• No results found

Bis(μ 4 sulfobenzoato κ2O:O′)­bis­­[aqua(2,2′ bi­pyridine κ2N,N′)copper(II)]

N/A
N/A
Protected

Academic year: 2020

Share "Bis(μ 4 sulfobenzoato κ2O:O′)­bis­­[aqua(2,2′ bi­pyridine κ2N,N′)copper(II)]"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2004). E60, m1833±m1835 doi:10.1107/S1600536804028958 S.-R. Fanet al. [Cu2(C7H4O5S)2(C10H8N2)2(H2O)2]

m1833

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Bis(

l

-4-sulfobenzoato-

j

2

O

:

O

000

)bis[aqua(2,2

000

-bi-pyridine-

j

2

N,N

000

)copper(II)]

Sai-Rong Fan,aHong-Ping Xiao,b

Li-Ping Zhangaand

Long-Guan Zhua*

aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, andbSchool of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang Wenzhou 325027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.004 AÊ

Rfactor = 0.032

wRfactor = 0.089

Data-to-parameter ratio = 12.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, [Cu2(C7H4O5S)2(C10H8N2)2(H2O)2],

crystallizes as a centrosymmetrically dimer containing two CuIIatoms bridged by two 4-sulfobenzoate ligands. Each CuII

atom displays a square-pyramidal coordination geometry completed by three O atoms from one water molecule and

two 4-sulfobenzoate ligands and two N atoms from one 2,20

-bipyridine ligand. The dimers are linked into pairs by hydrogen bonds.

Comment

It is well known that the sulfonate group exhibits different coordination behavior compared to the carboxyl group

(Zheng et al., 2003; Wang et al., 2004; Starynowicz, 2000).

Numerous 1,4-benzenedicarboxylate (bdc) complexes have been extensively studied in the past decade due to their potential applications as functional materials and to the considerable interest arising from the variety of framework topologies they adopt (Yaghiet al., 2003; Eddaoudiet al., 2002; Zhu et al., 2004). However, complexes with 4-sulfobenzoate (sb), a ligand with a combination of sulfonate and carboxyl groups, remain few (Yuan et al., 2001; Xiong et al., 2001). In dimeric bdc compounds, the structures are constructed and controlled by additional anions to compensate charge and/or complete the coordination (Sunet al., 2000; Canoet al., 1997; Huanget al., 2003; Xiao, Liet al., 2004; Xiao, Hu & Li, 2004). We report here the ®rst cyclic dimer with the sb ligand, [Cu(sb)(2,20-bipy)(H

2O)]2, (I).

The molecular structure is a centrosymmetric dimer loop (Fig. 1), in which each Cu atom has a ®ve-coordinate geometry de®ned by one O-atom donor from one water molecule, two N

atoms from one 2,20-bipyridine, and two O atoms from two sb

ligands. Atoms N1, N2, O1 and O6 occupy the basal plane, while atom O3* [symmetry code: (*)ÿx, 2ÿy,ÿz] occupies the apical site (Table 1). The CuÐO(carboxylato) distance in (I) is similar to those in dimeric bdc compounds, such as

(2)

[Cu2(bdc)(phen)4](ClO4)2, (II) [1.955 (2) AÊ; Sunet al., 2000],

[Cu2(bdc)(2,20-bipy)4](NO3)2, (III) [1.995 (4) AÊ; Huanget al.,

2003], [Cu2(bdc)(2,20-bipy)4](bdc), (IV) [1.980 (2) AÊ; Huanget al., 2003], and [Cu2(bdc)(2,20-bipy)4](ClO4)2, (V) [1.997 (6) AÊ;

Canoet al., 1997]. The CuÐN bond distances in (I) are nearly equivalent and the average value is 1.994 (2) AÊ. In contrast, one of the four CuÐN bond distances is signi®cantly longer [2.169 (7)±2.216 (2) AÊ] in the reported dimeric bdc compounds (II)±(V).

In the cyclic dimer, sb is in a bis-monodentate coordination

mode, acting as a linker, and the intradimer Cu Cu

separation is 9.7495 (8) AÊ, which is signi®cantly shorter than those of reported dimeric bdc complexes (about 11.0 AÊ). The two rings of the 2,20-bipyridine subtend a dihedral angle of

8.2 (2). The dihedral angle between the planes of the sb ring

and its carboxyl group is 4.0 (4). The C1ÐO1 bond length

[1.276 (3) AÊ] is longer than the C1ÐO2 distance [1.242 (3) AÊ],

indicating more keto character in the latter. The two cis

-arranged sb ligands in the central ring are exactly parallel. There is an intramolecular hydrogen bond between the water molecule and the uncoordinated carboxyl O atom (Table 2).

The coordinated water molecule forms a hydrogen bond

with atom O4 (symmetry code:xÿ1,yÿ1,z) of an adjacent

dimer, thereby creating a hydrogen-bonded chain (Fig. 2). The

shortest Cu Cu separation between neighboring dimers is

5.7722 (6) AÊ, which is shorter than those of bdc complexes (6.9 AÊ). Moreover, sb and 2,20-bipyridine ligands between the

neighboring hydrogen-bonded chains are nearly coplanar [dihedral angle = 3.8 (1)] and exhibit±interactions with a

distance of about 3.44 AÊ. From the above data, it is obvious

that in the crystal packing, hydrogen bonds and±

interac-tions enhance the stability of the structure.

Experimental

A mixture of Cu(NO3)23H2O (0.053 g, 0.22 mmol), potassium hydrogen 4-sulfobenzoate (0.041 g, 0.17 mmol), 2,20-bipyridine (0.034 g, 0.22 mmol) and water (8 ml) was sealed in a 20 ml stainless steel reactor with a Te¯on liner and heated to 423 K for 24 h. After cooling, deep blue block-shaped crystals of (I) were collected by ®ltration.

Crystal data

[Cu2(C7H4O5S)2(C10H8N2)2(H2O)2] Mr= 875.80

Triclinic,P1 a= 8.9013 (6) AÊ b= 10.2224 (7) AÊ c= 10.4902 (7) AÊ

= 92.306 (1) = 112.334 (1) = 103.566 (1)

V= 849.4 (1) AÊ3

Z= 1

Dx= 1.712 Mg mÿ3 MoKradiation Cell parameters from 5311

re¯ections

= 2.1±28.2 = 1.45 mmÿ1 T= 293 (2) K Block, blue

0.440.230.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.568,Tmax= 0.812 4512 measured re¯ections 3002 independent re¯ections

2799 re¯ections withI> 2(I) Rint= 0.013

max= 25.2 h=ÿ10!10 k=ÿ12!11 l=ÿ10!12

Refinement

Re®nement onF2 R[F2> 2(F2)] = 0.032 wR(F2) = 0.089 S= 1.07 3002 re¯ections 250 parameters

H-atom treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.0548P)2 + 0.3207P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.37 e AÊÿ3 min=ÿ0.52 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,). Cu1ÐO6 1.930 (2) Cu1ÐO1 1.949 (2) Cu1ÐN1 1.992 (2)

Cu1ÐN2 1.995 (2) Cu1ÐO3i 2.316 (2)

O6ÐCu1ÐO1 91.72 (8) O6ÐCu1ÐN1 94.19 (8) O1ÐCu1ÐN1 170.77 (7) O6ÐCu1ÐN2 167.67 (9) O1ÐCu1ÐN2 91.55 (8)

N1ÐCu1ÐN2 81.23 (8) O6ÐCu1ÐO3i 99.13 (9) O1ÐCu1ÐO3i 97.93 (7) N1ÐCu1ÐO3i 88.13 (7) N2ÐCu1ÐO3i 92.18 (8)

Symmetry code: (i)ÿx;2ÿy;ÿz.

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O6ÐH6A O4ii 0.89 (1) 1.80 (1) 2.688 (3) 172 (3) O6ÐH6B O2 0.89 (3) 1.71 (2) 2.538 (3) 153 (4)

Symmetry code: (ii)xÿ1;yÿ1;z.

metal-organic papers

m1834

S.-R. Fanet al. [Cu2(C7H4O5S)2(C10H8N2)2(H2O)2] Acta Cryst.(2004). E60, m1833±m1835 Figure 1

ORTEP-3 diagram (Farrugia, 1997) of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (*)ÿx, 2ÿy, ÿz.]

Figure 2

(3)

H atoms bonded to the C atoms were positioned geometrically and treated as riding, with CÐH distances of 0.93 AÊ and Uiso(H) = 1.2Ueq(parent). The water H atoms were located in difference± Fourier maps and re®ned with restraints for OÐH distances [0.90 (1) AÊ] and withUiso(H) = 0.08 AÊ2.

Data collection:SMART(Bruker, 1997); cell re®nement:SAINT (Bruker, 1997); data reduction: SAINT and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication:WinGX(Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (50073019).

References

Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL.Bruker AXS Inc., Madison, Wisconsin, USA.

Cano, J., Munno, G., Sanz, J. L., Ruiz, R., Faus, J., Lloret, F., Julv, M. & Caneschi, A. (1997).J. Chem. Soc. Dalton Trans.pp. 1915±1923.

Eddaoudi, M., Kim. J., Rosi, N. L., Vodak, D. T., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002).Science,295, 469±472.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837±838.

Huang, W., Hu, D., Gou, S., Qian, H., Fun, H. K., Raj, S. S. S. & Meng, Q. (2003).J. Mol. Struct.649, 269±278.

Sheldrick, G. M. (1996).SADABS.University of GoÈttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

GoÈttingen, Germany.

Starynowicz, P. (2000).J. Alloys Compd,305, 117±120.

Sun, D.-F., Cao, R., Liang, Y.-C., Hong, M.-C., Su, W.-P. & Wen, J.-B. (2000). Acta Cryst.C56, e240±e241.

Wang, W. G., Zhang, J., Song, L. J. & Ju, Z. F. (2004).Inorg. Chem. Commun.7, 858±860.

Xiao, H.-P., Hu, M.-L. & Li, X.-H. (2004).Acta Cryst.E60, m336±m337. Xiao, H.-P., Li, X.-H., Ye, M.-D. & Hu, M.-L. (2004).Acta Cryst.E60, m253±

m254.

Xiong, R. G., Zhang, J., Chen, Z. F., You, X. Z., Che, C. M. & Fun, H.-K. (2001).J. Chem. Soc. Dalton Trans.pp. 780±782.

Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim. J. (2003).Nature (London),423, 705±714.

Yuan, R. X., Xiong, R. G., Xie, Y. L., You, X. Z., Peng, S. M. & Lee, G. H. (2001).Inorg. Chem. Commun.4, 384±387.

Zheng, S. L., Zheng, J. P., Chen, X. M. & Ng, S. W. (2003).J. Solid State Chem. 172, 45±52.

Zhu, L. G., Xiao, H. P. & Lu, J. Y. (2004).Inorg. Chem. Commun.7, 94±96.

metal-organic papers

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, m1833–m1835

supporting information

Acta Cryst. (2004). E60, m1833–m1835 [https://doi.org/10.1107/S1600536804028958]

Bis(

µ

-4-sulfobenzoato-

κ

2

O

:

O

)bis[aqua(2,2

-bipyridine-

κ

2

N,N

)copper(II)]

Sai-Rong Fan, Hong-Ping Xiao, Li-Ping Zhang and Long-Guan Zhu

Bis(µ-4-sulfobenzoato-κ2O:O)bis[aqua(2,2-bipyridine-κ2N,N)copper(II)]

Crystal data

[Cu2(C7H4O5S)2(C10H8N2)2(H2O)2]

Mr = 875.80 Triclinic, P1 Hall symbol: -P 1

a = 8.9013 (6) Å

b = 10.2224 (7) Å

c = 10.4902 (7) Å

α = 92.306 (1)°

β = 112.334 (1)°

γ = 103.566 (1)°

V = 849.4 (1) Å3

Z = 1

F(000) = 446

Dx = 1.712 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5311 reflections

θ = 4.2–56.4°

µ = 1.45 mm−1

T = 293 K Block, blue

0.44 × 0.23 × 0.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.568, Tmax = 0.812

4512 measured reflections 3002 independent reflections 2799 reflections with I > 2σ(I)

Rint = 0.013

θmax = 25.2°, θmin = 2.1°

h = −10→10

k = −12→11

l = −10→12

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.032

wR(F2) = 0.089

S = 1.07 3002 reflections 250 parameters 2 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0548P)2 + 0.3207P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.37 e Å−3

Δρmin = −0.52 e Å−3

Special details

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, m1833–m1835

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cu1 −0.13916 (3) 0.54131 (3) 0.11298 (3) 0.03029 (12) S1 0.28146 (7) 1.20261 (5) −0.24989 (6) 0.02923 (15) O1 −0.0481 (2) 0.67975 (18) 0.01954 (18) 0.0385 (4) O2 −0.2759 (2) 0.68004 (19) −0.1694 (2) 0.0505 (5) O4 0.4562 (2) 1.22492 (19) −0.1545 (2) 0.0471 (5) O5 0.2500 (2) 1.15542 (17) −0.39156 (17) 0.0396 (4) O3 0.2166 (3) 1.31978 (17) −0.2428 (2) 0.0479 (5) O6 −0.3501 (3) 0.4803 (2) −0.0481 (2) 0.0568 (6) N1 −0.1977 (2) 0.39135 (19) 0.2157 (2) 0.0295 (4) N2 0.0876 (2) 0.5677 (2) 0.2664 (2) 0.0332 (4) C1 −0.1253 (3) 0.7276 (2) −0.0897 (2) 0.0314 (5) C2 −0.0233 (3) 0.8489 (2) −0.1234 (2) 0.0279 (5) C3 0.1478 (3) 0.9017 (2) −0.0448 (2) 0.0342 (5)

H3 0.2008 0.8628 0.0328 0.041*

C4 0.2407 (3) 1.0110 (2) −0.0798 (2) 0.0330 (5)

H4 0.3555 1.0456 −0.0259 0.040*

C5 0.1626 (3) 1.0695 (2) −0.1959 (2) 0.0276 (5) C6 −0.0090 (3) 1.0181 (2) −0.2745 (3) 0.0378 (6)

H6 −0.0622 1.0579 −0.3512 0.045*

C7 −0.1008 (3) 0.9086 (3) −0.2393 (3) 0.0373 (6)

H7 −0.2157 0.8740 −0.2933 0.045*

C8 −0.3510 (3) 0.3057 (2) 0.1831 (2) 0.0353 (5)

H8 −0.4428 0.3192 0.1095 0.042*

C9 −0.3768 (4) 0.1988 (3) 0.2545 (3) 0.0413 (6)

H9 −0.4845 0.1416 0.2299 0.050*

C10 −0.2414 (4) 0.1775 (3) 0.3629 (3) 0.0420 (6)

H10 −0.2559 0.1037 0.4103 0.050*

C11 −0.0842 (3) 0.2667 (3) 0.4004 (3) 0.0390 (6)

H11 0.0084 0.2549 0.4744 0.047*

C12 −0.0663 (3) 0.3743 (2) 0.3261 (2) 0.0308 (5) C13 0.0946 (3) 0.4793 (2) 0.3589 (2) 0.0306 (5) C14 0.2398 (3) 0.4906 (3) 0.4764 (3) 0.0384 (6)

H14 0.2423 0.4290 0.5396 0.046*

C15 0.3816 (3) 0.5954 (3) 0.4982 (3) 0.0426 (6)

H15 0.4802 0.6061 0.5773 0.051*

C16 0.3754 (3) 0.6834 (3) 0.4022 (3) 0.0462 (7)

H16 0.4703 0.7529 0.4142 0.055*

C17 0.2269 (3) 0.6675 (3) 0.2878 (3) 0.0426 (6)

H17 0.2227 0.7277 0.2232 0.051*

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, m1833–m1835

H6B −0.351 (5) 0.533 (3) −0.114 (3) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cu1 0.02929 (18) 0.03047 (19) 0.02646 (18) 0.00328 (12) 0.00821 (13) 0.01215 (12) S1 0.0327 (3) 0.0231 (3) 0.0292 (3) 0.0027 (2) 0.0119 (2) 0.0084 (2) O1 0.0334 (9) 0.0404 (10) 0.0333 (9) 0.0010 (7) 0.0080 (7) 0.0200 (7) O2 0.0333 (10) 0.0502 (11) 0.0503 (11) −0.0024 (8) 0.0037 (9) 0.0299 (9) O4 0.0337 (9) 0.0443 (10) 0.0457 (11) −0.0042 (8) 0.0045 (8) 0.0180 (8) O5 0.0464 (10) 0.0389 (9) 0.0318 (9) 0.0031 (8) 0.0187 (8) 0.0074 (7) O3 0.0710 (13) 0.0283 (9) 0.0601 (12) 0.0180 (9) 0.0394 (11) 0.0175 (8) O6 0.0509 (12) 0.0460 (12) 0.0367 (11) −0.0154 (9) −0.0065 (9) 0.0205 (9) N1 0.0325 (10) 0.0298 (10) 0.0275 (10) 0.0089 (8) 0.0126 (8) 0.0081 (8) N2 0.0292 (10) 0.0403 (11) 0.0301 (10) 0.0083 (8) 0.0121 (8) 0.0101 (8) C1 0.0327 (13) 0.0307 (12) 0.0314 (12) 0.0067 (9) 0.0141 (10) 0.0095 (9) C2 0.0312 (11) 0.0272 (11) 0.0276 (11) 0.0075 (9) 0.0140 (9) 0.0083 (9) C3 0.0364 (13) 0.0338 (12) 0.0278 (12) 0.0070 (10) 0.0088 (10) 0.0122 (10) C4 0.0297 (12) 0.0328 (12) 0.0277 (12) 0.0018 (9) 0.0054 (9) 0.0091 (9) C5 0.0338 (12) 0.0216 (11) 0.0289 (11) 0.0064 (9) 0.0144 (9) 0.0077 (9) C6 0.0338 (12) 0.0372 (13) 0.0375 (13) 0.0089 (10) 0.0079 (10) 0.0221 (11) C7 0.0270 (12) 0.0401 (14) 0.0386 (13) 0.0051 (10) 0.0079 (10) 0.0156 (11) C8 0.0385 (13) 0.0342 (13) 0.0308 (12) 0.0063 (10) 0.0131 (10) 0.0080 (10) C9 0.0494 (15) 0.0357 (13) 0.0358 (14) 0.0030 (11) 0.0189 (12) 0.0070 (11) C10 0.0635 (17) 0.0299 (13) 0.0381 (14) 0.0141 (12) 0.0247 (13) 0.0131 (11) C11 0.0510 (15) 0.0389 (14) 0.0333 (13) 0.0225 (12) 0.0164 (12) 0.0156 (11) C12 0.0385 (13) 0.0316 (12) 0.0292 (12) 0.0167 (10) 0.0163 (10) 0.0084 (9) C13 0.0332 (12) 0.0364 (13) 0.0286 (11) 0.0162 (10) 0.0148 (10) 0.0091 (9) C14 0.0390 (14) 0.0496 (15) 0.0305 (13) 0.0218 (12) 0.0115 (11) 0.0121 (11) C15 0.0337 (13) 0.0590 (17) 0.0341 (14) 0.0195 (12) 0.0088 (11) 0.0036 (12) C16 0.0301 (13) 0.0606 (17) 0.0438 (15) 0.0041 (12) 0.0155 (11) 0.0031 (13) C17 0.0356 (13) 0.0531 (16) 0.0356 (13) 0.0054 (11) 0.0138 (11) 0.0135 (11)

Geometric parameters (Å, º)

Cu1—O6 1.930 (2) C4—C5 1.391 (3)

Cu1—O1 1.949 (2) C4—H4 0.9300

Cu1—N1 1.992 (2) C5—C6 1.386 (3)

Cu1—N2 1.995 (2) C6—C7 1.375 (3)

Cu1—O3i 2.316 (2) C6—H6 0.9300

S1—O5 1.443 (2) C7—H7 0.9300

S1—O4 1.451 (2) C8—C9 1.374 (3)

S1—O3 1.457 (2) C8—H8 0.9300

S1—C5 1.770 (2) C9—C10 1.377 (4)

O1—C1 1.276 (3) C9—H9 0.9300

O2—C1 1.242 (3) C10—C11 1.378 (4)

O3—Cu1i 2.316 (2) C10—H10 0.9300

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, m1833–m1835

O6—H6B 0.89 (3) C11—H11 0.9300

N1—C8 1.344 (3) C12—C13 1.482 (3)

N1—C12 1.350 (3) C13—C14 1.382 (3)

N2—C17 1.343 (3) C14—C15 1.386 (4)

N2—C13 1.347 (3) C14—H14 0.9300

C1—C2 1.496 (3) C15—C16 1.371 (4)

C2—C3 1.384 (3) C15—H15 0.9300

C2—C7 1.395 (3) C16—C17 1.375 (4)

C3—C4 1.378 (3) C16—H16 0.9300

C3—H3 0.9300 C17—H17 0.9300

O6—Cu1—O1 91.72 (8) C6—C5—C4 119.5 (2)

O6—Cu1—N1 94.19 (8) C6—C5—S1 119.6 (2)

O1—Cu1—N1 170.77 (7) C4—C5—S1 120.8 (2)

O6—Cu1—N2 167.67 (9) C7—C6—C5 120.2 (2)

O1—Cu1—N2 91.55 (8) C7—C6—H6 119.9

N1—Cu1—N2 81.23 (8) C5—C6—H6 119.9

O6—Cu1—O3i 99.13 (9) C6—C7—C2 120.6 (2)

O1—Cu1—O3i 97.93 (7) C6—C7—H7 119.7

N1—Cu1—O3i 88.13 (7) C2—C7—H7 119.7

N2—Cu1—O3i 92.18 (8) N1—C8—C9 122.3 (2)

O5—S1—O4 113.2 (1) N1—C8—H8 118.9

O5—S1—O3 111.2 (1) C9—C8—H8 118.9

O4—S1—O3 113.1 (1) C8—C9—C10 119.3 (2)

O5—S1—C5 106.0 (1) C8—C9—H9 120.4

O4—S1—C5 106.3 (1) C10—C9—H9 120.4

O3—S1—C5 106.5 (1) C9—C10—C11 119.2 (2)

C1—O1—Cu1 129.3 (2) C9—C10—H10 120.4

S1—O3—Cu1i 147.2 (1) C11—C10—H10 120.4

Cu1—O6—H6A 127 (2) C10—C11—C12 119.0 (2)

Cu1—O6—H6B 110 (2) C10—C11—H11 120.5

H6A—O6—H6B 111 (3) C12—C11—H11 120.5

C8—N1—C12 118.5 (2) N1—C12—C11 121.7 (2)

C8—N1—Cu1 126.6 (2) N1—C12—C13 114.2 (2)

C12—N1—Cu1 114.9 (2) C11—C12—C13 124.1 (2)

C17—N2—C13 118.8 (2) N2—C13—C14 121.7 (2)

C17—N2—Cu1 126.1 (2) N2—C13—C12 114.4 (2)

C13—N2—Cu1 114.9 (2) C14—C13—C12 123.8 (2)

O2—C1—O1 125.0 (2) C13—C14—C15 118.7 (2)

O2—C1—C2 118.5 (2) C13—C14—H14 120.6

O1—C1—C2 116.5 (2) C15—C14—H14 120.6

C3—C2—C7 118.8 (2) C16—C15—C14 119.4 (2)

C3—C2—C1 121.7 (2) C16—C15—H15 120.3

C7—C2—C1 119.5 (2) C14—C15—H15 120.3

C4—C3—C2 120.9 (2) C15—C16—C17 119.1 (3)

C4—C3—H3 119.5 C15—C16—H16 120.4

C2—C3—H3 119.5 C17—C16—H16 120.4

(8)

supporting information

sup-5

Acta Cryst. (2004). E60, m1833–m1835

C3—C4—H4 120.0 N2—C17—H17 118.9

C5—C4—H4 120.0 C16—C17—H17 118.9

Symmetry code: (i) −x, −y+2, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O6—H6A···O4ii 0.89 (1) 1.80 (1) 2.688 (3) 172 (3)

O6—H6B···O2 0.89 (3) 1.71 (2) 2.538 (3) 153 (4)

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical