• No results found

Na4Ni5[(As1−xPx)O4]2[(As2yP2−2y)O7]2 (x = 0 27 and y = 0 295)

N/A
N/A
Protected

Academic year: 2020

Share "Na4Ni5[(As1−xPx)O4]2[(As2yP2−2y)O7]2 (x = 0 27 and y = 0 295)"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2004). E60, i1±i2 DOI: 10.1107/S1600536803027375 Ben Smail and Jouini Na4Ni5[(As0.73P0.27)O4]2[(As0.59P1.41)O7]2

i1

inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Na4Ni5[(As1

ÿx

P

x

)O4]2[(As2

y

P2

ÿ2y

)O7]2

(

x

= 0.27 and

y

= 0.295)

Ridha Ben Smaila,band Tahar Jouinia*

aLaboratoire de MateÂriaux et Cristallochimie,

DeÂpartement de Chimie, Faculte des Sciences de Tunis, 2092 El Manar II, Tunis, Tunisie, and

bInstitut SupeÂrieur des Sciences AppliqueÂes et de

Technologie de GabeÁs, Route de Medenine, 6029 GabeÁs, Tunisie.

Correspondence e-mail: tahar.jouini@fst.rnu.tn

Correspondence e-mail: tahar.jouini@fst.rnu.tn

Correspondence e-mail: tahar.jouini@fst.rnu.tn

Correspondence e-mail: tahar.jouini@fst.rnu.tn

Correspondence e-mail: tahar.jouini@fst.rnu.tn

Key indicators Single-crystal X-ray study T= 293 K

Mean(Ni±O) = 0.003 AÊ Disorder in main residue Rfactor = 0.024 wRfactor = 0.065

Data-to-parameter ratio = 10.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

Crystals of the title compound, tetrasodium pentanickel arsenic±phosphorus (2.64/3.36) docosaoxide, has been grown by a solid-state reaction and characterized by single-crystal X-ray diffraction. The structure is built up from corner- and edge-sharing (AsP)O4 tetrahedra, (AsP)2O7 groups, NiO6

octahedra and Ni2O9 units, giving rise to a polyhedral

connectivity having tunnels running along the [001] direction. It is isostructural with Na4Ni5(PO4)2(P2O7)2.

Comment

Phosphate and arsenate inorganic materials offer a consider-able variety of structures, giving rise to various potential applications. In the course of our investigations of the Na2O±

NiO±As2O5and K2O±NiO±As2O5ternary systems, in a search

for new materials likely to exhibit interesting magnetic or ionic conductivity properties, we have previously isolated four compounds: NaNi4(AsO4)3 (Ben Smail et al., 2002),

Na4Ni7(AsO4)6 (Ben Smailet al., 2004), K4Ni7(AsO4)6(Ben

Smail et al., 1999) and K3Ni(AsO4)(As2O7) (Ben Smail &

Jouini, 2000). Recently, during our investigation of the Na2O±

NiO±As2O5±P2O5 quaternary system, two compounds have

been isolated in the same preparation: Na3Ni2(As0.1P0.9

)-O4(As1.3P0.7)O7 (Ben Smail & Jouini, 2004) and Na4Ni5

-[(As0.73,P0.27)O4]2[(As0.59,P1.41)O7]2.

This paper reports the crystal structure of the latter compound. The asymmetric unit is illustrated in Fig. 1. This structure is isomorphous with that of Na4Ni5(PO4)2(P2O7)2

(Sanz et al., 1999). The structures of these compounds have channels running along c, in which alkali metal ions are

Received 18 November 2003 Accepted 28 November 2003 Online 12 December 2003

Figure 1

(2)

located (Fig. 2). This solid solution phase differs from the phosphate-limiting phase Na4Ni5(PO4)2(P2O7)2 by the

split-ting of Na2 over two distinct sites (Na2 and Na20) separated by

0.82 (4) AÊ.

Bond valence calculations (Brown & Shannon, 1973; Brown & Altermatt, 1985) con®rm the experimentally determined occupancies: 0.79 from bond valences (cf. 0.75 from X-ray experiment) for P1, 0.67 (cf.0.66) for P2 and 0.21 (cf.0.27) for P3.

This structure is determined with lowerR= 0.0241 andwR= 0.0653 values than the isotypic phosphate structure form,R= 0.0608 andwR= 0.1693.

Experimental

The preparation of the title compound is described elsewhere (Ben Smail & Jouini, 2004).

Crystal data

Na4Ni5[(As0.73P0.27)O4]2

-[(As0.59P1.41)O7]2

Mr= 1039.26

Monoclinic,P21=a

a= 10.676 (2) AÊ b= 6.716 (1) AÊ c= 12.812 (2) AÊ = 103.77 (1) V= 892.2 (3) AÊ3

Z= 2

Dx= 3.868 Mg mÿ3

MoKradiation Cell parameters from 25

re¯ections = 10.4±15 = 10.56 mmÿ1

T= 293 (2) K Parallelepiped, brown 0.200.080.02 mm

Data collection Enraf±Nonius CAD-4

diffractometer !/2scans

Absorption correction: scan (Northet al., 1968) Tmin= 0.368,Tmax= 0.784

2051 measured re¯ections 1942 independent re¯ections 1672 re¯ections withI> 2(I)

Rint= 0.012

max= 27.0

h= 0!13 k= 0!8 l=ÿ16!15 2 standard re¯ections

frequency: 120 min intensity decay: 1.0%

Re®nement Re®nement onF2

R[F2> 2(F2)] = 0.024

wR(F2) = 0.065

S= 1.10 1942 re¯ections 187 parameters

w= 1/[2(F

o2) + (0.0309P)2

+ 1.9015P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.032

max= 0.61 e AÊÿ3

min=ÿ0.72 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0013 (2)

Table 1

Selected geometric parameters (AÊ).

As/P1ÐO8i 1.528 (3)

As/P1ÐO9ii 1.554 (3)

As/P1ÐO6iii 1.555 (3)

As/P1ÐO11 1.666 (3)

As/P2ÐO10iv 1.556 (3)

As/P2ÐO2v 1.583 (3)

As/P2ÐO7vi 1.587 (3)

As/P2ÐO11iv 1.644 (3)

As/P3ÐO4 1.633 (3)

As/P3ÐO3ii 1.642 (3)

As/P3ÐO1 1.677 (3)

As/P3ÐO5ii 1.682 (3)

Na1ÐO6vii 2.287 (3)

Na1ÐO8v 2.364 (4)

Na1ÐO7v 2.366 (3)

Na1ÐO4iv 2.456 (3)

Na1ÐO11iv 2.523 (4)

Na1ÐO2v 2.805 (3)

Na1ÐO9iv 2.968 (4)

Symmetry codes: (i)x;y;1‡z; (ii)xÿ1

2;12ÿy;z; (iii)xÿ1;y;z; (iv) 1ÿx;ÿy;1ÿz;

(v)1

2‡x;12ÿy;z; (vi) 1‡x;y;z; (vii)32ÿx;yÿ12;1ÿz.

The occupation factors of the As/P atoms in the tetrahedral sites have been re®ned, the sum of the occupation factors being ®xed at 1.0. Pairs of atoms at the same site were given the same coordinates and atomic displacement parameters. A residual Fourier peak (2.6 e AÊÿ3) still remained close to the Na2 site. It was re®ned as an

alternative sodium position, the re®nement of the occupancy factors of the neighboring Na+ cations leading to a small improvement of

reliability factors. Consequently, the Na2 sodium atom has been split into two positions (Na2 and Na20), with different occupancies. They

are separated by 0.82 (4) AÊ.

Data collection:CAD-4EXPRESS(Duisenberg, 1992; MacõÂcÏek & Yordanov, 1992); cell re®nement:CAD-4EXPRESS; data reduction:

XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve struc-ture:SHELXS97 (Sheldrick, 1990); program(s) used to re®ne struc-ture:SHELXL97 (Sheldrick, 1997); molecular graphics:DIAMOND

(Brandenburg, 1998); software used to prepare material for

publi-cation:SHELXL97.

References

Ben Smail, R., Driss, A. & Jouini, T. (1999).Acta Cryst.C55, 284±286. Ben Smail, R. & Jouini, T. (2000).Acta Cryst.C56, 513±514. Ben Smail, R. & Jouini, T. (2004).Ann. Chim. Sci. Mat.Accepted. Ben Smail, R., Touati, A. & Jouini, T. (2004). In preparation.

Ben Smail, R., Zid, M. F. & Jouini, T. (2002).J. Soc. Chim. Tunisie,4, 1655± 1673.

Brandenburg, K. (1998). DIAMOND. Version 2.0. University of Bonn, Germany.

Brown, I. D. & Altermatt, D. (1985).Acta Cryst.B41, 244±247. Brown, I. D. & Shannon, R. D.. (1973).Acta Cryst.A29, 266±282. Duisenberg, A. J. M. (1992).J. Appl. Cryst.25, 92±96.

Harms, K. & Wocadlo, S. (1995).XCAD4. University of Marburg, Marburg, Germany.

MacõÂcÏek, J. & Yordanov, A. (1992).J. Appl. Cryst.25, 73±80.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351± 359.

Sanz, F., Parade, C., Rojo, J. M. & Ruiz-Valero, C. (1999).Chem. Mater.11, 2673±2679.

Sheldrick, G. M. (1990).Acta Cryst.A46, 467±473.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany.

Figure 2

(3)

supporting information

sup-1

Acta Cryst. (2004). E60, i1–i2

supporting information

Acta Cryst. (2004). E60, i1–i2 [https://doi.org/10.1107/S1600536803027375]

Na

4

Ni

5

[(As

1−x

P

x

)O

4

]

2

[(As

2y

P

2−2y

)O

7

]

2

(

x

= 0.27 and

y

= 0.295)

Ridha Ben Smail and Tahar Jouini

tetrasodium pentanickel arsenic-phosphorus (2.67/3.35) twentytwooxide

Crystal data

Na4Ni5[(As0.73·P0.27)O4]2[(As0.59·P1.41)O7]2 Mr = 1039.26

Monoclinic, P21/a Hall symbol: -P 2yab a = 10.676 (2) Å b = 6.716 (1) Å c = 12.812 (2) Å β = 103.77 (1)° V = 892.2 (3) Å3 Z = 2

F(000) = 995 Dx = 3.868 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections θ = 10.4–15°

µ = 10.56 mm−1 T = 293 K

Parallelepiped, brown 0.20 × 0.08 × 0.02 mm

Data collection Enraf-Nonius CAD-4

diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω/2θ scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.368, Tmax = 0.784 2051 measured reflections

1942 independent reflections 1672 reflections with I > 2σ(I) Rint = 0.012

θmax = 27.0°, θmin = 3.3° h = 0→13

k = 0→8 l = −16→15

2 standard reflections every 120 min intensity decay: 1.0%

Refinement Refinement on F2 R[F2 > 2σ(F2)] = 0.024 wR(F2) = 0.065 S = 1.10 1942 reflections 187 parameters 4 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

w = 1/[σ2(F

o2) + (0.0309P)2 + 1.9015P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.032 Δρmax = 0.61 e Å−3 Δρmin = −0.72 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0013 (2)

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1) Ni1 0.0000 0.0000 0.5000 0.00915 (17)

Ni2 0.19757 (5) 0.01111 (8) 0.16483 (4) 0.01275 (15) Ni3 0.21707 (5) 0.23704 (7) 0.36451 (4) 0.00782 (14)

As1 0.08907 (7) 0.20966 (11) 0.91873 (6) 0.0093 (3) 0.25 (1) P1 0.08907 (7) 0.20966 (11) 0.91873 (6) 0.0093 (3) 0.75 (2) As2 0.93149 (6) 0.10195 (10) 0.24501 (5) 0.0071 (2) 0.34 (1) P2 0.93149 (6) 0.10195 (10) 0.24501 (5) 0.0071 (2) 0.66 (2) As3 0.27348 (4) 0.23408 (7) 0.58506 (4) 0.00626 (17) 0.73 (1) P3 0.27348 (4) 0.23408 (7) 0.58506 (4) 0.00626 (17) 0.27 (2) Na1 0.62987 (19) 0.0226 (3) 0.14797 (15) 0.0220 (4)

Na2 0.5442 (3) 0.0767 (7) 0.6627 (7) 0.0311 (14) 0.84 (2) Na2′ 0.5314 (17) 0.018 (4) 0.605 (4) 0.030 (8) 0.16 (2) O1 0.1336 (3) 0.2085 (4) 0.4930 (2) 0.0100 (6)

O2 0.3311 (3) 0.2314 (4) 0.2571 (2) 0.0114 (6) O3 0.7598 (3) 0.0742 (4) 0.6610 (2) 0.0120 (6) O4 0.3262 (3) 0.0379 (4) 0.6576 (2) 0.0121 (6) O5 0.8679 (3) 0.2285 (4) 0.4989 (2) 0.0103 (6) O6 0.9392 (3) 0.2021 (4) 0.8880 (3) 0.0178 (7) O7 0.0633 (3) 0.1958 (4) 0.2318 (2) 0.0120 (6) O8 0.1514 (3) 0.2014 (5) 0.0391 (2) 0.0188 (7) O9 0.6368 (3) 0.1135 (5) 0.8602 (3) 0.0219 (7) O10 0.0479 (3) 0.0556 (5) 0.6634 (2) 0.0136 (6) O11 0.1402 (3) 0.0038 (4) 0.8694 (2) 0.0139 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3

Acta Cryst. (2004). E60, i1–i2

O2 0.0132 (14) 0.0095 (14) 0.0130 (14) −0.0028 (11) 0.0061 (11) −0.0003 (11) O3 0.0138 (14) 0.0097 (13) 0.0128 (14) 0.0025 (12) 0.0037 (11) −0.0007 (12) O4 0.0143 (14) 0.0085 (14) 0.0138 (14) −0.0009 (11) 0.0037 (12) −0.0018 (11) O5 0.0102 (13) 0.0124 (14) 0.0080 (13) 0.0017 (11) 0.0019 (11) 0.0015 (11) O6 0.0168 (15) 0.0133 (15) 0.0216 (16) −0.0010 (12) 0.0010 (13) −0.0019 (12) O7 0.0108 (14) 0.0119 (14) 0.0130 (14) 0.0002 (11) 0.0023 (11) 0.0013 (11) O8 0.0233 (17) 0.0178 (16) 0.0143 (15) −0.0001 (13) 0.0029 (13) 0.0017 (12) O9 0.0254 (17) 0.0162 (16) 0.0238 (17) 0.0069 (14) 0.0051 (14) −0.0036 (13) O10 0.0128 (14) 0.0170 (15) 0.0105 (13) 0.0004 (12) 0.0017 (11) 0.0013 (12) O11 0.0121 (14) 0.0156 (15) 0.0146 (14) 0.0048 (12) 0.0041 (12) −0.0025 (12)

Geometric parameters (Å, º)

Ni1—O1i 2.016 (3) As/P3—O4 1.633 (3) Ni1—O1 2.016 (3) As/P3—O3iv 1.642 (3) Ni1—O10 2.068 (3) As/P3—O1 1.677 (3) Ni1—O10i 2.068 (3) As/P3—O5iv 1.682 (3) Ni1—O5ii 2.082 (3) Na1—O6ix 2.287 (3) Ni1—O5iii 2.082 (3) Na1—O8vii 2.364 (4) Ni2—O8 2.023 (3) Na1—O7vii 2.366 (3) Ni2—O6iii 2.042 (3) Na1—O4iii 2.456 (3) Ni2—O9iii 2.049 (3) Na1—O11iii 2.523 (4) Ni2—O2 2.195 (3) Na1—O2vii 2.805 (3) Ni2—O7 2.217 (3) Na1—O9iii 2.968 (4) Ni2—O3iii 2.243 (3) Na2—O3 2.307 (4) Ni3—O2 2.042 (3) Na2—O4 2.327 (4) Ni3—O1 2.059 (3) Na2—O10vii 2.469 (6) Ni3—O5iv 2.071 (3) Na2—O9 2.501 (9) Ni3—O4v 2.077 (3) Na2—O2iii 2.542 (4) Ni3—O7 2.081 (3) Na2—O5iv 2.789 (5) Ni3—O3iii 2.139 (3) Na2—O1vii 2.951 (6) As/P1—O8vi 1.528 (3) Na2′—O3 2.40 (2) As/P1—O9iv 1.554 (3) Na2′—O4 2.444 (18) As/P1—O6ii 1.555 (3) Na2′—O5iv 2.580 (15) As/P1—O11 1.666 (3) Na2′—O2iii 2.619 (19) As/P2—O10iii 1.556 (3) Na2′—O1vii 2.713 (16) As/P2—O2vii 1.583 (3) Na2′—O5ix 2.72 (4) As/P2—O7viii 1.587 (3) Na2′—O1x 2.82 (4) As/P2—O11iii 1.644 (3) Na2′—O10vii 2.95 (4)

(6)

O10—Ni1—O5ii 82.99 (11) O2—Ni3—O3iii 76.70 (11) O10i—Ni1—O5ii 97.01 (11) O1—Ni3—O3iii 96.83 (11) O1i—Ni1—O5iii 88.45 (11) O5iv—Ni3—O3iii 98.11 (11) O1—Ni1—O5iii 91.55 (11) O4v—Ni3—O3iii 163.68 (11) O10—Ni1—O5iii 97.01 (11) O7—Ni3—O3iii 80.92 (11) O10i—Ni1—O5iii 82.99 (11) O8vi—As/P1—O9iv 113.61 (18) O5ii—Ni1—O5iii 180.000 (1) O8vi—As/P1—O6ii 115.41 (18) O8—Ni2—O6iii 99.18 (13) O9iv—As/P1—O6ii 109.80 (17) O8—Ni2—O9iii 100.89 (13) O8vi—As/P1—O11 104.45 (16) O6iii—Ni2—O9iii 103.71 (13) O9iv—As/P1—O11 106.07 (16) O8—Ni2—O2 90.41 (12) O6ii—As/P1—O11 106.69 (16) O6iii—Ni2—O2 166.58 (12) O10iii—As/P2—O2vii 112.59 (15) O9iii—Ni2—O2 83.45 (12) O10iii—As/P2—O7viii 112.37 (15) O8—Ni2—O7 84.12 (12) O2vii—As/P2—O7viii 111.60 (15) O6iii—Ni2—O7 92.49 (12) O10iii—As/P2—O11iii 109.30 (16) O9iii—Ni2—O7 161.90 (12) O2vii—As/P2—O11iii 102.14 (15) O2—Ni2—O7 79.10 (11) O7viii—As/P2—O11iii 108.24 (15) O8—Ni2—O3iii 155.06 (12) O4—As/P3—O3iv 111.25 (14) O6iii—Ni2—O3iii 96.33 (12) O4—As/P3—O1 116.50 (14) O9iii—Ni2—O3iii 94.21 (12) O3iv—As/P3—O1 107.91 (14) O2—Ni2—O3iii 71.59 (10) O4—As/P3—O5iv 108.37 (14) O7—Ni2—O3iii 75.78 (10) O3iv—As/P3—O5iv 115.09 (14) O2—Ni3—O1 167.81 (11) O1—As/P3—O5iv 97.23 (13) O2—Ni3—O5iv 95.28 (11)

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical