• No results found

(1RS,4SR,8SR,11RS,15SR,18RS,22RS,25SR) 1,4:8,11:15,18:22,25 Tetra­ethano 29H,31H tetrabenzo­[b,g,l,q]­porphine chloro­form disolvate

N/A
N/A
Protected

Academic year: 2020

Share "(1RS,4SR,8SR,11RS,15SR,18RS,22RS,25SR) 1,4:8,11:15,18:22,25 Tetra­ethano 29H,31H tetrabenzo­[b,g,l,q]­porphine chloro­form disolvate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o675–o677 doi:10.1107/S1600536805004435 Shinji Aramakiet al. C

44H38N42CHCl3

o675

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1

RS

,4

SR

,8

SR

,11

RS

,15

SR

,18

RS

,22

RS

,25

SR

)-1,4:8,11:15,18:22,25-Tetraethano-29

H

,31

H

-tetrabenzo[

b,g,l,q

]porphine chloroform disolvate

Shinji Aramaki,aYoshimasa Sakai,aHiroyuki Yanagisawa,b Takatoshi Senjuband

Jin Mizuguchib*

aMitsubishi Chemical Group Science and

Technology Research Center, Kamoshida-cho 1000, Aoba-ku, Yokohama 227-8502, Japan, andbDepartment of Applied Physics, Graduate

School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501, Japan

Correspondence e-mail: mizu-j@ynu.ac.jp

Key indicators

Single-crystal X-ray study

T= 93 K

Mean(C–C) = 0.008 A˚

Rfactor = 0.125

wRfactor = 0.311

Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, C44H38N42CHCl3, the porphine (CP) is

a soluble precursor of metal-free porphyrin which exhibits an excellent field-effect transistor characteristic. The CP skeleton is entirely flat and characterized by crystallographic Ci

symmetry. In the present geometrical isomer, the C—C single-bond linkages of the four peripheries are arranged in an above–above–below–below manner with respect to the CP skeleton.

Comment

Organic field-effect transistors (FET) are advantageous in lowering fabrication costs and being large-area devices compared with inorganic FETs. We have recently reported that the metal-free porphyrin, the so-called benzoporphyrin (BP), exhibits excellent FET characteristics (Aramaki et al., 2004). Our FET system is characterized by the use of a soluble BP-precursor (i.e.porphine in the title compound, called CP) and its thermal transformation into BP directly on the substrate at about 473 K. In order to improve the FET performance further, it is crucial to study the correlation between the structure and the solid-state properties. The structures of BP and toluene-solvated CP have previously been reported (Aramaki & Mizuguchi, 2003; Aramaki et al., 2005). The present paper deals with the structure of the title compound, (I), which is chloroform-solvated CP.

The skeleton of the centrosymmetric CP molecule is entirely planar (Fig. 1). As shown in the scheme, there is one C—C single bond and one double bond in the four groups at the periphery of the molecule, and the C—C single-bond linkages are arranged in an above–above–below–below manner with respect to the CP skeleton. This is clearly seen from the difference in bond lengths (Table 1): 1.519 (9)– 1.525 (9) A˚ for C7—C8 and C17—C18, and 1.339 (9)– 1.356 (9) A˚ for C10 C11 and C20 C21. By contrast, in toluene-solvated CP (Aramaki et al., 2005), the single and double bonds are averaged, giving an intermediate bond length. This provides a striking difference between the

(2)

chloroform and toluene-solvated crystals of CP. It is also to be noted that we have isolated two isomers by column chroma-tography (see Experimental) and their1H NMR spectra are different at themesosite. However, these isomers in toluene-solvated crystals showed similar disordered structures with similar cell constants. By contrast, in chloroform-solvated CPs, we still have a chance to study the structure of both isomers. Fig. 2 shows the packing arrangement of CP with the chloro-form molecules.

Experimental

CP was synthesized according to the method previously reported by Itoet al.(1998). The product was purified by column chromatography, using toluene as eluent. Two geometrical isomers of CP were clearly isolated, as indicated by 1H NMR data (fast-eluted component: 10.388 and 10.394 p.p.m.; slow-eluted component: 10.382 and 10.388 p.p.m.). Single crystals of (I) were grown from a chloroform solution of the fast-eluted component. After a week, a number of dark-red block-shaped crystals were isolated. The crystal used for analysis was found to include solvent molecules. Therefore, X-ray intensity data were collected at 93 K.

Crystal data

C44H38N42CHCl3

Mr= 861.52

Monoclinic, P21=c

a= 10.282 (2) A˚ b= 17.433 (3) A˚ c= 11.664 (2) A˚ = 106.51 (1)

V= 2004.5 (6) A˚3

Z= 2

Dx= 1.427 Mg m 3

Cu Kradiation Cell parameters from 9212

reflections = 4.5–68.0

= 4.22 mm1

T= 93.1 K Block, dark red 0.200.200.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer !scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin= 0.400,Tmax= 0.430

18 024 measured reflections

3592 independent reflections 1286 reflections withF2> 2(F2)

Rint= 0.183

max= 68.2

h=11!11 k=20!20 l=13!14

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.125

wR(F2) = 0.311 S= 1.32 3592 reflections 254 parameters

H-atom parameters constrained w= 1/[2(F

o2) + (0.1P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.92 e A˚ 3

[image:2.610.311.564.70.284.2]

min=0.67 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

N1—C12 1.381 (7) N1—C15 1.377 (8) N2—C2 1.375 (7) N2—C5 1.385 (9) C1—C2 1.401 (9) C1—C12 1.367 (9) C2—C3 1.446 (9) C3—C4 1.370 (9) C4—C5 1.446 (8) C5—C22i 1.404 (8)

C7—C8 1.525 (9) C10—C11 1.339 (9) C12—C13 1.443 (9) C13—C14 1.350 (8) C14—C15 1.434 (8) C15—C22 1.385 (8) C17—C18 1.519 (9) C20—C21 1.356 (9) C22—C5i

1.404 (8)

N1—C12—C1 126.5 (6) N1—C12—C13 104.7 (5) C15—N1—C12 111.8 (5) N1—C15—C14 105.6 (5) N1—C15—C22 125.2 (6) N2—C2—C1 124.4 (5) N2—C2—C3 110.4 (5) C5—N2—C2 105.3 (5) N2—C5—C4 111.1 (5) N2—C5—C22i

124.5 (5)

C12—C1—C2 127.4 (5) C1—C2—C3 125.2 (5) C1—C12—C13 128.8 (5) C2—C3—C4 107.3 (5) C3—C4—C5 105.8 (6) C4—C5—C22i 124.4 (6) C12—C13—C14 109.3 (5) C13—C14—C15 108.6 (6) C14—C15—C22 129.2 (6) C15—C22—C5i

128.9 (6)

Symmetry code: (i)x;y;z.

All the H atoms were positioned geometrically and included in the riding-model approximation, with N—H and C—H distances of 0.95 A˚ , and withUiso(H) = 1.2Ueq(parent atom). The position of the

organic papers

o676

Shinji Aramakiet al. C [image:2.610.43.300.72.327.2]

44H38N42CHCl3 Acta Cryst.(2005). E61, o675–o677

Figure 2

The crystal structure of (I). H atoms of CP have been omitted.

Figure 1

[image:2.610.312.565.377.682.2]
(3)

H atom bonded to N1 was calculated by assumingsp2hybridization, since a positive peak was found only near atom N1 (but not N2) in the difference-density map.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refine-ment:PROCESS-AUTO; data reduction:CrystalStructure (Rigaku/ MSC and Rigaku, 2004); program(s) used to solve structure:SIR2002

(Burlaet al., 2003); program(s) used to refine structure:SHELXL97

(Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication:

CrystalStructure.

The authors express their sincere thanks to Mr I. Suzuki for experimental assistance.

References

Aramaki, S. & Mizuguchi, J. (2003).Acta Cryst.E59, o1556–o1558. Aramaki, S., Sakai, Y. & Ono, N. (2004).Appl. Phys. Lett.84, 2085–2087. Aramaki, S., Sakai, Y., Yanagisawa, H. & Mizuguchi, J. (2005).Acta Cryst.E61,

o659–o661.

Burla, M. C., Camalli, M., Carrozzini, B., Casarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003).J. Appl. Cryst.36, 1103.

Burnett, M. N. & Johnson, C. K. (1996).ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.

