• No results found

Redetermination of the Diels–Alder diadduct of 1,4 benzo­quinone and cyclo­penta­diene: 1,4:5,8 di­methano 1,1a,4,4a,5,5a,8,8a octa­hydro­anthracene 9,10 dione

N/A
N/A
Protected

Academic year: 2020

Share "Redetermination of the Diels–Alder diadduct of 1,4 benzo­quinone and cyclo­penta­diene: 1,4:5,8 di­methano 1,1a,4,4a,5,5a,8,8a octa­hydro­anthracene 9,10 dione"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1178

Yakovenko and Dolgushin C

16H16O2 doi:10.1107/S1600536805009311 Acta Cryst.(2005). E61, o1178–o1179

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Redetermination of the Diels–Alder diadduct of

1,4-benzoquinone and cyclopentadiene:

1,4:5,8-di-

methano-1,1a,4,4a,5,5a,8,8a-octahydroanthracene-9,10-dione

Andrey A. Yakovenko* and Fedor M. Dolgushin

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, Moscow 119991, Russian Federation

Correspondence e-mail: aaylev@xrlab.ineos.ac.ru

Key indicators

Single-crystal X-ray study

T= 120 K

Mean(C–C) = 0.002 A˚

Rfactor = 0.042

wRfactor = 0.084

Data-to-parameter ratio = 12.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography

Printed in Great Britain – all rights reserved

The title diadduct, C16H16O2, has been redetermined by X-ray

diffraction methods at 120 K. In this work, we report more exact values of bond and angles.

Comment

The Diels–Alder reaction between 1,4-benzoquinone and two equivalents of cyclopentadiene gives the title diadduct 1,4:5,8- dimethano-1,1a,4,4a,5,5a,8,8a-octahydroanthracene-9,10-di-one, (I) (Fig. 1 and Table 1).

The structure of (I) was first reported in 1974 but with a space-group ambiguity (Brown et al., 1974). The corrected room-temperature structure was reported in 1999 (Gunes et al., 1999). To define more precisely the molecular structure of (I), we have studied the structure at low temperature, viz. 120 K. The analysis confirms that the stereochemistry is endo,cis,anti,cis,endo.

Despite of the slight change in the deviations of the bond lengths and angles (0.001 A˚ for bond lengths and 0.01 for

angles), the bond lengths and angles themselves have changed dramatically. For example, in our work, the C O distances are in the range 1.2211 (16)–1.2189 (16) A˚ and the C—C distances are in the range 1.5115 (19)–1.5798 (19) A˚ , while in Gunes et al. (1999), the C O is 1.215 (2) A˚ and the C—C distances are in the range 1.499 (3)–1.579 (3) A˚ . The increase in distances is connected with a significant reduction in the atomic anisotropic displacement parameters and the measurement of the present data at 120 K. It results in a reduction of the amplitudes of thermal vibration of atoms and their localization. Accordingly, the atomic coordinates have much smaller deviations than in the previous work. Thus, in our work, more exact values of bonds lengths and angles are presented.

Experimental

The title compound was prepared according to the known procedure of Brown et al.(1974) (see scheme). Suitable single crystals were

(2)

obtained by isothermic evaporation of its solution in ethanol at room temperature.

Crystal data

C16H16O2 Mr= 240.29

Monoclinic,P21=n a= 11.909 (4) A˚

b= 6.166 (2) A˚

c= 16.937 (6) A˚ = 110.278 (7)

V= 1166.6 (7) A˚3 Z= 4

Dx= 1.368 Mg m

3

MoKradiation Cell parameters from 944

reflections = 2.8–29.9

= 0.09 mm1 T= 120 (2) K Prism, colorless 0.40.30.2 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer ’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1998)

Tmin= 0.964,Tmax= 0.981 7972 measured reflections

2922 independent reflections 2435 reflections withI> 2(I)

Rint= 0.017 max= 28.6 h=13!15

k=8!8

l=22!22

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.042 wR(F2) = 0.084

S= 1.00 2922 reflections 227 parameters

All H-atom parameters refined

w= 1/[2

(Fo2) + (0.1078P)2

+ 0.097P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.31 e A˚

3

min=0.20 e A˚

[image:2.610.45.300.71.224.2] [image:2.610.314.566.88.358.2]

3

Table 1

Selected geometric parameters (A˚ ,).

O2—C11 1.2211 (16)

O1—C4 1.2189 (16)

C5—C4 1.5135 (19)

C5—C10 1.5586 (18)

C5—C6 1.5798 (19)

C3—C4 1.5133 (18)

C3—C2 1.5621 (19)

C3—C12 1.5650 (18)

C9—C8 1.515 (2)

C9—C16 1.5449 (19)

C9—C10 1.5794 (19)

C10—C11 1.5183 (18)

C11—C12 1.5115 (19)

C12—C13 1.5610 (19)

C1—C14 1.338 (2)

C1—C2 1.520 (2)

C8—C7 1.336 (2)

C2—C15 1.545 (2)

C14—C13 1.522 (2)

C6—C7 1.513 (2)

C6—C16 1.542 (2)

C13—C15 1.540 (2)

C4—C5—C10 116.42 (10)

C4—C5—C6 114.05 (11)

C10—C5—C6 102.59 (10)

C4—C3—C2 113.46 (11)

C4—C3—C12 116.03 (11)

C2—C3—C12 102.91 (10)

C8—C9—C16 100.49 (11)

C8—C9—C10 107.75 (11)

C16—C9—C10 99.22 (10)

C11—C10—C5 116.39 (11)

C11—C10—C9 113.66 (11)

C5—C10—C9 102.70 (10)

O2—C11—C12 121.01 (12)

O2—C11—C10 119.99 (12)

C12—C11—C10 118.97 (11) C11—C12—C13 113.96 (11)

C11—C12—C3 116.64 (10)

C13—C12—C3 102.62 (11)

C14—C1—C2 107.54 (13)

C7—C8—C9 107.23 (12)

O1—C4—C3 121.25 (12)

O1—C4—C5 119.97 (12)

C3—C4—C5 118.77 (11)

C1—C2—C15 100.15 (12)

C1—C2—C3 106.04 (11)

C15—C2—C3 100.15 (11)

C1—C14—C13 107.53 (13)

C7—C6—C16 100.29 (11)

C7—C6—C5 107.92 (11)

C16—C6—C5 99.15 (11)

C8—C7—C6 107.91 (13)

C6—C16—C9 93.60 (10)

C14—C13—C15 100.33 (12) C14—C13—C12 106.15 (11) C15—C13—C12 100.26 (11)

C13—C15—C2 93.94 (11)

The H atoms were refined with individual isotropic displacement parameters; the range of C—H was 0.964 (17)–1.023 (17) A˚ .

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

-Plus(Bruker, 1998); data reduction:SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; soft-ware used to prepare material for publication:SHELXTL.

This work was supported by the Russian Foundation for Basic Research (project No. 04-03-32371).

References

Brown, R., Bruce, J. M., Hudson, D. W. & Mills, O. S. (1974).J. Chem. Soc. Perkin Trans.2, pp. 132–135.

Bruker (1998). SAINT-Plus (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.

Gunes, B., Soylu, H., Ozbey, S. & Aydin, A. (1999).Z. Kristallogr. New Cryst. Struct.214, 29–30.

Sheldrick, G. M. (1998).SADABS(Version 2.01) andSHELXTL(Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, o1178–o1179

supporting information

Acta Cryst. (2005). E61, o1178–o1179 [https://doi.org/10.1107/S1600536805009311]

Redetermination of the Diels

Alder diadduct of 1,4-benzoquinone and

cyclo-pentadiene:

