- ulation with RA, particularly focusing on the demographic of patients presenting

Conclusions, Recommendations and Limitations The present study concluded that the initial stage of the pro- gram evaluation process brought about faculty and program director

In our study, the lived experience of time shifted from repetitive distressing daytime and night time ( i.e ., clock time) voice hearing to infrequent clock and calen- dar time