• No results found

(E) 2,2,6,6 Tetra­methyl­hept 4 en 3 one

N/A
N/A
Protected

Academic year: 2020

Share "(E) 2,2,6,6 Tetra­methyl­hept 4 en 3 one"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o2181–o2182 doi:10.1107/S1600536805018386 Joneset al. C

11H20O

o2181

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(

E

)-2,2,6,6-Tetramethylhept-4-en-3-one

Peter G. Jones,a* Peter

Bubenitschek,bHenning Hopfb and Cornelia Mlynekb

a

Institut fu¨r Anorganische und Analytische Chemie, Technische Universita¨t Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, andb

Institut fu¨r Organische Chemie, Technische Universita¨t Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study

T= 173 K

Mean(C–C) = 0.002 A˚

Rfactor = 0.040

wRfactor = 0.098

Data-to-parameter ratio = 17.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C11H20O, shows a wide Me3C—C C angle of 129.60 (14). Molecules associate into zigzag chains parallel to [101]viaa hydrogen bond Hmethyl Oketone.

Comment

In our studies of the stereochemistry, stability and chemical properties oftert-butylated oligo- and polyolefins (Hopfet al., 1998), we prepared a sample of the title compound, (3), a known,-unsaturated ketone (Dimroth & Mach, 1968). We present here its structure.

The molecule is shown in Fig. 1. Bond lengths and angles, e.g.the C C bond length of 1.325 (2) A˚ , may be regarded as normal. The angle C4 C5—C6 is widened to 129.60 (14), but this is normal for thetBu—CH C group; a search of the Cambridge Structural Database (Version 5.26; Allen, 2002) gave 42 examples of this fragment with a mean angle of 129.7. Atoms C2–C6 and C11 are coplanar within an r.m.s. deviation of 0.009 A˚ . Atom C8 lies only 0.111 (2) A˚ out of this plane.

The crystal packing involves only one significant contact, the hydrogen bond C10—H10 O1(1

2+ x, 1

2y,

1 2+ z), which is long but of acceptable linearity. This links the mol-ecules to form zigzag chains with overall direction [101] (Fig. 2).

Experimental

Compound (3) was prepared by base-catalyzed condensation of 2,2-dimethylpropanal, (1), with 3,3-dimethyl-2-butanone, (2), as

[image:1.610.209.482.300.361.2] [image:1.610.207.461.597.725.2]

Received 8 June 2005 Accepted 9 June 2005 Online 17 June 2005

Figure 1

(2)

described by Dimroth & Mach (1968). Single crystals were obtained by sublimation.

Crystal data

C11H20O

Mr= 168.27

Monoclinic,P21=n a= 5.8205 (5) A˚

b= 18.0795 (15) A˚

c= 10.6725 (10) A˚

= 94.324 (6)

V= 1119.89 (17) A˚3

Z= 4

Dx= 0.998 Mg m3

MoKradiation Cell parameters from 63

reflections

= 4–12.5

= 0.06 mm1

T= 173 (2) K Prism, colourless 0.70.50.4 mm

Data collection

Siemens P4 diffractometer

!scans

Absorption correction: none 2161 measured reflections 1961 independent reflections 1262 reflections withI> 2(I)

Rint= 0.022

max= 25.0

h= 0!6

k= 0!21

l=12!12 3 standard reflections

every 247 reflections intensity decay: 2%

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.040

wR(F2) = 0.098

S= 0.93 1961 reflections 115 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0518P)2] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.11 e A˚3

[image:2.610.314.564.70.382.2]

min=0.15 e A˚3

Table 1

Selected geometric parameters (A˚ ,).

C2—C3 1.524 (2)

C3—C4 1.484 (2)

C4—C5 1.325 (2)

C5—C6 1.501 (2)

O1—C3—C4 120.38 (14)

O1—C3—C2 120.81 (14)

C4—C3—C2 118.80 (13)

C4—C5—C6 129.60 (14)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C10—H10B O1i

0.98 2.65 3.615 (2) 169

Symmetry code: (i)x1 2;yþ

1 2;z

1 2.

Methyl H atoms were identified in difference syntheses, idealized and then refined using rigid methyl groups (C—H = 0.98 A˚ and H— C—H = 109.5) allowed to rotate but not tip. Other H atoms were

included using a riding model, with C—H = 0.95 A˚ .Uiso(H) values were fixed at 1.2Ueqof the parent atom.

Data collection:XSCANS(Fait, 1991); cell refinement:XSCANS; data reduction: XSCANS; program(s) used to solve structure:

SHELXS97(Sheldrick, 1990); program(s) used to refine structure: SHELXL97(Sheldrick, 1997); molecular graphics: XP5 (Siemens, 1994); software used to prepare material for publication: SHELXL97.

We thank Mr A. Weinkauf for technical assistance.

References

Allen, F. H. (2002).Acta Cryst.B58, 380–388.

Dimroth, K. & Mach, W. (1968).Angew. Chem.80, 489–490;Angew. Chem. Int. Ed. Engl.7, 460–461.

Fait, J. (1991).XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Hopf, H., Ha¨nel, R., Traetteberg, M. & Bakken, P. (1998).Eur. J. Org. Chem.

pp. 467–472.

Sheldrick, G. M. (1990).Acta Cryst.A46, 467–473.

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany. Siemens (1994).XP. Version 5.03. Siemens Analytical X–ray Instruments Inc.,

Madison, Wisconsin, USA.

Figure 2

(3)

supporting information

sup-1

Acta Cryst. (2005). E61, o2181–o2182

supporting information

Acta Cryst. (2005). E61, o2181–o2182 [https://doi.org/10.1107/S1600536805018386]

(

E

)-2,2,6,6-Tetramethylhept-4-en-3-one

Peter G. Jones, Peter Bubenitschek, Henning Hopf and Cornelia Mlynek

(E)-2,2,6,6-Tetramethyl-4-hepten-3-one

Crystal data

C11H20O

Mr = 168.27

Monoclinic, P21/n

a = 5.8205 (5) Å

b = 18.0795 (15) Å

c = 10.6725 (10) Å

β = 94.324 (6)°

V = 1119.89 (17) Å3

Z = 4

F(000) = 376

Dx = 0.998 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 63 reflections

θ = 4–12.5°

µ = 0.06 mm−1

T = 173 K Prism, colourless 0.7 × 0.5 × 0.4 mm

Data collection

Siemens P4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

2161 measured reflections 1961 independent reflections 1262 reflections with I > 2σ(I)

Rint = 0.022

θmax = 25.0°, θmin = 3.7°

h = 0→6

k = 0→21

l = −12→12

3 standard reflections every 247 reflections intensity decay: 2%

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.040

wR(F2) = 0.098

S = 0.93 1961 reflections 115 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0518P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.11 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 0.2990 (0.0040) x - 9.9165 (0.0058) y + 8.9230 (0.0025) z = 1.6538 (0.0029)

* -0.0095 (0.0008) C2 * 0.0017 (0.0012) C3 * 0.0104 (0.0013) C4 * -0.0139 (0.0012) C5 * -0.0053 (0.0012) C6 * 0.0093 (0.0009) O1 * 0.0073 (0.0010) C11 - 0.1106 (0.0022) C8

Rms deviation of fitted atoms = 0.0090

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.70130 (19) 0.41634 (6) 0.67258 (11) 0.0456 (3) C1 0.2183 (3) 0.52955 (9) 0.64747 (14) 0.0443 (4)

H1A 0.1579 0.5727 0.6900 0.053*

H1B 0.0905 0.4970 0.6186 0.053*

H1C 0.2992 0.5460 0.5752 0.053*

C2 0.3855 (3) 0.48751 (8) 0.73898 (13) 0.0309 (4) C3 0.4919 (3) 0.42294 (8) 0.67205 (13) 0.0319 (4) C4 0.3370 (3) 0.36774 (8) 0.60649 (13) 0.0334 (4)

H4 0.1748 0.3724 0.6089 0.040*

C5 0.4234 (3) 0.31197 (8) 0.54468 (13) 0.0329 (4)

H5 0.5868 0.3109 0.5459 0.039*

C6 0.3016 (3) 0.25024 (8) 0.47296 (14) 0.0338 (4) C7 0.3825 (3) 0.17719 (8) 0.53440 (17) 0.0498 (5)

H7A 0.5505 0.1736 0.5347 0.060*

H7B 0.3114 0.1357 0.4868 0.060*

H7C 0.3373 0.1756 0.6210 0.060*

C8 0.5759 (3) 0.53918 (9) 0.79146 (17) 0.0497 (5)

H8A 0.6827 0.5118 0.8498 0.060*

H8B 0.5080 0.5802 0.8360 0.060*

H8C 0.6596 0.5587 0.7223 0.060*

C9 0.2533 (3) 0.45632 (9) 0.84596 (14) 0.0446 (4)

H9A 0.3591 0.4283 0.9039 0.054*

H9B 0.1304 0.4236 0.8112 0.054*

H9C 0.1858 0.4971 0.8913 0.054*

C10 0.3726 (3) 0.25173 (9) 0.33767 (14) 0.0478 (5)

H10A 0.3171 0.2975 0.2966 0.057*

H10B 0.3052 0.2091 0.2916 0.057*

H10C 0.5409 0.2495 0.3383 0.057*

C11 0.0404 (3) 0.25620 (9) 0.47224 (17) 0.0494 (5)

H11A −0.0053 0.2536 0.5586 0.059*

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, o2181–o2182

H11C −0.0103 0.3034 0.4346 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0343 (7) 0.0456 (7) 0.0568 (8) −0.0022 (5) 0.0022 (5) −0.0138 (6) C1 0.0560 (11) 0.0369 (9) 0.0395 (9) 0.0077 (8) 0.0006 (8) 0.0016 (7) C2 0.0354 (8) 0.0292 (8) 0.0281 (8) −0.0005 (7) 0.0017 (7) −0.0018 (7) C3 0.0354 (9) 0.0312 (8) 0.0291 (8) −0.0017 (7) 0.0029 (7) 0.0022 (6) C4 0.0293 (8) 0.0338 (8) 0.0373 (8) −0.0005 (7) 0.0036 (7) −0.0049 (7) C5 0.0303 (8) 0.0329 (8) 0.0359 (9) −0.0008 (7) 0.0043 (7) −0.0009 (7) C6 0.0333 (9) 0.0277 (8) 0.0406 (9) −0.0024 (7) 0.0052 (7) −0.0049 (7) C7 0.0568 (12) 0.0331 (9) 0.0601 (11) −0.0004 (8) 0.0070 (9) 0.0021 (8) C8 0.0499 (11) 0.0410 (10) 0.0578 (11) −0.0015 (9) 0.0003 (9) −0.0184 (9) C9 0.0574 (11) 0.0446 (10) 0.0326 (9) 0.0055 (9) 0.0089 (8) 0.0013 (8) C10 0.0574 (11) 0.0435 (10) 0.0425 (9) −0.0075 (9) 0.0034 (8) −0.0085 (8) C11 0.0372 (10) 0.0434 (10) 0.0669 (12) −0.0052 (8) −0.0002 (9) −0.0147 (9)

Geometric parameters (Å, º)

O1—C3 1.2241 (17) C7—H7A 0.9800

C1—C2 1.528 (2) C7—H7B 0.9800

C1—H1A 0.9800 C7—H7C 0.9800

C1—H1B 0.9800 C8—H8A 0.9800

C1—H1C 0.9800 C8—H8B 0.9800

C2—C8 1.524 (2) C8—H8C 0.9800

C2—C3 1.524 (2) C9—H9A 0.9800

C2—C9 1.532 (2) C9—H9B 0.9800

C3—C4 1.484 (2) C9—H9C 0.9800

C4—C5 1.325 (2) C10—H10A 0.9800

C4—H4 0.9500 C10—H10B 0.9800

C5—C6 1.501 (2) C10—H10C 0.9800

C5—H5 0.9500 C11—H11A 0.9800

C6—C11 1.524 (2) C11—H11B 0.9800

C6—C10 1.532 (2) C11—H11C 0.9800

C6—C7 1.533 (2)

C2—C1—H1A 109.5 H7A—C7—H7B 109.5

C2—C1—H1B 109.5 C6—C7—H7C 109.5

H1A—C1—H1B 109.5 H7A—C7—H7C 109.5

C2—C1—H1C 109.5 H7B—C7—H7C 109.5

H1A—C1—H1C 109.5 C2—C8—H8A 109.5

H1B—C1—H1C 109.5 C2—C8—H8B 109.5

C8—C2—C3 109.36 (12) H8A—C8—H8B 109.5

C8—C2—C1 109.91 (13) C2—C8—H8C 109.5

C3—C2—C1 110.07 (11) H8A—C8—H8C 109.5

C8—C2—C9 110.13 (13) H8B—C8—H8C 109.5

(6)

C1—C2—C9 109.15 (13) C2—C9—H9B 109.5

O1—C3—C4 120.38 (14) H9A—C9—H9B 109.5

O1—C3—C2 120.81 (14) C2—C9—H9C 109.5

C4—C3—C2 118.80 (13) H9A—C9—H9C 109.5

C5—C4—C3 120.43 (14) H9B—C9—H9C 109.5

C5—C4—H4 119.8 C6—C10—H10A 109.5

C3—C4—H4 119.8 C6—C10—H10B 109.5

C4—C5—C6 129.60 (14) H10A—C10—H10B 109.5

C4—C5—H5 115.2 C6—C10—H10C 109.5

C6—C5—H5 115.2 H10A—C10—H10C 109.5

C5—C6—C11 112.52 (13) H10B—C10—H10C 109.5

C5—C6—C10 108.49 (12) C6—C11—H11A 109.5

C11—C6—C10 109.51 (14) C6—C11—H11B 109.5

C5—C6—C7 107.73 (12) H11A—C11—H11B 109.5

C11—C6—C7 109.71 (13) C6—C11—H11C 109.5

C10—C6—C7 108.80 (13) H11A—C11—H11C 109.5

C6—C7—H7A 109.5 H11B—C11—H11C 109.5

C6—C7—H7B 109.5

C8—C2—C3—O1 4.05 (19) O1—C3—C4—C5 −2.0 (2) C1—C2—C3—O1 124.90 (15) C2—C3—C4—C5 178.29 (13) C9—C2—C3—O1 −115.91 (16) C3—C4—C5—C6 179.71 (13) C8—C2—C3—C4 −176.27 (13) C4—C5—C6—C11 1.3 (2) C1—C2—C3—C4 −55.43 (17) C4—C5—C6—C10 122.58 (17) C9—C2—C3—C4 63.77 (17) C4—C5—C6—C7 −119.79 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C10—H10B···O1i 0.98 2.65 3.615 (2) 169

Figure

Figure 1
Table 1

References

Related documents

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are