• No results found

catena Poly­[[tetra­aqua­zinc(II)] μ 5 sulfosalicyl­ato κ2O:O′]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly­[[tetra­aqua­zinc(II)] μ 5 sulfosalicyl­ato κ2O:O′]"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1286

Elmar Hecht [Zn(C7H4O6S)(H2O)4] DOI: 10.1107/S1600536804020070 Acta Cryst.(2004). E60, m1286±m1288 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

catena

-Poly[[tetraaquazinc(II)]-

l

-5-sulfo-salicylato-

j

2

O

:

O

000

]

Elmar Hecht³

UniversitaÈt Leipzig, Institut fuÈr Anorganische Chemie, Johannisallee 29, D-04103 Leipzig, Germany

³ Present address: SusTech Darmstadt GmbH & Co KG, Petersenstraûe 20, D-64287 Darmstadt, Germany

Correspondence e-mail: elmar.hecht@sustech.de

Key indicators

Single-crystal X-ray study

T= 213 K

Mean(C±C) = 0.005 AÊ

Rfactor = 0.030

wRfactor = 0.086

Data-to-parameter ratio = 12.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title coordination polymer, [Zn(C7H4O6S)(H2O)4]n, comprises octahedral Zn atoms bonded to two carboxylate O atoms of the acid ligands and four water molecules. The zinc(II) ions are bridged by carboxylate moieties, creating a one-dimensional chain structure. The ZnÐO bond distances lie in the range 2.074 (3)±2.118 (3) AÊ. The water molecules are involved in hydrogen bonds.

Comment

Coordination polymers have attracted considerable attention, due not only to their fascinating structural diversity but also to their potential applications. 5-Sulfosalicylic acid, which is known as a ¯exible multidentate ligand with versatile binding ability, is widely used as a chelating ligand for the analysis of different metal ions in solution. The structures of several divalent metal complexes with carboxylic acid ligands have been reported (e.g.van Albadaet al., 2004; Gaoet al., 2004; Yanget al., 2003).

In the title compound, (I) (Fig. 1), the Zn atom adopts an octahedral geometry, formed by two O atoms of the bridging carboxylate ligand [ZnÐO = 2.118 (3) and 2.076 (3) AÊ] and four O atoms of coordinated water molecules [ZnÐO = 2.061 (3)±2.140 (3) AÊ] (Table 1). As a result of the bridging effect of the carboxylate groups, one-dimensional polymeric chains are formed, which may be considered as the main structural feature of (I). The crystal packing of (I) is stabilized by intricate intermolecular hydrogen bonding between the water molecules and the O atoms of the SO3moieties, with O O distances in the range 2.714 (3)±3.078 (3) AÊ (Table 2 and Fig. 2).

Experimental

The title compound, (I), was prepared by a procedure analogous to that of Gaoet al.(2004) by reaction of equimolar amounts (10 mmol) of zinc acetate dihydrate with 5-sulfosalicylic acid in acetone to yield a colourless precipitate. The resulting solid was collected and driedin vacuo. Suitable crystals were obtained by evaporation of a water solution. Analysis calculated for C7H12O10SZn: C 23.80, H 3.39, Zn 18.41%; found: C 24.01, H 3.56, Zn 18.28%.

(2)

Crystal data

[Zn(C7H4O6S)(H2O)4]

Mr= 353.60

Monoclinic,Cc a= 10.454 (6) AÊ

b= 16.192 (6) AÊ

c= 7.0777 (14) AÊ

= 94.47 (5) V= 1194.4 (9) AÊ3

Z= 4

Dx= 1.966 Mg mÿ3

MoKradiation Cell parameters from 2444

re¯ections

= 2±28

= 2.28 mmÿ1

T= 213 (2) K Block, colourless 0.400.300.20 mm

Data collection

Bruker SMART CCD diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.445,Tmax= 0.634

3595 measured re¯ections

2444 independent re¯ections 2424 re¯ections withI> 2(I)

Rint= 0.039 max= 28.3

h=ÿ13!13

k=ÿ21!18

l=ÿ9!9

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.030

wR(F2) = 0.086

S= 1.09 2444 re¯ections 201 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.064P)2

+ 1.0831P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.039

max= 0.90 e AÊÿ3

min=ÿ0.72 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0101 (9) Absolute structure: Flack (1983),

982 Friedel pairs Flack parameter = 0.068 (11)

Table 1

Selected geometric parameters (AÊ,).

Zn1ÐO1 2.061 (3) Zn1ÐO2 2.140 (3) Zn1ÐO3 2.074 (3) Zn1ÐO4 2.098 (3) Zn1ÐO5i 2.118 (3)

Zn1ÐO6 2.076 (3) S1ÐO8 1.461 (2) S1ÐO9 1.460 (3) S1ÐO10 1.461 (2) Zn1ÐO5ii 2.118 (3)

O1ÐZn1ÐO3 91.22 (11) O1ÐZn1ÐO6 84.06 (11) O3ÐZn1ÐO6 175.22 (10) O1ÐZn1ÐO4 178.75 (12) O3ÐZn1ÐO4 90.03 (10) O6ÐZn1ÐO4 94.69 (10) O1ÐZn1ÐO5ii 91.59 (11)

O3ÐZn1ÐO5ii 84.19 (10)

O6ÐZn1ÐO5ii 96.61 (9)

O4ÐZn1ÐO5ii 88.51 (10)

O1ÐZn1ÐO2 95.74 (11) O3ÐZn1ÐO2 93.61 (10) O6ÐZn1ÐO2 86.19 (10) O4ÐZn1ÐO2 84.21 (10) O5iiÐZn1ÐO2 172.39 (9)

Symmetry codes: (i)x;ÿy;1

2‡z; (ii)x;ÿy;zÿ12.

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O7ÐH7 O6 0.83 1.88 2.600 (4) 145 O4ÐH4B O5 0.84 (3) 2.09 (4) 2.820 (4) 145 (3)

The O2±O4 water H atoms were initially located in a difference Fourier map, but were included in the re®nement with OÐH distances restrained to 0.85 (2) AÊ and H H distances restrained to 1.37 (2) AÊ. The H atoms of O1 were located in a difference Fourier map and freely re®ned. The H atom on O7 was placed in its geometrically idealized position. All aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with CÐH distances of 0.94 AÊ andUiso(H) = 1.2Ueq(C).

Data collection:SMART(Bruker, 2000); cell re®nement:SAINT

(Bruker, 2000); data reduction:SAINT; program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEP-3 (Farrugia, 1997); software used to prepare material for publication:SHELXL97 andPLATON(Spek, 2001).

Financial support from Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

Albada, G. A. van, Mohamadou, A., Mutikainen, I., Tureinen, U. & Reedijk, J. (2004).Acta Cryst.E60, m1160±m1162.

metal-organic papers

Acta Cryst.(2004). E60, m1286±m1288 Elmar Hecht [Zn(C7H4O6S)(H2O)4]

m1287

Figure 1

View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

(3)

Bruker (2000).SMARTandSAINT.Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Flack, H. D. (1983).Acta Cryst.A39, 876±881.

Gao, S., Li, J. R., Liu, J. W. & Li, L. H. (2004). Acta Cryst.E60, m140± m141.

Sheldrick, G. M. (1996).SADABS.University of GoÈttingen, Germany. Sheldrick, G. M. (1997). SHELXL97 and SHELXL97. University of

GoÈttingen, Germany.

Spek, A. L. (2001).PLATON.University of Utrecht, The Netherlands. Yang, Y. Y., Szeto, L. & Wong, W. T. (2003).Appl. Organomet. Chem.17, 958±

959.

metal-organic papers

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, m1286–m1288

supporting information

Acta Cryst. (2004). E60, m1286–m1288 [https://doi.org/10.1107/S1600536804020070]

catena

-Poly[[tetraaquazinc(II)]-

µ

-5-sulfosalicylato-

κ

2

O

:

O

]

Elmar Hecht

catena-Poly[[tetraaquazinc(II)]-µ-5-sulfosalicylato-κ2O:O′]

Crystal data

[Zn(C7H4O6S)(H2O)4] Mr = 353.60

Monoclinic, Cc Hall symbol: C -2yc a = 10.454 (6) Å b = 16.192 (6) Å c = 7.0777 (14) Å β = 94.47 (5)° V = 1194.4 (9) Å3 Z = 4

F(000) = 720 Dx = 1.966 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2444 reflections θ = 2–28°

µ = 2.28 mm−1 T = 213 K

Platelett, colourless 0.40 × 0.30 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.445, Tmax = 0.634

3595 measured reflections 2444 independent reflections 2424 reflections with I > 2σ(I) Rint = 0.039

θmax = 28.3°, θmin = 2.3° h = −13→13

k = −21→18 l = −9→9

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.030 wR(F2) = 0.086 S = 1.09 2444 reflections 201 parameters 11 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(Fo2) + (0.064P)2 + 1.0831P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.039 Δρmax = 0.90 e Å−3 Δρmin = −0.72 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0101 (9)

Absolute structure: Flack (1983), 982 Friedel pairs

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, m1286–m1288

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.8993 (3) 0.0641 (2) 0.9178 (5) 0.0189 (6)

C2 1.0251 (4) 0.05435 (19) 0.9989 (5) 0.0199 (6)

H2 1.0753 0.1010 1.0320 0.025 (7)*

C3 1.0753 (3) −0.0241 (2) 1.0302 (5) 0.0190 (6)

H3 1.1603 −0.0309 1.0817 0.025 (7)*

C4 0.9988 (3) −0.09300 (19) 0.9848 (5) 0.0159 (6)

C5 0.8732 (3) −0.08435 (19) 0.9106 (4) 0.0160 (5)

H5 0.8222 −0.1314 0.8837 0.025 (7)*

C6 0.8222 (3) −0.00566 (18) 0.8759 (5) 0.0164 (5)

C7 0.6876 (3) 0.0028 (2) 0.7891 (4) 0.0171 (6)

O1 0.6162 (3) 0.21543 (15) 0.5101 (4) 0.0251 (5)

O2 0.3990 (2) 0.13943 (16) 0.7324 (3) 0.0219 (5)

O3 0.3848 (2) 0.14829 (15) 0.2976 (4) 0.0228 (5)

O4 0.4175 (3) −0.00690 (15) 0.5146 (4) 0.0240 (5)

O5 0.6148 (2) −0.05955 (14) 0.7819 (4) 0.0209 (5)

O6 0.6541 (2) 0.07308 (14) 0.7240 (4) 0.0201 (5)

O7 0.8584 (2) 0.14191 (15) 0.8876 (4) 0.0269 (5)

H7 0.7866 0.1413 0.8286 0.051 (17)*

O8 0.9648 (3) −0.25191 (14) 1.0153 (4) 0.0200 (4)

O9 1.1449 (2) −0.20373 (15) 0.8518 (3) 0.0225 (5)

O10 1.1489 (2) −0.18956 (15) 1.1916 (3) 0.0203 (5)

S1 1.06835 (7) −0.19135 (5) 1.01339 (10) 0.01541 (17)

Zn1 0.51628 (3) 0.105750 (19) 0.51007 (4) 0.01690 (13)

H1A 0.612 (6) 0.241 (4) 0.612 (9) 0.042*

H1B 0.617 (6) 0.241 (4) 0.418 (8) 0.036*

H2A 0.322 (2) 0.155 (3) 0.711 (6) 0.027*

H2B 0.434 (4) 0.174 (3) 0.811 (6) 0.034*

H3A 0.310 (2) 0.160 (3) 0.328 (6) 0.023*

H3B 0.413 (4) 0.186 (3) 0.235 (7) 0.046*

H4A 0.403 (6) −0.036 (3) 0.417 (4) 0.042*

H4B 0.450 (4) −0.037 (2) 0.602 (4) 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, m1286–m1288

C2 0.0205 (13) 0.0172 (13) 0.0216 (14) −0.0021 (12) −0.0015 (11) 0.0000 (13)

C3 0.0160 (13) 0.0224 (16) 0.0180 (14) −0.0035 (12) −0.0025 (11) 0.0019 (13)

C4 0.0175 (16) 0.0150 (12) 0.0152 (16) 0.0003 (10) 0.0008 (12) 0.0001 (11)

C5 0.0161 (12) 0.0164 (13) 0.0154 (14) −0.0019 (10) 0.0007 (10) 0.0007 (11)

C6 0.0150 (12) 0.0162 (13) 0.0179 (13) −0.0002 (10) 0.0007 (10) 0.0015 (11)

C7 0.0157 (12) 0.0201 (14) 0.0155 (14) 0.0012 (10) 0.0015 (10) −0.0006 (11)

O1 0.0390 (13) 0.0155 (11) 0.0204 (11) −0.0052 (10) −0.0007 (11) 0.0010 (10)

O2 0.0188 (10) 0.0246 (12) 0.0216 (11) 0.0012 (8) −0.0023 (9) −0.0045 (9)

O3 0.0205 (11) 0.0229 (12) 0.0251 (12) 0.0056 (8) 0.0014 (9) 0.0079 (9)

O4 0.0313 (13) 0.0195 (11) 0.0208 (12) −0.0025 (9) −0.0014 (10) −0.0001 (9)

O5 0.0170 (10) 0.0203 (11) 0.0249 (11) −0.0023 (8) −0.0002 (8) 0.0042 (9)

O6 0.0197 (10) 0.0176 (11) 0.0223 (11) 0.0021 (8) −0.0023 (9) 0.0021 (9)

O7 0.0257 (11) 0.0145 (11) 0.0390 (15) 0.0003 (8) −0.0076 (10) 0.0032 (10)

O8 0.0209 (9) 0.0162 (11) 0.0225 (11) −0.0041 (8) −0.0011 (8) −0.0011 (9)

O9 0.0213 (10) 0.0254 (12) 0.0210 (11) −0.0005 (8) 0.0030 (9) −0.0041 (9)

O10 0.0200 (10) 0.0233 (12) 0.0168 (10) 0.0006 (8) −0.0034 (8) 0.0029 (9)

S1 0.0145 (3) 0.0156 (4) 0.0158 (3) −0.0001 (3) −0.0009 (2) 0.0007 (3)

Zn1 0.01680 (17) 0.01509 (18) 0.01845 (18) 0.00086 (16) −0.00085 (11) 0.00049 (13)

Geometric parameters (Å, º)

C1—O7 1.343 (4) O2—Zn1 2.140 (3)

C1—C2 1.402 (5) O2—H2A 0.85 (3)

C1—C6 1.406 (4) O2—H2B 0.85 (5)

C2—C3 1.386 (5) O3—Zn1 2.074 (3)

C2—H2 0.9400 O3—H3A 0.85 (3)

C3—C4 1.395 (4) O3—H3B 0.82 (5)

C3—H3 0.9400 O4—Zn1 2.098 (3)

C4—C5 1.383 (4) O4—H4A 0.84 (4)

C4—S1 1.756 (3) O4—H4B 0.84 (3)

C5—C6 1.396 (4) O5—Zn1i 2.118 (3)

C5—H5 0.9400 O6—Zn1 2.076 (3)

C6—C7 1.497 (4) O7—H7 0.8300

C7—O5 1.264 (4) O8—S1 1.461 (2)

C7—O6 1.267 (4) O9—S1 1.460 (3)

O1—Zn1 2.061 (3) O10—S1 1.461 (2)

O1—H1A 0.84 (7) Zn1—O5ii 2.118 (3)

O1—H1B 0.77 (6)

O7—C1—C2 116.6 (3) H3A—O3—H3B 110 (3)

O7—C1—C6 123.4 (3) Zn1—O4—H4A 122 (4)

C2—C1—C6 120.0 (3) Zn1—O4—H4B 110 (3)

C3—C2—C1 120.0 (3) H4A—O4—H4B 109 (3)

C3—C2—H2 120.0 C7—O5—Zn1i 125.4 (2)

C1—C2—H2 120.0 C7—O6—Zn1 130.6 (2)

C2—C3—C4 119.5 (3) C1—O7—H7 109.5

C2—C3—H3 120.2 O9—S1—O10 111.41 (14)

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, m1286–m1288

C5—C4—C3 121.1 (3) O10—S1—O8 112.47 (15)

C5—C4—S1 120.5 (3) O9—S1—C4 106.37 (16)

C3—C4—S1 118.3 (2) O10—S1—C4 106.67 (15)

C4—C5—C6 119.8 (3) O8—S1—C4 108.02 (15)

C4—C5—H5 120.1 O1—Zn1—O3 91.22 (11)

C6—C5—H5 120.1 O1—Zn1—O6 84.06 (11)

C5—C6—C1 119.4 (3) O3—Zn1—O6 175.22 (10)

C5—C6—C7 119.3 (3) O1—Zn1—O4 178.75 (12)

C1—C6—C7 121.2 (3) O3—Zn1—O4 90.03 (10)

O5—C7—O6 123.7 (3) O6—Zn1—O4 94.69 (10)

O5—C7—C6 119.2 (3) O1—Zn1—O5ii 91.59 (11)

O6—C7—C6 117.2 (3) O3—Zn1—O5ii 84.19 (10)

Zn1—O1—H1A 111 (4) O6—Zn1—O5ii 96.61 (9)

Zn1—O1—H1B 120 (4) O4—Zn1—O5ii 88.51 (10)

H1A—O1—H1B 119 (5) O1—Zn1—O2 95.74 (11)

Zn1—O2—H2A 122 (3) O3—Zn1—O2 93.61 (10)

Zn1—O2—H2B 114 (3) O6—Zn1—O2 86.19 (10)

H2A—O2—H2B 106 (3) O4—Zn1—O2 84.21 (10)

Zn1—O3—H3A 118 (3) O5ii—Zn1—O2 172.39 (9)

Zn1—O3—H3B 113 (4)

O7—C1—C2—C3 −178.5 (3) C1—C6—C7—O6 12.4 (5)

C6—C1—C2—C3 2.8 (5) O6—C7—O5—Zn1i −101.6 (3)

C1—C2—C3—C4 −1.6 (6) C6—C7—O5—Zn1i 79.5 (3)

C2—C3—C4—C5 −0.6 (5) O5—C7—O6—Zn1 −25.9 (5)

C2—C3—C4—S1 176.3 (3) C6—C7—O6—Zn1 153.1 (2)

C3—C4—C5—C6 1.5 (5) C5—C4—S1—O9 99.4 (3)

S1—C4—C5—C6 −175.3 (3) C3—C4—S1—O9 −77.5 (3)

C4—C5—C6—C1 −0.3 (5) C5—C4—S1—O10 −141.5 (3)

C4—C5—C6—C7 177.8 (3) C3—C4—S1—O10 41.5 (3)

O7—C1—C6—C5 179.5 (3) C5—C4—S1—O8 −20.4 (3)

C2—C1—C6—C5 −1.8 (5) C3—C4—S1—O8 162.6 (3)

O7—C1—C6—C7 1.4 (5) C7—O6—Zn1—O1 −161.4 (3)

C2—C1—C6—C7 −179.9 (3) C7—O6—Zn1—O4 18.6 (3)

C5—C6—C7—O5 13.3 (4) C7—O6—Zn1—O5ii −70.5 (3)

C1—C6—C7—O5 −168.6 (3) C7—O6—Zn1—O2 102.4 (3)

C5—C6—C7—O6 −165.7 (3)

Symmetry codes: (i) x, −y, z+1/2; (ii) x, −y, z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O7—H7···O6 0.83 1.88 2.600 (4) 145

References

Related documents

In the recipe data, we find that sentences often con- tain both refinement and background segments: “[ I used a slow cooker with this recipe and ] [it turned out great!]”

We describe the environment and components, the metrics that can be used for the evaluation of pedes- trian route instruction-giving systems, and the shared challenge which is

Above study shows that Levobupivacaine is a safe alternative to Bupivacaine for patients undergoing lower limb vascular surgery, with epidural block

The simplest of our generative phrase models esti- mates phrase translation probabilities by their rel- ative frequencies in the Viterbi alignment of the data, similar to the

Specifically, our research examines the impact of perceived power differential on the strategies and the results of negotiations in a situation of power asymmetry between public

“The Japan Municipal Bond Yield Curve: 2002 to the Present.” International Journal of Economics and Finance, 8 (2016, forthcoming). “Comparative Analysis of Zero Coupon

The output of the word alignment systems (GIZA++ or ITG) were fed to a standard phrase extraction procedure that extracted all phrases of length up to 7 and esti- mated the

In addition, all knowledge sources we used in the core perceptron and the outside-layer linear model come from the training corpus, whereas many open knowl- edge sources (lexicon