• No results found

A new amine phosphate templated by tris­(2 amino­ethyl)­amine

N/A
N/A
Protected

Academic year: 2020

Share "A new amine phosphate templated by tris­(2 amino­ethyl)­amine"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2004). E60, o2241±o2243 doi: 10.1107/S1600536804027540 Dakhlaouiet al. C6H21N43+HPO42ÿH2PO4ÿ

o2241

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

A new amine phosphate templated by

tris(2-aminoethyl)amine

Amel Dakhlaoui,aLeila Samia

Smiria* and Ahmed Drissb

aUnite de Recherche 99/UR12-30, DeÂpartement

de Chimie, Faculte des Sciences de Bizerte, 7021 Jarzouna, Tunisia, andbDeÂpartement de

Chimie, Faculte des Sciences, 1060 Campus Universitaire, Tunis, Tunisia

Correspondence e-mail: leila.smiri@fsb.rnu.tn

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.003 AÊ

Rfactor = 0.035

wRfactor = 0.103

Data-to-parameter ratio = 17.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, tris(2-ammonioethyl)amine dihydrogen-phosphate monohydrogendihydrogen-phosphate, C6H21N43+HPO42ÿ

-H2PO4ÿ, was prepared hydrothermally at 413 K over a period

of 15 d. The structure exhibits extended polyanions, [(HPO4

)-(H2PO4)]n3nÿ, constructed as OÐH O hydrogen-bonded

ribbons. The triprotonated amine cations connect adjacent ribbons via NÐH O hydrogen bonds, giving rise to molecular sheets parallel to (010).

Comment

The synthesis of hybrid phosphates is of continuing interest because of their potential application in various ®elds (catal-ysis, fuel cells, protonic conductors, non-linear optics, etc.). Thus, numerous hydrogen phosphates with organic cations have been characterized, but to our knowledge, only three compounds with HPO42ÿand H2PO4ÿentities together have

been reported: 3C10H16NO+H2PO4ÿHPO42ÿH2O

(Mukho-padhyay et al., 1989), C12H32N33+H2PO4ÿHPO42ÿ6H2O

(Neeraj & Natarajan, 2001) and 6C3H7N6+4H2PO4ÿ

-HPO42ÿH2O (Janczak & Perpetuo, 2002). This paper

describes the synthesis and crystal structure determination of a new organic hydrogen and dihydrogen monophosphate C6H21N43+HPO42ÿH2PO4ÿ, (I). Two crystallographically

independent phosphate groups and a single triprotonated amine cation are present in the asymmetric unit of (I) (Fig. 1). The HP2O42ÿanions are assembled in dimers through

strong [O7 O5ii= 2.584 (2) AÊ; symmetry code: (ii) 1ÿx, 1-y,

1-z] hydrogen bonds. Each dimer aggregates with four H2P1O4ÿ groups via hydrogen bonding [O3 O8 =

2.526 (2) AÊ and O4 O6i= 2.558 (2) AÊ; symmetry code: (i)

1 +x, y, z], forming extended inorganic ribbons, [(HPO4

)-(H2PO4)]n3nÿ, parallel to theaaxis (Fig. 2). These ribbons can

be considered as polyanions, since the O O distances in the hydrogen-bond scheme maintaining their cohesion is of the same order of magnitude as in the (PO4) tetrahedron.

The triprotonated amine cations link adjacent polyanions

via relatively weak hydrogen bonding (Table 2), forming molecular layers parallel to the (010) plane (Fig. 3). The

(2)

geometrical features of the two distinct phosphorus groups are quite regular (Table 1). For P2,dav= 1.538 AÊ for PÐO, with

the longest distance [P2ÐO7 = 1.5826 (16) AÊ] corresponding to the protonated atom O7 and withav= 109.44for OÐPÐ

O. For P1,dav= 1.541 AÊ for PÐO, with the longest distances

[P1ÐO3 = 1.5729 (15) AÊ and P1ÐO4 = 1.5671 (16) AÊ] corresponding to the PÐO(H) bonds and withav= 109.38

for OÐPÐO. The NÐC and CÐC distances and the CÐNÐ C and CÐCÐN angles observed in the triprotonated amine

cations lie within the ranges 1.474 (2)±1.516 (3) AÊ and 109.57 (15)±113.20 (16), respectively.

Experimental

The title compound was prepared from a starting mixture of Co(acetate)2H2O±H3PO4 (85%)±tris(2-aminoethyl)amine±ethanol in a 1:3.5:2.5:80 molar ratio under mild hydrothermal conditions (413 K, 15 d, autogenous pressure) in a Te¯on-lined autoclave. The resulting product was washed with ethanol and dried in air. A suitable colorless single crystal of (I) was selected under a polarizing micro-scope.

Crystal data

C6H21N43+HO4P2ÿH2O4Pÿ Mr= 342.23

Triclinic,P1

a= 7.905 (2) AÊ

b= 9.441 (2) AÊ

c= 10.974 (3) AÊ

= 76.37 (2) = 101.29 (3) = 105.96 (3) V= 757.7 (3) AÊ3

Z= 2

Dx= 1.500 Mg mÿ3 MoKradiation Cell parameters from 25

re¯ections

= 5.3±7.5 = 0.33 mmÿ1 T= 293 (2) K

Parallelepiped, colorless 0.260.190.10 mm Data collection

Enraf±Nonius CAD-4 diffractometer Non-pro®led!/2scans Absorption correction: none 3534 measured re¯ections 3290 independent re¯ections 2774 re¯ections withI> 2(I)

Rint= 0.012

max= 27.0 h= 0!10

k=ÿ12!11

l=ÿ14!13 2 standard re¯ections

frequency: 120 min intensity decay: 3%

Refinement Re®nement onF2 R[F2> 2(F2)] = 0.035 wR(F2) = 0.103 S= 1.05 3290 re¯ections 186 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0528P)2 + 0.417P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.33 e AÊÿ3 min=ÿ0.38 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.014 (3)

Table 1

Selected geometric parameters (AÊ,).

P1ÐO2 1.5116 (15) P1ÐO1 1.5118 (14) P1ÐO4 1.5671 (16) P1ÐO3 1.5729 (15) P2ÐO8 1.5117 (15) P2ÐO6 1.5231 (15) P2ÐO5 1.5354 (15) P2ÐO7 1.5826 (16)

NÐC5 1.475 (3)

NÐC3 1.478 (2)

NÐC1 1.480 (2)

N1ÐC2 1.484 (3)

N2ÐC4 1.477 (3)

N3ÐC6 1.482 (2)

C1ÐC2 1.516 (3)

C3ÐC4 1.518 (3)

C5ÐC6 1.516 (3)

O2ÐP1ÐO1 113.86 (9) O2ÐP1ÐO4 109.98 (10) O1ÐP1ÐO4 111.09 (9) O2ÐP1ÐO3 105.03 (8) O1ÐP1ÐO3 111.70 (9) O4ÐP1ÐO3 104.63 (9) O8ÐP2ÐO6 111.98 (9) O8ÐP2ÐO5 110.52 (10) O6ÐP2ÐO5 110.84 (9) O8ÐP2ÐO7 109.20 (10) O6ÐP2ÐO7 105.76 (9)

O5ÐP2ÐO7 108.37 (8) C5ÐNÐC3 111.24 (15) C5ÐNÐC1 109.90 (15) C3ÐNÐC1 109.57 (15) NÐC1ÐC2 112.86 (16) N1ÐC2ÐC1 112.14 (16) NÐC3ÐC4 112.37 (16) N2ÐC4ÐC3 112.38 (16) NÐC5ÐC6 113.20 (16) N3ÐC6ÐC5 112.56 (16)

organic papers

o2242

Dakhlaouiet al. C6H21N43+HPO42ÿH2PO4ÿ Acta Cryst.(2004). E60, o2241±o2243 Figure 2

Extended [(HPO4)(H2PO4)]n3nÿ ribbons in (I). Dashed lines indicate

hydrogen bonds. Figure 1

ORTEPview (Farrugia, 1997) of the asymmetric unit of (I). Displace-ment ellipsoids are shown at the 50% probability level.

Figure 3

(3)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O3ÐH3 O8 0.82 1.77 2.526 (2) 152 N1ÐH1C O1 0.89 2.16 2.968 (2) 151 N2ÐH2C O1 0.89 2.01 2.859 (2) 160 N3ÐH3A O5 0.89 2.08 2.905 (2) 153 N3ÐH3A O8 0.89 2.54 3.161 (3) 127 N3ÐH3C O1 0.89 2.00 2.846 (2) 158 O4ÐH4 O6i 0.82 1.77 2.558 (2) 161

O7ÐH7 O5ii 0.82 1.79 2.584 (2) 162

N1ÐH1A O8iii 0.89 1.97 2.760 (2) 147

N1ÐH1B O2iv 0.89 1.93 2.715 (2) 146

N2ÐH2A O5i 0.89 2.00 2.804 (2) 149

N3ÐH3B O2iii 0.89 1.97 2.733 (2) 142

N3ÐH3B O3iii 0.89 2.60 3.417 (2) 154

Symmetry codes: (i) 1‡x;y;z; (ii) 1ÿx;1ÿy;1ÿz; (iii) 1ÿx;1ÿy;ÿz; (iv) 2ÿx;1ÿy;ÿz.

All H atoms were allowed to ride on their parent atoms, with OÐ H distances of 0.82 AÊ, NÐH distances of 0.89 AÊ and CÐH distances

of 0.97 AÊ, with Uiso(H) = 1.2Ueq(O,N). A common isotropic dis-placement parameter for C-bound H atoms re®ned to 0.0416 (19) AÊ2. Data collection: CAD-4 EXPRESS (Duisenberg, 1992); cell re®nement:CAD-4EXPRESS; data reduction:XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGXpublication routines (Farrugia, 1999).

References

Duisenberg, A. J. M. (1992).J. Appl. Cryst.25, 92±96. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837±838.

Harms, K. & Wocadlo, S. (1995).XCAD4. University of Marburg, Germany. Janczak, J. & Perpetuo, G. J. (2002).Acta Cryst.C58, o455±o459.

Mukhopadhyay, B. P., Dattagupta, J. K. & Simonetta, M. (1989).Z. Kristallogr.

187, 221±229.

Neeraj, S. & Natarajan, S. (2001).Cryst. Growth Des.1, 491±499.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

organic papers

(4)

supporting information

sup-1 Acta Cryst. (2004). E60, o2241–o2243

supporting information

Acta Cryst. (2004). E60, o2241–o2243 [https://doi.org/10.1107/S1600536804027540]

A new amine phosphate templated by tris(2-aminoethyl)amine

Amel Dakhlaoui, Leila Samia Smiri and Ahmed Driss

(I)

Crystal data

C6H21N43+·HO4P2−·H2O4P−

Mr = 342.23 Triclinic, P1 Hall symbol: -P 1

a = 7.905 (2) Å

b = 9.441 (2) Å

c = 10.974 (3) Å

α = 76.37 (2)°

β = 101.29 (3)°

γ = 105.96 (3)°

V = 757.7 (3) Å3

Z = 2

F(000) = 364

Dx = 1.500 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections

θ = 5.3–7.5°

µ = 0.33 mm−1

T = 293 K

Parallelepiped, colourless 0.26 × 0.19 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

non–profiled ω/2θ scans 3534 measured reflections 3290 independent reflections 2774 reflections with I > 2σ(I)

Rint = 0.012

θmax = 27.0°, θmin = 2.3°

h = 0→10

k = −12→11

l = −14→13

2 standard reflections every 120 min intensity decay: 3%

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.035

wR(F2) = 0.103

S = 1.05 3290 reflections 186 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0528P)2 + 0.417P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.33 e Å−3 Δρmin = −0.38 e Å−3

(5)

supporting information

sup-2 Acta Cryst. (2004). E60, o2241–o2243

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(6)

supporting information

sup-3 Acta Cryst. (2004). E60, o2241–o2243

C4 0.9250 (3) 0.1755 (2) 0.4314 (2) 0.0324 (4) H4A 0.9696 0.1360 0.5181 0.0416 (19)* H4B 1.0017 0.1649 0.3768 0.0416 (19)* C5 0.4730 (3) 0.0736 (2) 0.2397 (2) 0.0304 (4) H5A 0.4393 −0.0315 0.2794 0.0416 (19)* H5B 0.4347 0.0811 0.1494 0.0416 (19)* C6 0.3775 (3) 0.1616 (2) 0.2904 (2) 0.0311 (4) H6A 0.2509 0.1160 0.2794 0.0416 (19)* H6B 0.4176 0.1561 0.3804 0.0416 (19)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

P1 0.0207 (2) 0.0239 (2) 0.0223 (2) 0.00700 (18) 0.00197 (17) −0.00190 (18) O1 0.0308 (7) 0.0262 (7) 0.0319 (7) 0.0074 (6) 0.0035 (6) 0.0006 (6) O2 0.0264 (7) 0.0505 (9) 0.0273 (7) 0.0129 (6) 0.0072 (6) −0.0033 (6) O3 0.0293 (7) 0.0466 (9) 0.0295 (7) 0.0201 (7) 0.0086 (6) 0.0037 (6) O4 0.0471 (9) 0.0271 (7) 0.0469 (10) 0.0106 (7) −0.0181 (7) −0.0083 (7) P2 0.0204 (2) 0.0260 (2) 0.0187 (2) 0.00759 (18) 0.00050 (17) −0.00442 (17) O5 0.0262 (7) 0.0270 (7) 0.0390 (8) 0.0046 (6) −0.0037 (6) −0.0021 (6) O6 0.0360 (8) 0.0517 (9) 0.0252 (7) 0.0255 (7) 0.0004 (6) −0.0102 (6) O7 0.0437 (9) 0.0270 (7) 0.0477 (10) 0.0107 (7) −0.0216 (7) −0.0103 (7) O8 0.0323 (8) 0.0684 (11) 0.0248 (7) 0.0186 (8) 0.0090 (6) −0.0030 (7) N 0.0260 (8) 0.0209 (7) 0.0243 (8) 0.0059 (6) 0.0044 (6) −0.0037 (6) N1 0.0239 (8) 0.0355 (9) 0.0248 (8) 0.0069 (7) 0.0053 (6) −0.0061 (7) N2 0.0233 (8) 0.0303 (8) 0.0245 (8) 0.0045 (6) 0.0042 (6) −0.0049 (6) N3 0.0258 (8) 0.0300 (8) 0.0284 (8) 0.0106 (7) 0.0027 (6) −0.0069 (7) C1 0.0384 (11) 0.0284 (10) 0.0345 (11) 0.0142 (8) 0.0069 (9) −0.0079 (8) C2 0.0344 (11) 0.0345 (11) 0.0309 (10) 0.0065 (9) 0.0056 (8) −0.0133 (8) C3 0.0359 (11) 0.0255 (9) 0.0256 (9) 0.0067 (8) 0.0029 (8) −0.0001 (7) C4 0.0319 (10) 0.0354 (11) 0.0330 (11) 0.0148 (8) −0.0006 (8) −0.0089 (8) C5 0.0279 (10) 0.0238 (9) 0.0389 (11) 0.0034 (8) 0.0039 (8) −0.0087 (8) C6 0.0283 (10) 0.0326 (10) 0.0322 (10) 0.0061 (8) 0.0115 (8) −0.0017 (8)

Geometric parameters (Å, º)

(7)

supporting information

sup-4 Acta Cryst. (2004). E60, o2241–o2243

N—C3 1.478 (2) C3—H3E 0.9700 N—C1 1.480 (2) C4—H4A 0.9700 N1—C2 1.484 (3) C4—H4B 0.9700 N1—H1A 0.8900 C5—C6 1.516 (3) N1—H1B 0.8900 C5—H5A 0.9700 N1—H1C 0.8900 C5—H5B 0.9700 N2—C4 1.477 (3) C6—H6A 0.9700 N2—H2A 0.8900 C6—H6B 0.9700 N2—H2B 0.8900

O2—P1—O1 113.86 (9) N—C1—C2 112.86 (16) O2—P1—O4 109.98 (10) N—C1—H1D 109.0 O1—P1—O4 111.09 (9) C2—C1—H1D 109.0 O2—P1—O3 105.03 (8) N—C1—H1E 109.0 O1—P1—O3 111.70 (9) C2—C1—H1E 109.0 O4—P1—O3 104.63 (9) H1D—C1—H1E 107.8 P1—O3—H3 109.5 N1—C2—C1 112.14 (16) P1—O4—H4 109.5 N1—C2—H2D 109.2 O8—P2—O6 111.98 (9) C1—C2—H2D 109.2 O8—P2—O5 110.52 (10) N1—C2—H2E 109.2 O6—P2—O5 110.84 (9) C1—C2—H2E 109.2 O8—P2—O7 109.20 (10) H2D—C2—H2E 107.9 O6—P2—O7 105.76 (9) N—C3—C4 112.37 (16) O5—P2—O7 108.37 (8) N—C3—H3D 109.1 P2—O7—H7 109.5 C4—C3—H3D 109.1 C5—N—C3 111.24 (15) N—C3—H3E 109.1 C5—N—C1 109.90 (15) C4—C3—H3E 109.1 C3—N—C1 109.57 (15) H3D—C3—H3E 107.9 C2—N1—H1A 109.5 N2—C4—C3 112.38 (16) C2—N1—H1B 109.5 N2—C4—H4A 109.1 H1A—N1—H1B 109.5 C3—C4—H4A 109.1 C2—N1—H1C 109.5 N2—C4—H4B 109.1 H1A—N1—H1C 109.5 C3—C4—H4B 109.1 H1B—N1—H1C 109.5 H4A—C4—H4B 107.9 C4—N2—H2A 109.5 N—C5—C6 113.20 (16) C4—N2—H2B 109.5 N—C5—H5A 108.9 H2A—N2—H2B 109.5 C6—C5—H5A 108.9 C4—N2—H2C 109.5 N—C5—H5B 108.9 H2A—N2—H2C 109.5 C6—C5—H5B 108.9 H2B—N2—H2C 109.5 H5A—C5—H5B 107.8 C6—N3—H3A 109.5 N3—C6—C5 112.56 (16) C6—N3—H3B 109.5 N3—C6—H6A 109.1 H3A—N3—H3B 109.5 C5—C6—H6A 109.1 C6—N3—H3C 109.5 N3—C6—H6B 109.1 H3A—N3—H3C 109.5 C5—C6—H6B 109.1 H3B—N3—H3C 109.5 H6A—C6—H6B 107.8

(8)

supporting information

sup-5 Acta Cryst. (2004). E60, o2241–o2243

C3—N—C1—C2 −163.34 (16) C3—N—C5—C6 72.2 (2) N—C1—C2—N1 57.8 (2) C1—N—C5—C6 −166.28 (16) C5—N—C3—C4 −162.07 (16) N—C5—C6—N3 63.9 (2) C1—N—C3—C4 76.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O3—H3···O8 0.82 1.77 2.526 (2) 152 N1—H1C···O1 0.89 2.16 2.968 (2) 151 N2—H2C···O1 0.89 2.01 2.859 (2) 160 N3—H3A···O5 0.89 2.08 2.905 (2) 153 N3—H3A···O8 0.89 2.54 3.161 (3) 127 N3—H3C···O1 0.89 2.00 2.846 (2) 158 O4—H4···O6i 0.82 1.77 2.558 (2) 161 O7—H7···O5ii 0.82 1.79 2.584 (2) 162 N1—H1A···O8iii 0.89 1.97 2.760 (2) 147 N1—H1B···O2iv 0.89 1.93 2.715 (2) 146 N2—H2A···O5i 0.89 2.00 2.804 (2) 149 N3—H3B···O2iii 0.89 1.97 2.733 (2) 142 N3—H3B···O3iii 0.89 2.60 3.417 (2) 154

References

Related documents

The indexing of The Journal of Social Sciences Research (Online ISSN: 2411-9458/Print ISSN: 2413-6670) is questionable because it was considered for evaluation before it had

The results of this research shows that Discount rate news is significant and positive variable in explanation of unexpected stock return variation whereas the

Enrollment-Based No Pass, No Drive policies, the largest group of policies, which target both enrollment and attendance, have negligible effects on dropout rates, but decrease

Our explicit retrofitting framework brings to- gether desirable properties of both model classes: (1) unlike joint models, it does not require adap- tation to the

For each conversation in the tech support data, we sample context and response pairs to create a dataset similar to the Ubuntu dataset format. Note that multiple context-response

the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Interna- tional Joint Conference on Natural Language Pro- cessing (Volume 2: Short

The same situation arises in the so-called Lagrange constrained utility maximization concept, which skips individual demand all together to differentiate a utility function so as

Although, rapid diagnostic tests like TUBEX and Typhidot have shown improved diagnostic accuracy over the routinely used Widal test and can potentially be employed