Higashi, T. (1995).ABSCOR.Rigaku Corporation, Tokyo, Japan.

Ito, S., Ochi, N., Murashima, T., Uno, H. & Ono, N. (1998).Chem. Commun. pp. 1661–1662.

Rigaku (1998).PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2004).CrystalStructure.Version 3.6.0. MSC, 9009 New Trails

Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany.

organic papers

Acta Cryst.(2005). E61, o675–o677 Shinji Aramakiet al. C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, o675–o677

supporting information

Acta Cryst. (2005). E61, o675–o677 [https://doi.org/10.1107/S1600536805004435]

(1

RS

,4

SR

,8

SR

,11

RS

,15

SR

,18

RS

,22

RS

,25

SR

)-1,4:8,11:15,18:22,25-Tetra-ethano-29

H

,31

H

-tetrabenzo[

b,g,l,q

]porphine chloroform disolvate

Shinji Aramaki, Yoshimasa Sakai, Hiroyuki Yanagisawa, Takatoshi Senju and Jin Mizuguchi

(I)

Crystal data C44H38N4·2CHCl3 Mr = 861.52 Monoclinic, P21/c Hall symbol: -P 2ybc a = 10.282 (2) Å b = 17.433 (3) Å c = 11.664 (2) Å β = 106.51 (1)° V = 2004.5 (6) Å3

Z = 2

F(000) = 892.00 Dx = 1.427 Mg m−3

Cu radiation, λ = 1.5418 Å Cell parameters from 9212 reflections θ = 4.5–68.0°

µ = 4.22 mm−1 T = 93 K Block, dark red 0.20 × 0.20 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Detector resolution: 10.00 pixels mm-1 48 frames, δω = 15° scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.400, Tmax = 0.430 18024 measured reflections

3592 independent reflections 1286 reflections with F2 > 2σ(F2) Rint = 0.183

θmax = 68.2° h = −11→11 k = −20→20 l = −13→14

Refinement Refinement on F2 R[F2 > 2σ(F2)] = 0.125 wR(F2) = 0.311 S = 1.32 3592 reflections 254 parameters

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.92 e Å−3 Δρmin = −0.67 e Å−3

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R -factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, o675–o677

Cl2 0.2157 (2) −0.1016 (1) 0.1748 (2) 0.0933 (9) Cl3 0.3934 (2) −0.0097 (1) 0.3548 (2) 0.0707 (7) N1 −0.0576 (5) 0.0457 (3) 0.1475 (4) 0.039 (1) N2 0.1182 (5) 0.0941 (3) 0.0037 (4) 0.035 (1) C1 0.0740 (6) 0.1650 (3) 0.1707 (5) 0.032 (1) C2 0.1376 (6) 0.1558 (3) 0.0801 (5) 0.034 (1) C3 0.2349 (6) 0.2085 (3) 0.0554 (5) 0.038 (2) C4 0.2768 (6) 0.1780 (3) −0.0364 (5) 0.033 (1) C5 0.2019 (7) 0.1073 (3) −0.0686 (5) 0.036 (1) C6 0.3068 (6) 0.2806 (3) 0.1063 (5) 0.040 (2) C7 0.4618 (6) 0.2576 (4) 0.1540 (5) 0.042 (2) C8 0.5097 (6) 0.2208 (4) 0.0546 (5) 0.041 (2) C9 0.3902 (6) 0.2208 (3) −0.0641 (5) 0.040 (2) C10 0.3048 (6) 0.3340 (3) 0.0036 (5) 0.041 (2) C11 0.3466 (6) 0.3028 (3) −0.0847 (5) 0.037 (2) C12 −0.0113 (6) 0.1145 (3) 0.2027 (5) 0.038 (2) C13 −0.0715 (6) 0.1197 (3) 0.3002 (5) 0.036 (1) C14 −0.1480 (6) 0.0568 (3) 0.3003 (5) 0.035 (1) C15 −0.1428 (6) 0.0088 (3) 0.2018 (5) 0.035 (1) C16 −0.0729 (6) 0.1782 (3) 0.3954 (5) 0.038 (2) C17 −0.2249 (7) 0.1988 (3) 0.3731 (6) 0.049 (2) C18 −0.3096 (6) 0.1278 (3) 0.3755 (5) 0.042 (2) C19 −0.2210 (6) 0.0548 (3) 0.3952 (5) 0.041 (2) C20 −0.0365 (7) 0.1324 (4) 0.5148 (5) 0.044 (2) C21 −0.1123 (6) 0.0687 (4) 0.5142 (5) 0.045 (2) C22 −0.2089 (6) −0.0599 (3) 0.1641 (5) 0.039 (2) C23 0.3160 (7) −0.0196 (4) 0.1996 (6) 0.056 (2)

H1 −0.0335 0.0261 0.0803 0.047*

H2 0.0921 0.2115 0.2148 0.038*

H3 0.2723 0.3034 0.1657 0.048*

H4 0.4154 0.1993 −0.1295 0.048*

H5 0.5143 0.3022 0.1819 0.050*

H6 0.4732 0.2221 0.2180 0.050*

H7 0.5376 0.1695 0.0759 0.049*

H8 0.5838 0.2492 0.0430 0.049*

H9 0.2760 0.3859 0.0018 0.049*

H10 0.3484 0.3303 −0.1545 0.045*

H11 −0.2712 0.0089 0.3945 0.050*

H12 −0.0161 0.2213 0.3962 0.046*

H13 −0.3782 0.1236 0.3015 0.050*

H14 −0.3505 0.1324 0.4387 0.050*

H15 −0.2337 0.2333 0.4336 0.059*

H16 −0.2571 0.2228 0.2971 0.059*

H17 −0.0993 0.0357 0.5813 0.054*

H18 0.0338 0.1479 0.5830 0.053*

H19 −0.2657 −0.0770 0.2081 0.046*

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, o675–o677

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.086 (2) 0.156 (2) 0.056 (1) 0.036 (2) 0.035 (1) 0.022 (1) Cl2 0.084 (2) 0.073 (2) 0.099 (2) −0.009 (1) −0.013 (1) −0.018 (1) Cl3 0.082 (2) 0.082 (1) 0.051 (1) −0.015 (1) 0.023 (1) −0.0153 (9) N1 0.046 (3) 0.038 (3) 0.034 (3) −0.002 (3) 0.015 (2) −0.002 (2) N2 0.038 (3) 0.036 (3) 0.030 (3) −0.001 (2) 0.008 (2) 0.001 (2) C1 0.038 (4) 0.031 (3) 0.026 (3) −0.006 (3) 0.009 (3) −0.004 (2) C2 0.036 (4) 0.034 (3) 0.031 (3) −0.001 (3) 0.008 (3) 0.003 (3) C3 0.050 (4) 0.034 (3) 0.031 (3) 0.001 (3) 0.012 (3) 0.002 (3) C4 0.042 (4) 0.031 (3) 0.024 (3) 0.002 (3) 0.008 (3) 0.000 (2) C5 0.046 (4) 0.035 (3) 0.027 (3) 0.007 (3) 0.011 (3) 0.001 (3) C6 0.050 (5) 0.043 (4) 0.035 (3) −0.003 (3) 0.025 (3) −0.002 (3) C7 0.043 (5) 0.056 (4) 0.030 (3) −0.002 (3) 0.015 (3) 0.002 (3) C8 0.038 (4) 0.049 (4) 0.039 (4) −0.002 (3) 0.015 (3) 0.001 (3) C9 0.041 (4) 0.049 (4) 0.033 (3) −0.008 (3) 0.016 (3) −0.005 (3) C10 0.051 (4) 0.031 (3) 0.042 (4) −0.005 (3) 0.014 (3) 0.010 (3) C11 0.040 (4) 0.035 (3) 0.038 (3) −0.005 (3) 0.010 (3) −0.000 (3) C12 0.051 (4) 0.034 (3) 0.027 (3) 0.004 (3) 0.009 (3) −0.003 (3) C13 0.032 (4) 0.044 (4) 0.035 (3) 0.002 (3) 0.011 (3) −0.003 (3) C14 0.044 (4) 0.033 (3) 0.027 (3) 0.001 (3) 0.010 (3) −0.002 (3) C15 0.043 (4) 0.035 (3) 0.031 (3) 0.003 (3) 0.019 (3) 0.005 (3) C16 0.048 (4) 0.038 (4) 0.035 (3) 0.001 (3) 0.020 (3) −0.003 (3) C17 0.066 (5) 0.042 (4) 0.044 (4) 0.004 (3) 0.023 (3) −0.008 (3) C18 0.045 (4) 0.045 (4) 0.034 (3) 0.003 (3) 0.011 (3) 0.000 (3) C19 0.057 (5) 0.040 (4) 0.033 (3) −0.017 (3) 0.023 (3) −0.003 (3) C20 0.045 (4) 0.058 (4) 0.030 (3) −0.007 (3) 0.010 (3) −0.009 (3) C21 0.050 (4) 0.053 (4) 0.029 (3) 0.001 (4) 0.008 (3) 0.005 (3) C22 0.040 (4) 0.043 (4) 0.035 (3) −0.002 (3) 0.014 (3) 0.001 (3) C23 0.069 (5) 0.059 (5) 0.040 (4) 0.018 (4) 0.017 (4) 0.015 (3)

Geometric parameters (Å, º)

Cl1—C23 1.758 (8) C13—C16 1.511 (8)

Cl2—C23 1.738 (7) C14—C13 1.350 (8)

Cl3—C23 1.767 (6) C14—C15 1.434 (8)

N1—C12 1.381 (7) C14—C19 1.505 (9)

N1—C15 1.377 (8) C15—C22 1.385 (8)

N1—H1 0.9500 C16—C13 1.511 (8)

N2—C2 1.375 (7) C16—C17 1.551 (9)

N2—C5 1.385 (9) C16—C20 1.555 (8)

C1—C2 1.401 (9) C16—H12 0.9500

C1—C12 1.367 (9) C17—C18 1.519 (9)

C1—H2 0.9500 C17—H15 0.9500

C2—C3 1.446 (9) C17—H16 0.9500

C3—C4 1.370 (9) C18—C19 1.543 (8)

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, o675–o677

C4—C5 1.446 (8) C18—H14 0.9500

C4—C9 1.495 (9) C19—C21 1.534 (7)

C5—C22i 1.404 (8) C19—H11 0.9500

C6—C7 1.583 (8) C20—C21 1.356 (9)

C6—C10 1.513 (8) C20—H18 0.9500

C6—H3 0.9500 C21—H17 0.9500

C7—C8 1.525 (9) C22—C5i 1.404 (8)

C7—H5 0.9500 C22—H19 0.9300

C7—H6 0.9500 C23—H20 0.9500

C8—C9 1.568 (7) H4—C9 0.9500

C8—H7 0.9500 H6—C7 0.9500

C8—H8 0.9500 H7—C8 0.9500

C9—C11 1.496 (8) H9—C10 0.9500

C9—H4 0.9500 H10—C11 0.9500

C10—C6 1.513 (8) H11—C19 0.9500

C10—C11 1.339 (9) H12—C16 0.9500

C10—H9 0.9500 H13—C18 0.9500

C11—C10 1.339 (9) H14—C18 0.9500

C11—H10 0.9500 H15—C17 0.9500

C12—C13 1.443 (9) H16—C17 0.9500

C13—C12 1.443 (9) H18—C20 0.9500

C13—C14 1.350 (8) H20—C23 0.9500

Cl1—C23—H20 109.1680 H7—C8—C9 109.5271

Cl2—C23—H20 109.1675 H8—C8—C9 109.5272

Cl3—C23—H20 109.1675 H8—C8—H7 109.4607

N1—C12—C1 126.5 (6) C9—C11—C10 114.3 (6)

N1—C12—C13 104.7 (5) H4—C9—C11 112.6158

C15—N1—C12 111.8 (5) C9—C11—H10 122.8553

H1—N1—C12 124.1125 H9—C10—C11 122.4574

N1—C15—C14 105.6 (5) C10—C11—H10 122.8555

N1—C15—C22 125.2 (6) C12—C13—C14 109.3 (5)

H1—N1—C15 124.1134 C12—C13—C16 135.8 (6)

N2—C2—C1 124.4 (5) C13—C14—C15 108.6 (6)

N2—C2—C3 110.4 (5) C16—C13—C14 114.9 (6)

C5—N2—C2 105.3 (5) C13—C14—C19 115.6 (5)

N2—C5—C4 111.1 (5) C13—C16—C17 104.6 (4)

N2—C5—C22i 124.5 (5) C13—C16—C20 105.1 (5)

C12—C1—C2 127.4 (5) C13—C16—H12 113.9563

C1—C2—C3 125.2 (5) C14—C15—C22 129.2 (6)

H2—C1—C2 116.3225 C19—C14—C15 135.7 (5)

C1—C12—C13 128.8 (5) C14—C19—C21 105.9 (5)

H2—C1—C12 116.3218 C14—C19—C18 105.5 (5)

C2—C3—C4 107.3 (5) C14—C19—H11 113.3321

C2—C3—C6 138.4 (6) C15—C22—H19 115.5218

C3—C4—C5 105.8 (6) C15—C22—C5i 128.9 (6)

C6—C3—C4 114.1 (6) C20—C16—C17 104.1 (5)

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, o675–o677

C3—C6—C7 105.1 (5) C16—C17—H16 109.0174

C3—C6—C10 108.0 (4) C16—C17—C18 111.3 (5)

C3—C6—H3 113.3666 C16—C17—H15 109.0170

C4—C5—C22i 124.4 (6) C16—C20—C21 115.1 (5)

C9—C4—C5 139.5 (6) H12—C16—C20 113.9565

C4—C9—C11 107.2 (5) C16—C20—H18 122.4532

C4—C9—C8 105.8 (5) C17—C18—C19 111.0 (5)

C4—C9—H4 112.6163 H16—C17—C18 109.0171

C5—C22i—H19i 115.5284 C17—C18—H13 109.0910 C5—C22i—C15i 128.9 (6) H15—C17—C18 109.0168

C10—C6—C7 102.8 (5) C17—C18—H14 109.0908

H3—C6—C7 113.3665 H16—C17—H15 109.4604

C6—C7—H6 109.2220 C18—C19—C21 104.6 (5)

C6—C7—C8 110.5 (4) C18—C19—H11 113.3326

C6—C7—H5 109.2222 H13—C18—C19 109.0905

C6—C10—C11 115.1 (5) H14—C18—C19 109.0911

H3—C6—C10 113.3670 H14—C18—H13 109.4601

C6—C10—H9 122.4567 C19—C21—C20 113.9 (5)

C7—C8—C9 109.3 (5) H11—C19—C21 113.3321

H6—C7—C8 109.2223 C19—C21—H17 123.0720

C7—C8—H7 109.5267 H18—C20—C21 122.4533

H5—C7—C8 109.2222 C20—C21—H17 123.0726

C7—C8—H8 109.5265 H19—C22—C5i 115.5284

H6—C7—H5 109.4599 C22—C5i—N2i 124.5 (5) C8—C9—C11 105.4 (4) C22—C5i—C4i 124.4 (6)

C8—C9—H4 112.6162

Figure

Figure 2The crystal structure of (I). H atoms of CP have been omitted.

References

Related documents

of manual pressure release and the muscle energy technique for treating mechanical neck pain due to upper trapezius trigger points.. Richa

The agriculture in the other analyzed riverside ecosystem, of Maritsa, is characterized by several indicators for levels of high sustainability: economic – labour

OFFICE FOR OFFICIAL PUBLICATIONS OF THE EUROPEAN COMMUNITIES OFFICE DES PUBLICATIONS OFFICIELLES DES COMMUNAUTES EUROPEENNES UFFICIO DELLE PUBBLICAZIONI UFFICIALI DELLE

Reporting the natural environmental hazards occurrences and fatalities over the last century.. Halkos, George and

Since KeLP allows to com- bine multiple kernel functions, the classification algorithm was built as a combination of a Lin- ear Kernel and a Smoothed Partial Tree Kernel (SPTK) (

Figure 2 describes the architecture of our proposed DCFEE framework which primarily involves the following two components: (i) Data Genera- tion, which makes use of DS to

Note that the tagged TIME expressions aren't used in determining these inter-event temporal relations, so this event- ordering component could be used to order events which don't

For example, the Penn Tree- bank gives each constituent zero or more 'func- tion tags' indicating semantic roles and other related information not easily encapsulated