1,4:5,8-dimethano-1,1a,4,4a,5,5a,8,8a-octahydroanthracene-9,10-dione

Andrey A. Yakovenko and Fedor M. Dolgushin

1,4:5,8-dimethano-1,1a,4,4a,5,5a,8,8a-octahydroanthracene-9,10-dione

Crystal data

C16H16O2

Mr = 240.29 Monoclinic, P21/n

Hall symbol: -P 2yn

a = 11.909 (4) Å

b = 6.166 (2) Å

c = 16.937 (6) Å

β = 110.278 (7)°

V = 1166.6 (7) Å3

Z = 4

F(000) = 512

Dx = 1.368 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 944 reflections

θ = 2.8–29.9°

µ = 0.09 mm−1

T = 120 K Prism, colorless 0.4 × 0.3 × 0.2 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1998)

Tmin = 0.964, Tmax = 0.981

7972 measured reflections 2922 independent reflections 2435 reflections with I > 2σ(I)

Rint = 0.017

θmax = 28.6°, θmin = 1.8°

h = −13→15

k = −8→8

l = −22→22

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.042

wR(F2) = 0.084

S = 1.00 2922 reflections 227 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map All H-atom parameters refined

w = 1/[σ2(F

o2) + (0.1078P)2 + 0.097P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.31 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, o1178–o1179

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O2 0.0306 (5) 0.0290 (5) 0.0252 (5) 0.0021 (4) 0.0146 (4) −0.0023 (4) O1 0.0311 (5) 0.0316 (5) 0.0249 (5) −0.0060 (4) 0.0148 (4) 0.0013 (4) C5 0.0236 (7) 0.0204 (6) 0.0172 (5) −0.0006 (5) 0.0085 (5) 0.0014 (5) C3 0.0221 (6) 0.0205 (6) 0.0200 (6) 0.0010 (5) 0.0090 (5) 0.0000 (5) C9 0.0212 (6) 0.0246 (7) 0.0222 (6) −0.0021 (5) 0.0093 (5) −0.0006 (5) C10 0.0217 (6) 0.0201 (6) 0.0193 (6) 0.0018 (5) 0.0081 (5) 0.0006 (5) C11 0.0252 (7) 0.0179 (6) 0.0210 (6) −0.0021 (5) 0.0114 (5) 0.0012 (5) C12 0.0239 (7) 0.0208 (6) 0.0180 (6) 0.0004 (5) 0.0089 (5) 0.0019 (5) C1 0.0266 (7) 0.0257 (7) 0.0241 (6) −0.0055 (6) 0.0049 (5) −0.0006 (6) C8 0.0279 (7) 0.0196 (6) 0.0273 (7) −0.0038 (6) 0.0065 (6) 0.0020 (5) C4 0.0256 (7) 0.0188 (6) 0.0200 (6) −0.0006 (5) 0.0107 (5) −0.0022 (5) C2 0.0210 (7) 0.0300 (7) 0.0233 (6) −0.0003 (6) 0.0079 (5) 0.0007 (5) C14 0.0292 (7) 0.0241 (7) 0.0219 (6) −0.0012 (6) 0.0042 (5) −0.0040 (5) C6 0.0263 (7) 0.0263 (7) 0.0217 (6) −0.0044 (6) 0.0107 (5) −0.0051 (5) C7 0.0243 (7) 0.0197 (6) 0.0345 (7) −0.0022 (6) 0.0073 (6) −0.0055 (6) C16 0.0236 (7) 0.0296 (7) 0.0213 (6) −0.0034 (6) 0.0067 (5) −0.0023 (6) C13 0.0277 (7) 0.0288 (7) 0.0180 (6) −0.0004 (6) 0.0072 (5) 0.0001 (5) C15 0.0271 (7) 0.0320 (8) 0.0230 (6) 0.0013 (6) 0.0039 (5) 0.0028 (6)

Geometric parameters (Å, º)

O2—C11 1.2211 (16) C1—C14 1.338 (2)

O1—C4 1.2189 (16) C1—C2 1.520 (2)

C5—C4 1.5135 (19) C1—H1 0.964 (17)

C5—C10 1.5586 (18) C8—C7 1.336 (2)

C5—C6 1.5798 (19) C8—H8 0.967 (17)

C5—H5 0.994 (15) C2—C15 1.545 (2)

C3—C4 1.5133 (18) C2—H2 0.993 (15)

C3—C2 1.5621 (19) C14—C13 1.522 (2)

C3—C12 1.5650 (18) C14—H14 0.981 (18)

C3—H3 0.975 (17) C6—C7 1.513 (2)

C9—C8 1.515 (2) C6—C16 1.542 (2)

C9—C16 1.5449 (19) C6—H6 0.993 (15)

C9—C10 1.5794 (19) C7—H7 0.974 (17)

C9—H9 1.005 (16) C16—H16A 1.023 (17)

C10—C11 1.5183 (18) C16—H16B 1.010 (17)

C10—H10 0.974 (16) C13—C15 1.540 (2)

C11—C12 1.5115 (19) C13—H13 0.981 (16)

C12—C13 1.5610 (19) C15—H15B 0.999 (16)

C12—H12 0.987 (16) C15—H15A 1.005 (18)

C4—C5—C10 116.42 (10) O1—C4—C3 121.25 (12)

C4—C5—C6 114.05 (11) O1—C4—C5 119.97 (12)

C10—C5—C6 102.59 (10) C3—C4—C5 118.77 (11)

(6)

C10—C5—H5 109.2 (8) C1—C2—C3 106.04 (11)

C6—C5—H5 107.6 (9) C15—C2—C3 100.15 (11)

C4—C3—C2 113.46 (11) C1—C2—H2 117.0 (9)

C4—C3—C12 116.03 (11) C15—C2—H2 118.5 (9)

C2—C3—C12 102.91 (10) C3—C2—H2 112.9 (9)

C4—C3—H3 104.9 (9) C1—C14—C13 107.53 (13)

C2—C3—H3 109.5 (9) C1—C14—H14 127.4 (10)

C12—C3—H3 110.1 (9) C13—C14—H14 124.8 (10)

C8—C9—C16 100.49 (11) C7—C6—C16 100.29 (11)

C8—C9—C10 107.75 (11) C7—C6—C5 107.92 (11)

C16—C9—C10 99.22 (10) C16—C6—C5 99.15 (11)

C8—C9—H9 117.3 (9) C7—C6—H6 115.9 (9)

C16—C9—H9 117.5 (9) C16—C6—H6 118.1 (9)

C10—C9—H9 112.4 (9) C5—C6—H6 113.5 (9)

C11—C10—C5 116.39 (11) C8—C7—C6 107.91 (13)

C11—C10—C9 113.66 (11) C8—C7—H7 128.1 (9)

C5—C10—C9 102.70 (10) C6—C7—H7 123.4 (10)

C11—C10—H10 105.5 (9) C6—C16—C9 93.60 (10)

C5—C10—H10 110.0 (9) C6—C16—H16A 112.6 (9) C9—C10—H10 108.5 (9) C9—C16—H16A 114.0 (9) O2—C11—C12 121.01 (12) C6—C16—H16B 114.4 (10) O2—C11—C10 119.99 (12) C9—C16—H16B 111.9 (9) C12—C11—C10 118.97 (11) H16A—C16—H16B 109.7 (12) C11—C12—C13 113.96 (11) C14—C13—C15 100.33 (12) C11—C12—C3 116.64 (10) C14—C13—C12 106.15 (11) C13—C12—C3 102.62 (11) C15—C13—C12 100.26 (11) C11—C12—H12 104.4 (9) C14—C13—H13 117.1 (10) C13—C12—H12 109.7 (9) C15—C13—H13 119.0 (9) C3—C12—H12 109.5 (9) C12—C13—H13 112.0 (9) C14—C1—C2 107.54 (13) C13—C15—C2 93.94 (11) C14—C1—H1 126.4 (10) C13—C15—H15B 114.9 (9)

C2—C1—H1 125.6 (10) C2—C15—H15B 111.8 (9)

C7—C8—C9 107.23 (12) C13—C15—H15A 113.0 (9)

C7—C8—H8 128.9 (10) C2—C15—H15A 113.2 (9)

C9—C8—H8 123.6 (10) H15B—C15—H15A 109.4 (13)

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, o1178–o1179

Figure

Table 1Selected geometric parameters (A˚ , �).

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical