Bis[(1,4,7,10,13,16 hexa­oxa­cyclo­octa­decane)­potassium] carbonyl­tri­cyano­rhodate(I) aceto­nitrile solvate

12 

(1)metal-organic papers Bis[(1,4,7,10,13,16-hexaoxacyclooctadecane)potassium] carbonyltricyanorhodate(I) acetonitrile solvate. Acta Crystallographica Section E. Structure Reports Online ISSN 1600-5368. Curtis M. Whaley, Thomas B. Rauchfuss and Scott R. Wilson* University of Illinois, School of Chemical Sciences, Box 59-1, 505 South Mathews Avenue, Urbana, Illinois 61801, USA Correspondence e-mail: srwilson@uiuc.edu. In the title complex, [K(C12H24)]2[Rh(CN)3(CO)]C2H3N, the Rh atom is coordinated by three cyanide ligands and one carbonyl ligand in a square-planar geometry. The K atom in each cation is coordinated by six O atoms from the crown ether and one N atom from a cyanide ligand.. Received 18 August 2005 Accepted 30 August 2005 Online 7 September 2005. Comment The carbonyltricyanorhodate(I) dianion was first proposed by Jewsbury & Maher (1971) as an intermediate in the preparation of K3[HRh(CN)5] on the basis of visible and IR spectroscopic evidence. The complex, however, was never isolated. We report here the synthesis and structure of the title acetonitrile solvate, (I).. Key indicators Single-crystal X-ray study T = 193 K ˚ Mean (C–C) = 0.004 A R factor = 0.036 wR factor = 0.081 Data-to-parameter ratio = 21.5 For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.. In the title complex, the RhI atom is coordinated in a square-planar geometry by three C atoms of cyanide ligands and one C atom from a carbonyl ligand. Each N atom of two trans cyanide ligands is in close contact [2.741 (2) and ˚ ] with a K atom from the cations. The carbonyl 2.747 (2) A ligand was identified on the basis of its shorter Rh1—C1 bond ˚ for Rh1—C3]. One of the length [1.828 (3) versus 2.051 (3) A trans cyanide ligands is slightly bent, having an Rh1—C2 N2 bond angle of 174.2 (3) . The other trans cyanide ligand is more linear, with an Rh1—C4 N4 bond angle of 177.2 (2) . The K atom of each cation is pulled toward the cyanide N atom and out of the plane of the crown ether.. Experimental. # 2005 International Union of Crystallography Printed in Great Britain – all rights reserved. m1918. Whaley et al.. . A flask charged with [RhCl(cod)]2 (702 mg, 1.42 mmol) in MeCN (25 ml) was purged with CO for approximately 20 min. The resulting orange solution was treated with a solution of [K(18-crown-6)]CN (3.14 g, 9.54 mmol). During addition, the color of the solution changed from clear orange to clear yellow to cloudy blue to cloudy yellow. Addition of diethyl ether (100 ml) resulted in the precipitation of a yellow solid. The solid was isolated by filtration, washed with more diethyl ether and dried under vacuum to yield 2.124 g (92%) of [K(18-crown-6)]2[Rh(CN)3(CO)]. X-ray quality crystals were formed at room temperature by vapor diffusion of diethyl ether into an. [K(C12H24)]2[Rh(CN)3(CO)]C2H3N. doi:10.1107/S1600536805027297. Acta Cryst. (2005). E61, m1918–m1919.

(2) metal-organic papers acetonitrile solution of the product. (CO), acetonitrile: 1959 and 2084 cm1, consistent with the published IR data. Crystal data [K(C12H24)]2[Rh(CN)3(CO)]C2H3N Mr = 856.86 Monoclinic, P21 =c ˚ a = 22.439 (6) A ˚ b = 8.553 (2) A ˚ c = 20.576 (5) A  = 90.178 (4) ˚3 V = 3948.9 (17) A Z=4. Dx = 1.441 Mg m3 Mo K radiation Cell parameters from 949 reflections  = 2.2–26.1  = 0.71 mm1 T = 193 (2) K Tablet, yellow 0.40  0.18  0.10 mm. Data collection Bruker SMART CCD diffractometer ! scans Absorption correction: integration [XPREP in SHELXTL (Bruker, 2001)] Tmin = 0.775, Tmax = 0.935 39007 measured reflections. 9709 independent reflections 7084 reflections with I > 2(I) Rint = 0.039 max = 28.3 h = 29 ! 29 k = 11 ! 11 l = 27 ! 27. Refinement Refinement on F 2 R[F 2 > 2(F 2)] = 0.036 wR(F 2) = 0.081 S = 1.02 9709 reflections 452 parameters H-atom parameters not refined. w = 1/[ 2(Fo2) + (0.0376P)2 + 0.650P] where P = (Fo2 + 2Fc2)/3 (/)max = 0.001 ˚ 3 max = 0.65 e A ˚ 3 min = 0.27 e A. Methyl H-atom positions, R—CH3, were optimized by rotation about R—C bonds with idealized C—H, R—H and H—H distances. The remaining H atoms were included as riding idealized contributors. Methyl Uiso(H) values were assigned as 1.5 times Ueq of the adjacent atom; the remaining Uiso(H) values were assigned as 1.2 times the adjacent Ueq. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude or resolution. Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine. Acta Cryst. (2005). E61, m1918–m1919. Figure 1 SHELXTL (Bruker, 2001) plot showing 35% probability displacement ellipsoids for non-H atoms; H atoms have been omitted for clarity.. structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: CIFTAB in SHELXTL.. The Materials Chemistry Laboratory at the University of Illinois was supported in part by grant No. NSF CHE 95-03145 from the National Science Foundation.. References Bruker (2001). SMART (Version 5.625), SAINT (Version 6.22) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA. Jewsbury, R. A. & Maher, J. P. (1971). J. Chem. Soc. A, pp. 2847–2852.. Whaley et al.. . [K(C12H24)]2[Rh(CN)3(CO)]C2H3N. m1919.

(3) supporting information. supporting information Acta Cryst. (2005). E61, m1918–m1919. [doi:10.1107/S1600536805027297]. Bis[(1,4,7,10,13,16-hexaoxacyclooctadecane)potassium] carbonyltricyanorhodate(I) acetonitrile solvate Curtis M. Whaley, Thomas B. Rauchfuss and Scott R. Wilson S1. Comment The carbonyltricyanorhodate(I) dianion was first proposed by Jewsbury & Maher (1971) as an intermediate in the preparation of K3[HRh(CN)5] on the basis of visible and IR spectroscopic evidence. The complex, however, was never isolated. We report here the synthesis and structure of the title acetonitrile solvate, (I). In the title complex, the RhI atom is coordinated in a square-planar geometry by three C atoms of cyanide ligands and one C atom from a carbonyl ligand. Each N atom of two trans cyanide ligands is in close contact [2.741 (2) and 2.747 (2) Å] with a K atom from the cations. The carbonyl ligand was identified on the basis of its shorter Rh1—C1 bond length [1.828 (3) versus 2.051 (3) Å for Rh1—C3]. One of the trans cyanide ligands is slightly bent, having an Rh1—C2≡N2 bond angle of 174.2 (3)°. The other trans cyanide ligand is more linear, with an Rh1—C4≡N4 bond angle of 177.2 (2)°. The K atom of each cation is pulled toward the cyanide N atom and out of the plane of the crown ether. S2. Experimental A flask charged with [RhCl(cod)]2 (702 mg, 1.42 mmol) in MeCN (25 ml) was purged with CO for approximately 20 min. The resulting orange solution was treated with a solution of [K(18-crown-6)]CN (3.14 g, 9.54 mmol). During addition, the color of the solution changes from clear orange to clear yellow to cloudy blue to cloudy yellow. Addition of diethyl ether (100 ml) resulted in the precipitation of a yellow solid. The solid was isolated by filtration, washed with more diethyl ether and dried under vacuum to yield 2.124 g (92%) of [K(18-crown-6)]2[Rh(CN)3(CO)]. X-ray quality crystals were formed at room temperature by vapor diffusion of diethyl ether into an acetonitrile solution of the product. ν(CO), acetonitrile: 1959 and 2084 cm-1, consistent with the published IR data. S3. Refinement Methyl H-atom positions, R—CH3, were optimized by rotation about R—C bonds with idealized C—H, R—H and H—H distances. The remaining H atoms were included as riding idealized contributors. Methyl Uiso(H) values were assigned as 1.5 times Ueq of the adjacent atom; the remaining Uiso(H) values were assigned as 1.2 times the adjacent Ueq. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude or resolution.. Acta Cryst. (2005). E61, m1918–m1919. sup-1.

(4) supporting information. Figure 1 SHELXTL (Bruker, 2001) plot showing 35% probability displacement ellipsoids for non-H atoms; H atoms have been omitted for clarity. Bis[(1,4,7,10,13,16-hexaoxacyclooctadecane)potassium] carbonyltricyanorhodate(I) acetonitrile solvate Crystal data [K(C12H24)]2[Rh(CN)3(CO)]·C2H3N Mr = 856.86 Monoclinic, P21/c Hall symbol: -P 2ybc a = 22.439 (6) Å b = 8.553 (2) Å c = 20.576 (5) Å β = 90.178 (4)° V = 3948.9 (17) Å3 Z=4 Acta Cryst. (2005). E61, m1918–m1919. F(000) = 1784 Dx = 1.441 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 949 reflections θ = 2.2–26.1° µ = 0.71 mm−1 T = 193 K Tabular, yellow 0.40 × 0.18 × 0.10 mm. sup-2.

(5) supporting information Data collection Siemens SMART CCD diffractometer Radiation source: normal-focus sealed tube Graphite monochromator ω scans Absorption correction: integration [XPREP in SHELXTL (Bruker, 2001)] Tmin = 0.775, Tmax = 0.935. 39007 measured reflections 9709 independent reflections 7084 reflections with I > 2σ(I) Rint = 0.039 θmax = 28.3°, θmin = 1.8° h = −29→29 k = −11→11 l = −27→27. Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.036 wR(F2) = 0.081 S = 1.02 9709 reflections 452 parameters 0 restraints Primary atom site location: structure-invariant direct methods. Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters not refined w = 1/[σ2(Fo2) + (0.0376P)2 + 0.650P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.65 e Å−3 Δρmin = −0.27 e Å−3. Special details Experimental. Four frame series were filtered for statistical outliers then corrected for absorption by integration using SHELXTL/XPREP (Bruker, 2001) before using SAINT/SADABS/TWINABS (Bruker, 2001) to sort, merge, and scale the combined data. A series of identical frames was collected twice during the experiment to monitor decay. No decay correction was applied. Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2). C1 C2 C3 C4 C5 H5A H5B C6 H6A H6B C7 H7A H7B C8 H8A H8B. x. y. z. Uiso*/Ueq. 0.31857 (11) 0.29937 (11) 0.17146 (12) 0.20208 (10) 0.54676 (11) 0.5663 0.5611 0.56204 (11) 0.5413 0.6055 0.56500 (12) 0.6089 0.5476 0.54711 (13) 0.5612 0.5655. 0.4631 (3) 0.2486 (3) 0.2831 (3) 0.5043 (3) 0.2815 (3) 0.2258 0.3910 0.2047 (3) 0.2579 0.2115 −0.0415 (3) −0.0335 0.0017 −0.2083 (3) −0.2697 −0.2522. 0.45378 (11) 0.54646 (12) 0.51821 (10) 0.42098 (11) 0.67632 (13) 0.7128 0.6762 0.61387 (13) 0.5775 0.6063 0.56224 (13) 0.5594 0.5218 0.56989 (13) 0.5322 0.6097. 0.0374 (5) 0.0436 (6) 0.0372 (5) 0.0332 (5) 0.0467 (6) 0.056* 0.056* 0.0475 (6) 0.057* 0.057* 0.0517 (7) 0.062* 0.062* 0.0562 (8) 0.067* 0.067*. Acta Cryst. (2005). E61, m1918–m1919. sup-3.

(6) supporting information C9 H9A H9B C10 H10A H10B C11 H11A H11B C12 H12A H12B C13 H13A H13B C14 H14A H14B C15 H15A H15B C16 H16A H16B C17 H17A H17B C18 H18A H18B C19 H19A H19B C20 H20A H20B C21 H21A H21B C22 H22A H22B C23 H23A H23B C24 H24A H24B. 0.46425 (17) 0.4826 0.4767 0.39816 (18) 0.3798 0.3836 0.31963 (13) 0.3054 0.2992 0.30564 (12) 0.2625 0.3280 0.30712 (12) 0.3299 0.2641 0.32187 (12) 0.3012 0.3082 0.40007 (12) 0.3863 0.3805 0.46622 (12) 0.4783 0.4859 −0.00508 (10) −0.0176 −0.0393 0.01399 (11) −0.0182 0.0499 0.04607 (11) 0.0854 0.0173 0.05061 (11) 0.0117 0.0614 0.09742 (11) 0.1019 0.0601 0.14905 (11) 0.1532 0.1861 0.18951 (10) 0.2244 0.1998 0.17487 (10) 0.1388 0.2083. Acta Cryst. (2005). E61, m1918–m1919. −0.3753 (3) −0.4230 −0.4368 −0.3782 (4) −0.3199 −0.4874 −0.3122 (4) −0.4217 −0.2534 −0.2413 (3) −0.2512 −0.2958 −0.0012 (4) −0.0448 −0.0132 0.1655 (3) 0.2066 0.2259 0.3432 (3) 0.4085 0.3810 0.3553 (3) 0.4666 0.3058 0.4871 (3) 0.3771 0.5467 0.5552 (3) 0.5428 0.5003 0.7895 (3) 0.7474 0.7686 0.9617 (3) 1.0027 1.0159 1.1525 (2) 1.2173 1.1837 1.1774 (3) 1.2901 1.1416 1.1018 (3) 1.0494 1.2130 1.0262 (3) 1.0750 1.0399. 0.58089 (15) 0.6200 0.5425 0.58675 (15) 0.5503 0.5853 0.65649 (16) 0.6553 0.6215 0.72043 (14) 0.7295 0.7553 0.77658 (14) 0.8137 0.7858 0.76785 (15) 0.7289 0.8061 0.74927 (13) 0.7860 0.7091 0.74277 (13) 0.7413 0.7806 0.33507 (11) 0.3411 0.3174 0.39893 (11) 0.4314 0.4152 0.44790 (11) 0.4611 0.4832 0.43606 (11) 0.4210 0.4770 0.37091 (12) 0.4105 0.3486 0.32720 (12) 0.3173 0.3488 0.22593 (12) 0.2459 0.2187 0.16292 (12) 0.1438 0.1321. 0.0693 (10) 0.083* 0.083* 0.0727 (10) 0.087* 0.087* 0.0648 (9) 0.078* 0.078* 0.0554 (7) 0.067* 0.067* 0.0551 (7) 0.066* 0.066* 0.0563 (8) 0.068* 0.068* 0.0492 (7) 0.059* 0.059* 0.0473 (6) 0.057* 0.057* 0.0360 (5) 0.043* 0.043* 0.0364 (5) 0.044* 0.044* 0.0393 (6) 0.047* 0.047* 0.0410 (6) 0.049* 0.049* 0.0399 (6) 0.048* 0.048* 0.0414 (6) 0.050* 0.050* 0.0387 (6) 0.046* 0.046* 0.0379 (5) 0.045* 0.045*. sup-4.

(7) supporting information C25 H25A H25B C26 H26A H26B C27 H27A H27B C28 H28A H28B K2 K4 N2 N3 N4 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 Rh1 C29 C30 H30A H30B H30C N1. 0.15042 (11) 0.1827 0.1130 0.14332 (11) 0.1362 0.1800 0.08351 (11) 0.1188 0.0765 0.03024 (11) −0.0043 0.0199 0.41763 (2) 0.11693 (2) 0.33164 (11) 0.12678 (11) 0.17687 (9) 0.36257 (9) 0.48381 (7) 0.54409 (7) 0.48392 (8) 0.38257 (8) 0.32203 (8) 0.38472 (7) 0.04352 (6) 0.02666 (7) 0.09486 (7) 0.13994 (7) 0.16451 (7) 0.09383 (7) 0.249547 (8) 0.26588 (12) 0.23603 (13) 0.2579 0.2345 0.1954 0.28940 (13). 0.7832 (3) 0.7985 0.8252 0.6129 (3) 0.5541 0.5719 0.4340 (3) 0.3891 0.3748 0.4220 (3) 0.4744 0.3107 0.01588 (6) 0.76142 (5) 0.1784 (3) 0.2346 (3) 0.5791 (2) 0.5153 (2) 0.27863 (18) 0.04487 (19) −0.21791 (19) −0.3080 (2) −0.0821 (2) 0.18370 (19) 0.49446 (17) 0.71612 (17) 0.99053 (17) 1.09131 (17) 0.86317 (17) 0.59454 (17) 0.37748 (2) 0.9266 (3) 0.8992 (3) 0.9516 0.7866 0.9408 0.9483 (3). 0.11550 (11) 0.0834 0.0968 0.13001 (12) 0.0893 0.1507 0.18739 (11) 0.2095 0.1467 0.23047 (11) 0.2098 0.2374 0.64526 (2) 0.29493 (2) 0.57816 (12) 0.53609 (10) 0.38304 (10) 0.43544 (9) 0.68453 (7) 0.61690 (8) 0.57430 (8) 0.64668 (8) 0.71854 (8) 0.76048 (8) 0.29121 (7) 0.38950 (7) 0.38818 (7) 0.26813 (7) 0.17404 (7) 0.17282 (7) 0.484600 (8) 0.41004 (14) 0.47084 (13) 0.5059 0.4795 0.4685 0.36234 (14). 0.0444 (6) 0.053* 0.053* 0.0453 (6) 0.054* 0.054* 0.0368 (5) 0.044* 0.044* 0.0360 (5) 0.043* 0.043* 0.03286 (12) 0.03016 (11) 0.0668 (7) 0.0532 (6) 0.0446 (5) 0.0590 (5) 0.0384 (4) 0.0429 (4) 0.0475 (4) 0.0499 (5) 0.0476 (4) 0.0411 (4) 0.0321 (3) 0.0330 (3) 0.0351 (4) 0.0348 (4) 0.0345 (4) 0.0361 (4) 0.03074 (6) 0.0495 (7) 0.0566 (7) 0.085* 0.085* 0.085* 0.0753 (8). Atomic displacement parameters (Å2). C1 C2 C3 C4 C5 C6 C7. U11. U22. U33. U12. U13. U23. 0.0391 (14) 0.0478 (15) 0.0491 (16) 0.0315 (12) 0.0332 (14) 0.0320 (14) 0.0359 (14). 0.0380 (13) 0.0405 (14) 0.0387 (13) 0.0296 (11) 0.0402 (14) 0.0491 (16) 0.077 (2). 0.0350 (13) 0.0424 (14) 0.0239 (11) 0.0383 (13) 0.0665 (18) 0.0615 (17) 0.0426 (15). 0.0012 (11) −0.0046 (12) −0.0052 (12) −0.0027 (10) −0.0083 (11) −0.0029 (12) 0.0085 (14). −0.0073 (11) −0.0098 (12) −0.0033 (11) −0.0015 (10) −0.0074 (12) 0.0076 (12) 0.0101 (12). 0.0040 (10) 0.0063 (11) −0.0010 (10) −0.0007 (10) 0.0085 (13) 0.0156 (13) 0.0018 (14). Acta Cryst. (2005). E61, m1918–m1919. sup-5.

(8) supporting information C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 K2 K4 N2 N3 N4 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 Rh1 C29 C30 N1. 0.066 (2) 0.125 (3) 0.117 (3) 0.0538 (19) 0.0362 (15) 0.0336 (14) 0.0338 (15) 0.0589 (18) 0.0576 (17) 0.0308 (12) 0.0392 (14) 0.0470 (15) 0.0464 (15) 0.0536 (16) 0.0469 (15) 0.0261 (12) 0.0286 (12) 0.0418 (15) 0.0395 (14) 0.0423 (14) 0.0408 (14) 0.0317 (3) 0.0348 (3) 0.0628 (17) 0.0596 (15) 0.0420 (12) 0.0464 (12) 0.0347 (9) 0.0390 (10) 0.0602 (12) 0.0613 (12) 0.0410 (10) 0.0327 (9) 0.0285 (8) 0.0400 (9) 0.0424 (9) 0.0317 (9) 0.0377 (9) 0.0366 (9) 0.03406 (10) 0.0452 (16) 0.067 (2) 0.079 (2). 0.0594 (18) 0.0349 (15) 0.0513 (18) 0.0578 (18) 0.0635 (18) 0.082 (2) 0.072 (2) 0.0406 (15) 0.0372 (14) 0.0295 (12) 0.0347 (12) 0.0451 (14) 0.0439 (14) 0.0278 (12) 0.0280 (11) 0.0295 (12) 0.0376 (13) 0.0618 (17) 0.0551 (16) 0.0325 (12) 0.0294 (11) 0.0329 (3) 0.0277 (2) 0.0679 (16) 0.0655 (15) 0.0403 (12) 0.0709 (14) 0.0372 (9) 0.0450 (10) 0.0377 (10) 0.0448 (10) 0.0549 (11) 0.0441 (9) 0.0349 (8) 0.0310 (8) 0.0286 (8) 0.0325 (8) 0.0357 (8) 0.0348 (9) 0.02909 (9) 0.0535 (16) 0.0557 (18) 0.087 (2). 0.0435 (15) 0.0483 (17) 0.0500 (18) 0.083 (2) 0.0666 (19) 0.0498 (17) 0.0637 (19) 0.0480 (16) 0.0472 (15) 0.0477 (14) 0.0353 (13) 0.0257 (12) 0.0326 (13) 0.0383 (13) 0.0491 (15) 0.0604 (16) 0.0475 (14) 0.0297 (13) 0.0413 (14) 0.0355 (13) 0.0379 (13) 0.0341 (3) 0.0280 (2) 0.0694 (17) 0.0344 (12) 0.0514 (13) 0.0597 (12) 0.0434 (9) 0.0447 (10) 0.0444 (10) 0.0436 (10) 0.0470 (11) 0.0465 (10) 0.0330 (8) 0.0280 (8) 0.0344 (9) 0.0402 (9) 0.0301 (8) 0.0370 (9) 0.02903 (10) 0.0498 (17) 0.0468 (16) 0.0608 (17). 0.0249 (15) 0.0040 (17) −0.0338 (19) −0.0260 (15) −0.0179 (13) −0.0006 (14) 0.0129 (14) 0.0121 (12) −0.0045 (12) −0.0034 (10) 0.0007 (10) 0.0047 (12) 0.0052 (12) 0.0065 (11) −0.0039 (11) −0.0025 (10) 0.0044 (10) −0.0025 (13) 0.0000 (12) 0.0059 (10) −0.0025 (10) −0.0010 (2) 0.0028 (2) 0.0018 (13) −0.0211 (13) 0.0028 (10) −0.0106 (10) −0.0034 (7) 0.0025 (8) 0.0056 (9) −0.0164 (9) −0.0118 (8) 0.0067 (7) −0.0044 (7) 0.0030 (7) 0.0043 (7) −0.0052 (7) 0.0002 (7) 0.0029 (7) 0.00036 (8) 0.0084 (13) −0.0127 (15) 0.0155 (16). 0.0055 (14) 0.0225 (19) 0.0037 (19) −0.0260 (16) −0.0049 (13) 0.0116 (12) 0.0098 (13) 0.0017 (13) −0.0037 (13) 0.0024 (10) 0.0068 (10) 0.0026 (10) 0.0013 (11) −0.0108 (12) −0.0163 (12) 0.0002 (11) 0.0070 (10) 0.0095 (11) 0.0120 (11) −0.0035 (11) −0.0103 (11) −0.0015 (2) 0.00089 (19) −0.0242 (13) 0.0032 (11) −0.0106 (10) 0.0009 (10) −0.0035 (7) 0.0101 (8) 0.0075 (9) −0.0052 (9) 0.0031 (8) 0.0019 (7) 0.0009 (6) 0.0014 (7) 0.0010 (7) −0.0014 (7) 0.0026 (7) 0.0051 (7) −0.00592 (7) −0.0031 (13) 0.0086 (14) 0.0169 (15). −0.0075 (14) −0.0113 (13) −0.0105 (15) 0.0124 (17) 0.0220 (16) 0.0077 (16) −0.0069 (15) −0.0098 (12) −0.0074 (11) 0.0026 (10) 0.0073 (10) −0.0037 (10) −0.0112 (11) −0.0072 (10) −0.0017 (11) 0.0057 (11) 0.0132 (11) −0.0047 (12) −0.0191 (12) −0.0081 (10) −0.0037 (10) 0.0024 (2) 0.00160 (19) 0.0271 (14) 0.0011 (11) 0.0088 (10) 0.0125 (10) −0.0042 (7) 0.0066 (8) 0.0001 (8) −0.0012 (8) 0.0115 (9) −0.0020 (8) −0.0049 (7) −0.0013 (6) −0.0047 (7) −0.0025 (7) 0.0026 (7) −0.0046 (7) 0.00219 (8) −0.0002 (13) −0.0091 (13) 0.0062 (16). Geometric parameters (Å, º) C1—O1 C1—Rh1. Acta Cryst. (2005). E61, m1918–m1919. 1.149 (3) 1.828 (3). C18—H18B C19—O9. 0.9900 1.423 (3). sup-6.

(9) supporting information C2—N2 C2—Rh1 C3—N3 C3—Rh1 C4—N4 C4—Rh1 C5—O2 C5—C6 C5—H5A C5—H5B C6—O3 C6—H6A C6—H6B C7—O3 C7—C8 C7—H7A C7—H7B C8—O4 C8—H8A C8—H8B C9—O4 C9—C10 C9—H9A C9—H9B C10—O5 C10—H10A C10—H10B C11—O5 C11—C12 C11—H11A C11—H11B C12—O6 C12—H12A C12—H12B C13—O6 C13—C14 C13—H13A C13—H13B C14—O7 C14—H14A C14—H14B C15—O7 C15—C16 C15—H15A C15—H15B C16—O2 C16—H16A C16—H16B. Acta Cryst. (2005). E61, m1918–m1919. 1.144 (3) 2.019 (2) 1.147 (3) 2.051 (3) 1.155 (3) 2.004 (2) 1.423 (3) 1.484 (4) 0.9900 0.9900 1.427 (3) 0.9900 0.9900 1.426 (3) 1.490 (4) 0.9900 0.9900 1.423 (3) 0.9900 0.9900 1.424 (3) 1.488 (5) 0.9900 0.9900 1.416 (3) 0.9900 0.9900 1.428 (3) 1.483 (4) 0.9900 0.9900 1.412 (3) 0.9900 0.9900 1.421 (3) 1.476 (4) 0.9900 0.9900 1.427 (3) 0.9900 0.9900 1.426 (3) 1.494 (4) 0.9900 0.9900 1.423 (3) 0.9900 0.9900. C19—C20 C19—H19A C19—H19B C20—O10 C20—H20A C20—H20B C21—O10 C21—C22 C21—H21A C21—H21B C22—O11 C22—H22A C22—H22B C23—O11 C23—C24 C23—H23A C23—H23B C24—O12 C24—H24A C24—H24B C25—O12 C25—C26 C25—H25A C25—H25B C26—O13 C26—H26A C26—H26B C27—O13 C27—C28 C27—H27A C27—H27B C28—O8 C28—H28A C28—H28B K2—N2 K2—O6 K2—O2 K2—O7 K2—O5 K2—O4 K2—O3 K4—N4 K4—O10 K4—O8 K4—O9 K4—O12 K4—O11 K4—O13. 1.497 (3) 0.9900 0.9900 1.422 (3) 0.9900 0.9900 1.432 (3) 1.484 (3) 0.9900 0.9900 1.435 (3) 0.9900 0.9900 1.416 (3) 1.485 (3) 0.9900 0.9900 1.432 (3) 0.9900 0.9900 1.420 (3) 1.495 (3) 0.9900 0.9900 1.428 (3) 0.9900 0.9900 1.424 (3) 1.494 (3) 0.9900 0.9900 1.426 (3) 0.9900 0.9900 2.747 (2) 2.7563 (18) 2.8110 (17) 2.8699 (18) 2.8801 (19) 2.8908 (18) 2.9094 (18) 2.741 (2) 2.7880 (16) 2.8163 (16) 2.8398 (16) 2.8462 (16) 2.9212 (17) 2.9343 (17). sup-7.

(10) supporting information C17—O8 C17—C18 C17—H17A C17—H17B C18—O9 C18—H18A. 1.419 (3) 1.498 (3) 0.9900 0.9900 1.419 (3) 0.9900. C29—N1 C29—C30 C30—H30A C30—H30B C30—H30C. 1.131 (3) 1.440 (4) 0.9800 0.9800 0.9800. O1—C1—Rh1 N2—C2—Rh1 N3—C3—Rh1 N4—C4—Rh1 O2—C5—C6 O2—C5—H5A C6—C5—H5A O2—C5—H5B C6—C5—H5B H5A—C5—H5B O3—C6—C5 O3—C6—H6A C5—C6—H6A O3—C6—H6B C5—C6—H6B H6A—C6—H6B O3—C7—C8 O3—C7—H7A C8—C7—H7A O3—C7—H7B C8—C7—H7B H7A—C7—H7B O4—C8—C7 O4—C8—H8A C7—C8—H8A O4—C8—H8B C7—C8—H8B H8A—C8—H8B O4—C9—C10 O4—C9—H9A C10—C9—H9A O4—C9—H9B C10—C9—H9B H9A—C9—H9B O5—C10—C9 O5—C10—H10A C9—C10—H10A O5—C10—H10B C9—C10—H10B H10A—C10—H10B O5—C11—C12. 178.6 (2) 174.2 (3) 177.7 (2) 177.2 (2) 109.1 (2) 109.9 109.9 109.9 109.9 108.3 108.7 (2) 110.0 110.0 110.0 110.0 108.3 108.8 (2) 109.9 109.9 109.9 109.9 108.3 109.3 (2) 109.8 109.8 109.8 109.8 108.3 109.4 (3) 109.8 109.8 109.8 109.8 108.2 108.2 (2) 110.1 110.1 110.1 110.1 108.4 109.1 (2). O12—C24—H24B C23—C24—H24B H24A—C24—H24B O12—C25—C26 O12—C25—H25A C26—C25—H25A O12—C25—H25B C26—C25—H25B H25A—C25—H25B O13—C26—C25 O13—C26—H26A C25—C26—H26A O13—C26—H26B C25—C26—H26B H26A—C26—H26B O13—C27—C28 O13—C27—H27A C28—C27—H27A O13—C27—H27B C28—C27—H27B H27A—C27—H27B O8—C28—C27 O8—C28—H28A C27—C28—H28A O8—C28—H28B C27—C28—H28B H28A—C28—H28B N2—K2—O6 N2—K2—O2 O6—K2—O2 N2—K2—O7 O6—K2—O7 O2—K2—O7 N2—K2—O5 O6—K2—O5 O2—K2—O5 O7—K2—O5 N2—K2—O4 O6—K2—O4 O2—K2—O4 O7—K2—O4. 110.0 110.0 108.3 108.88 (19) 109.9 109.9 109.9 109.9 108.3 108.31 (19) 110.0 110.0 110.0 110.0 108.4 108.80 (18) 109.9 109.9 109.9 109.9 108.3 108.94 (18) 109.9 109.9 109.9 109.9 108.3 83.23 (7) 96.29 (7) 119.81 (5) 88.85 (7) 59.83 (5) 59.98 (5) 107.48 (7) 59.27 (6) 155.53 (5) 113.69 (5) 117.26 (7) 117.95 (6) 115.21 (5) 153.80 (5). Acta Cryst. (2005). E61, m1918–m1919. sup-8.

(11) supporting information O5—C11—H11A C12—C11—H11A O5—C11—H11B C12—C11—H11B H11A—C11—H11B O6—C12—C11 O6—C12—H12A C11—C12—H12A O6—C12—H12B C11—C12—H12B H12A—C12—H12B O6—C13—C14 O6—C13—H13A C14—C13—H13A O6—C13—H13B C14—C13—H13B H13A—C13—H13B O7—C14—C13 O7—C14—H14A C13—C14—H14A O7—C14—H14B C13—C14—H14B H14A—C14—H14B O7—C15—C16 O7—C15—H15A C16—C15—H15A O7—C15—H15B C16—C15—H15B H15A—C15—H15B O2—C16—C15 O2—C16—H16A C15—C16—H16A O2—C16—H16B C15—C16—H16B H16A—C16—H16B O8—C17—C18 O8—C17—H17A C18—C17—H17A O8—C17—H17B C18—C17—H17B H17A—C17—H17B O9—C18—C17 O9—C18—H18A C17—C18—H18A O9—C18—H18B C17—C18—H18B H18A—C18—H18B O9—C19—C20. Acta Cryst. (2005). E61, m1918–m1919. 109.9 109.9 109.9 109.9 108.3 108.3 (2) 110.0 110.0 110.0 110.0 108.4 108.3 (2) 110.0 110.0 110.0 110.0 108.4 109.9 (2) 109.7 109.7 109.7 109.7 108.2 108.8 (2) 109.9 109.9 109.9 109.9 108.3 108.8 (2) 109.9 109.9 109.9 109.9 108.3 108.82 (18) 109.9 109.9 109.9 109.9 108.3 108.29 (18) 110.0 110.0 110.0 110.0 108.4 108.52 (18). O5—K2—O4 N2—K2—O3 O6—K2—O3 O2—K2—O3 O7—K2—O3 O5—K2—O3 O4—K2—O3 N4—K4—O10 N4—K4—O8 O10—K4—O8 N4—K4—O9 O10—K4—O9 O8—K4—O9 N4—K4—O12 O10—K4—O12 O8—K4—O12 O9—K4—O12 N4—K4—O11 O10—K4—O11 O8—K4—O11 O9—K4—O11 O12—K4—O11 N4—K4—O13 O10—K4—O13 O8—K4—O13 O9—K4—O13 O12—K4—O13 O11—K4—O13 C2—N2—K2 C4—N4—K4 C16—O2—C5 C16—O2—K2 C5—O2—K2 C7—O3—C6 C7—O3—K2 C6—O3—K2 C8—O4—C9 C8—O4—K2 C9—O4—K2 C10—O5—C11 C10—O5—K2 C11—O5—K2 C12—O6—C13 C12—O6—K2 C13—O6—K2 C15—O7—C14 C15—O7—K2 C14—O7—K2. 58.72 (5) 122.69 (7) 153.74 (5) 58.31 (5) 112.13 (5) 110.52 (5) 56.90 (5) 91.86 (6) 80.94 (6) 118.90 (5) 79.55 (6) 59.71 (5) 59.31 (4) 124.57 (6) 117.03 (5) 116.43 (5) 155.63 (5) 125.99 (6) 58.86 (5) 151.84 (5) 112.83 (4) 58.18 (4) 112.00 (6) 154.14 (5) 58.71 (4) 113.32 (5) 57.74 (5) 109.82 (5) 174.3 (2) 178.79 (19) 111.72 (19) 117.57 (14) 120.22 (13) 111.60 (19) 115.95 (14) 111.48 (13) 111.7 (2) 120.42 (15) 116.48 (16) 111.1 (2) 109.30 (15) 107.20 (16) 112.6 (2) 120.78 (16) 119.85 (15) 111.13 (19) 106.38 (14) 106.87 (15). sup-9.

(12) supporting information O9—C19—H19A C20—C19—H19A O9—C19—H19B C20—C19—H19B H19A—C19—H19B O10—C20—C19 O10—C20—H20A C19—C20—H20A O10—C20—H20B C19—C20—H20B H20A—C20—H20B O10—C21—C22 O10—C21—H21A C22—C21—H21A O10—C21—H21B C22—C21—H21B H21A—C21—H21B O11—C22—C21 O11—C22—H22A C21—C22—H22A O11—C22—H22B C21—C22—H22B H22A—C22—H22B O11—C23—C24 O11—C23—H23A C24—C23—H23A O11—C23—H23B C24—C23—H23B H23A—C23—H23B O12—C24—C23 O12—C24—H24A C23—C24—H24A. Acta Cryst. (2005). E61, m1918–m1919. 110.0 110.0 110.0 110.0 108.4 109.34 (18) 109.8 109.8 109.8 109.8 108.3 108.73 (19) 109.9 109.9 109.9 109.9 108.3 109.29 (18) 109.8 109.8 109.8 109.8 108.3 109.61 (18) 109.7 109.7 109.7 109.7 108.2 108.67 (18) 110.0 110.0. C17—O8—C28 C17—O8—K4 C28—O8—K4 C18—O9—C19 C18—O9—K4 C19—O9—K4 C20—O10—C21 C20—O10—K4 C21—O10—K4 C23—O11—C22 C23—O11—K4 C22—O11—K4 C25—O12—C24 C25—O12—K4 C24—O12—K4 C27—O13—C26 C27—O13—K4 C26—O13—K4 C1—Rh1—C4 C1—Rh1—C2 C4—Rh1—C2 C1—Rh1—C3 C4—Rh1—C3 C2—Rh1—C3 N1—C29—C30 C29—C30—H30A C29—C30—H30B H30A—C30—H30B C29—C30—H30C H30A—C30—H30C H30B—C30—H30C. 112.28 (17) 117.99 (12) 119.80 (12) 111.93 (16) 111.70 (12) 107.54 (13) 111.60 (17) 118.74 (12) 120.14 (13) 112.13 (17) 108.46 (12) 111.13 (12) 111.69 (17) 120.72 (13) 119.92 (13) 111.30 (17) 108.48 (12) 109.80 (13) 90.33 (9) 88.24 (10) 178.16 (10) 179.20 (10) 88.87 (9) 92.56 (10) 179.9 (4) 109.5 109.5 109.5 109.5 109.5 109.5. sup-10.

(13)

New documents

The rules leverage built-in text operators readily avail- able in AQL, including dictionary matching As- setClassSuffixes, core NLP operators such as Se- mantic Role Labeling SRL Verbs,

3.2 The basis for the delimitation of the PWS Function is a consensus, on both the national and the European scale, as to which services are appropriate for provision by the State and

For example, in the International Cooperative Pulmonary Embolism Registry ICOPER, age .70 years, systolic BP ,90 mm Hg, respiratory rate .20 breaths/min, cancer, chronic heart failure

Table 5: From the experiment in §4.4, ranked review sentences for two different guest profiles for the same listing using the ABAE model.. The first guest’s profile focuses on the

Mar fhreagra air seo ní mór do Met Éireann leanúint leis an taighde agus bheith níos éifeachtaí maidir leis na seirbhísí a chuireann sé ar fáil don earnáil eitlíochta, measúnú

A typical automated scoring pipeline has three major components: 1 the student response is captured by the input capture module; 2 the sys- tem computes a wide range of linguistic

The classification performance of the methods was evaluated on in-house data, showing that: i Random Forest models are significantly improved by using new task-specific features; ii

1: 1 exhaustively generate dialogue tem- plates for a given task using dialogue self-play between a simulated user and a task-independent programmed system agent, 2 obtain natural lan-

Above all, we could conclude that the genotype- guided method had an active role in reducing the time to reach the target INR value and sta- ble warfarin dosage in individualized

For both scenario and paraphrase jobs, using a mixture of both generic and specific prompts yields training data with higher coverage and models with higher accuracy than using only