• No results found

RbGd2CuS4

N/A
N/A
Protected

Academic year: 2020

Share "RbGd2CuS4"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

inorganic papers

Acta Cryst.(2004). E60, i95±i96 DOI: 10.1107/S1600536804016460 Yao and Ibers RbGd2CuS4

i95

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

RbGd

2

CuS

4

Jiyong Yao and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

Correspondence e-mail: ibers@chem.northwestern.edu

Key indicators

Single-crystal X-ray study

T= 153 K

Mean(Cu±S) = 0.001 AÊ

Rfactor = 0.020

wRfactor = 0.058

Data-to-parameter ratio = 18.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

Rubidium digadolinium copper tetrasul®de, RbGd2CuS4,

crystallizes in the orthorhombic space group Cmcm and is

isostructural with KGd2CuS4. The structure has a

three-dimensional tunnel framework, with tunnels built from GdS6

octahedra and CuS4tetrahedra. These tunnels are ®lled with Rb atoms.

Comment

Ternary and quaternary rare-earth chalcogenides containing a

combination ofdandfelements have been reviewed recently

(Mitchell & Ibers, 2002). We report here the structure of RbGd2CuS4, a new member of this large family.

RbGd2CuS4, which has the KGd2CuS4structure type (Stoll

et al., 1998), crystallizes in space group Cmcm of the ortho-rhombic system. The site symmetries of the atoms in the asymmetric unit (Fig. 1) are: S3 (2/m); Rb, Cu and S1 (mm); Gd and S2 (m). The structure of RbGd2CuS4is shown in Fig. 2. It has a three-dimensional tunnel framework built from GdS6 octahedra and CuS4tetrahedra. The tunnel, comprising a ten-membered ring of four CuÐS bonds and six GdÐS bonds, is only large enough in cross section to accommodate one Rb atom. Each Rb atom is coordinated to a bicapped trigonal prism of eight S atoms, with RbÐS distances ranging from 3.193 (1) to 3.7557 (4) AÊ, comparable to those of 3.247 (2) to 3.7951 (4) AÊ in RbNd2CuS4(Huang & Ibers, 2000). The GdÐ S distances range from 2.7259 (6) to 2.8500 (2) AÊ, consistent with those of 2.697 (1) to 2.8437 (2) AÊ in Rb2Gd4Cu4S9 (Huang & Ibers, 2000), and the CuÐS distances are 2.346 (1) and 2.361 (1) AÊ, comparable to those of 2.3530 (9) and 2.4025 (8) AÊ in KNd2CuS4(Yaoet al., 2003).

Experimental

RbGd2CuS4was obtained as red blocks from a solid-state reaction of

Rb2S3 (1.2 mmol), Gd (1.0 mmol, Aldrich, 99%), Cu (0.5 mmol,

Received 28 June 2004 Accepted 6 July 2004 Online 17 July 2004

Figure 1

The atoms in the asymmetric unit of RbGd2CuS4, with displacement

(2)

Aldrich, 99.999%) and S (2.0 mmol, Aldrich, 99.5%). The Rb2S3

reactive ¯ux (Sunshine et al., 1987) was prepared by the stoichio-metric reaction of Rb (Aldrich, 98+%) and S in liquid NH3. The

reactants were loaded into a fused-silica tube under an Ar atmo-sphere in a glove box. The tube was sealed under a 10ÿ4Torr

atmosphere and then placed in a computer-controlled furnace. The sample was heated to 1173 K over a period of 25 h, kept at 1173 K for 3 d, slowly cooled at 10 K hÿ1 to 473 K and then cooled to room

temperature.

Crystal data

RbGd2CuS4

Mr= 591.75

Orthorhombic,Cmcm a= 4.0030 (3) AÊ b= 13.7095 (10) AÊ c= 13.8146 (10) AÊ V= 758.13 (10) AÊ3

Z= 4

Dx= 5.184 Mg mÿ3

MoKradiation Cell parameters from 4160

re¯ections

= 3.0±28.3

= 27.44 mmÿ1

T= 153 (2) K Block, red

0.250.160.12 mm

Data collection

Bruker SMART 1000 CCD diffractometer

!scans

Absorption correction: numerical face-indexed (SHELXTL; Sheldrick, 2003) Tmin= 0.012,Tmax= 0.122

4276 measured re¯ections

546 independent re¯ections 542 re¯ections withI> 2(I) Rint= 0.048

max= 28.3

h=ÿ5!5 k=ÿ17!18 l=ÿ18!18

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.020

wR(F2) = 0.058

S= 1.40 546 re¯ections 30 parameters

w= 1/[2(F

o2) + (0.03P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 1.40 e AÊÿ3 min=ÿ1.20 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0049 (3)

Table 1

Selected geometric parameters (AÊ,).

GdÐS1 2.7259 (6) GdÐS2i 2.7348 (8)

GdÐS2ii 2.7688 (11)

GdÐS3iii 2.8500 (2)

RbÐS1iv 3.1928 (14)

RbÐS2v 3.3160 (9)

RbÐS3 3.7557 (4) CuÐS2vi 2.3460 (11)

CuÐS1iii 2.3612 (11)

S1ÐGdÐS2i 87.98 (3)

S2iÐGdÐS2vii 94.09 (3)

S1ÐGdÐS2ii 166.52 (4)

S2iÐGdÐS2ii 82.86 (3)

S2iÐGdÐS3iii 176.13 (2)

S2iiÐGdÐS3iii 94.396 (18)

S1ÐGdÐS3viii 95.19 (3)

S2iÐGdÐS3viii 88.267 (18)

S3iiiÐGdÐS3viii 89.221 (8)

S2viÐCuÐS2ix 111.60 (6)

S2viÐCuÐS1iii 107.35 (2)

S1iiiÐCuÐS1viii 115.92 (8) Symmetry codes: (i) ÿ1

2ÿx;12ÿy;zÿ12; (ii) x;y;12ÿz; (iii) 12‡x;12‡y;z; (iv)

xÿ1

2;yÿ12;z; (v)12ÿx;12ÿy;1ÿz; (vi)ÿx;1ÿy;zÿ12; (vii)12ÿx;12ÿy;zÿ12; (viii)

xÿ1

2;12‡y;z; (ix)ÿx;1ÿy;1ÿz.

The maximim and minimum residual electron densities are located 0.96 and 1.27 AÊ from atoms Gd and Cu, respectively.

Data collection:SMART(Bruker, 2003); cell re®nement: SAINT-Plus(Bruker, 2003); data reduction:SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to re®ne structure:SHELXTL; molecular graphics:XPinSHELXTL; software used to prepare material for publication:SHELXTL.

This research was supported by the MRSEC program of the National Science Foundation (DMR00-76097) at the Materials Research Center of Northwestern University.

References

Bruker (2003). SMART(Version 5.054) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.

Huang, F. Q. & Ibers, J. A. (2000).J. Solid State Chem.151, 317±322. Mitchell, K. & Ibers, J. A. (2002).Chem. Rev.102, 1929±1952.

Sheldrick, G. M. (2003).SHELXTLDOS/Windows/NT. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.

Stoll, P., DuÈrichen, P., NaÈther, C. & Bensch, W. (1998).Z. Anorg. Allg. Chem.

624, 1807±1810.

Sunshine, S. A., Kang, D. & Ibers, J. A. (1987).J. Am. Chem. Soc.109, 6202± 6204.

Yao, J., Deng, B., Ellis, D. E. & Ibers, J. A. (2003).J. Solid State Chem.176, 5±12.

Figure 2

(3)

supporting information

sup-1

Acta Cryst. (2004). E60, i95–i96

supporting information

Acta Cryst. (2004). E60, i95–i96 [https://doi.org/10.1107/S1600536804016460]

RbGd

2

CuS

4

Jiyong Yao and James A. Ibers

Rubidium digadolinium copper tetrasulfide

Crystal data

RbGd2CuS4

Mr = 591.75

Orthorhombic, Cmcm

Hall symbol: -C 2c 2

a = 4.0030 (3) Å

b = 13.7095 (10) Å

c = 13.8146 (10) Å

V = 758.13 (10) Å3

Z = 4

F(000) = 1032

Dx = 5.184 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 4160 reflections

θ = 3.0–28.3°

µ = 27.44 mm−1

T = 153 K Plate, red

0.25 × 0.16 × 0.12 mm

Data collection

Bruker SMART 1000 CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: numerical

face indexed (SHELXTL; Sheldrick, 2003)

Tmin = 0.012, Tmax = 0.122

4276 measured reflections 546 independent reflections 542 reflections with I > 2σ(I)

Rint = 0.048

θmax = 28.3°, θmin = 3.0°

h = −5→5

k = −17→18

l = −18→18

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.020

wR(F2) = 0.058

S = 1.40 546 reflections 30 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

w = 1/[σ2(F

o2) + (0.030P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 1.40 e Å−3 Δρmin = −1.20 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0049 (3)

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Gd 0.0000 0.365836 (16) 0.061990 (17) 0.00771 (17)

Rb 0.0000 0.10763 (5) 0.2500 0.0112 (2)

Cu 0.0000 0.83481 (6) 0.2500 0.0102 (2)

S1 0.0000 0.42618 (12) 0.2500 0.0085 (3)

S2 0.0000 0.26137 (8) 0.60954 (8) 0.0086 (3)

S3 0.0000 0.0000 0.0000 0.0101 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Gd 0.0068 (2) 0.0103 (2) 0.0061 (2) 0.000 0.000 0.00004 (6)

Rb 0.0091 (4) 0.0119 (4) 0.0125 (4) 0.000 0.000 0.000

Cu 0.0101 (4) 0.0124 (5) 0.0081 (4) 0.000 0.000 0.000

S1 0.0070 (8) 0.0127 (7) 0.0059 (7) 0.000 0.000 0.000

S2 0.0078 (5) 0.0108 (5) 0.0072 (5) 0.000 0.000 0.0005 (4)

S3 0.0077 (7) 0.0131 (8) 0.0094 (8) 0.000 0.000 0.0018 (6)

Geometric parameters (Å, º)

Gd—S1 2.7259 (6) Cu—S1iv 2.3612 (11)

Gd—S2i 2.7348 (8) Cu—S1v 2.3612 (11)

Gd—S2ii 2.7348 (8) Cu—Gdxvii 3.3065 (3)

Gd—S2iii 2.7688 (11) Cu—Gdv 3.3065 (3)

Gd—S3iv 2.8500 (2) Cu—Gdxviii 3.3065 (3)

Gd—S3v 2.8500 (2) Cu—Gdiv 3.3065 (3)

Gd—Cuvi 3.3065 (3) Cu—Rbv 3.7021 (9)

Gd—Cuvii 3.3065 (3) Cu—Rbiv 3.7021 (9)

Gd—Gdviii 4.0030 (3) Cu—Rbxix 3.7403 (11)

Gd—Gdix 4.0030 (3) S1—Cuvii 2.3612 (11)

Gd—Gdx 4.0578 (5) S1—Cuvi 2.3612 (11)

Gd—Rb 4.3905 (6) S1—Gdiii 2.7259 (6)

Rb—S1vii 3.1928 (14) S1—Rbiv 3.1929 (14)

Rb—S1vi 3.1928 (14) S1—Rbv 3.1929 (14)

Rb—S2xi 3.3160 (9) S2—Cuxvi 2.3460 (11)

Rb—S2i 3.3160 (9) S2—Gdxx 2.7348 (8)

Rb—S2ii 3.3160 (9) S2—Gdxxi 2.7348 (8)

Rb—S2xii 3.3160 (9) S2—Gdiii 2.7688 (11)

Rb—Cuvi 3.7022 (9) S2—Rbxi 3.3161 (9)

Rb—Cuvii 3.7021 (9) S2—Rbxii 3.3161 (9)

(5)

supporting information

sup-3

Acta Cryst. (2004). E60, i95–i96

Rb—S3 3.7557 (4) S3—Gdvii 2.8500 (2)

Rb—S3xiv 3.7557 (4) S3—Gdxxiii 2.8500 (2)

Rb—Rbviii 4.0030 (3) S3—Gdvi 2.8500 (2)

Cu—S2xv 2.3460 (11) S3—Rbxxiv 3.7557 (4)

Cu—S2xvi 2.3460 (11)

S1—Gd—S2i 87.98 (3) S2xii—Rb—S3xiv 71.016 (19)

S1—Gd—S2ii 87.98 (3) Cuvi—Rb—S3xiv 109.301 (7)

S2i—Gd—S2ii 94.09 (3) Cuvii—Rb—S3xiv 109.301 (7)

S1—Gd—S2iii 166.52 (4) Cuxiii—Rb—S3xiv 66.865 (10)

S2i—Gd—S2iii 82.86 (3) S3—Rb—S3xiv 133.730 (19)

S2ii—Gd—S2iii 82.86 (3) S1vii—Rb—Rbviii 128.82 (2)

S1—Gd—S3iv 95.19 (3) S1vi—Rb—Rbviii 51.18 (2)

S2i—Gd—S3iv 176.13 (2) S2xi—Rb—Rbviii 52.873 (12)

S2ii—Gd—S3iv 88.267 (18) S2i—Rb—Rbviii 127.127 (12)

S2iii—Gd—S3iv 94.396 (18) S2ii—Rb—Rbviii 52.873 (12)

S1—Gd—S3v 95.19 (3) S2xii—Rb—Rbviii 127.127 (12)

S2i—Gd—S3v 88.267 (18) Cuvi—Rb—Rbviii 57.273 (10)

S2ii—Gd—S3v 176.13 (2) Cuvii—Rb—Rbviii 122.726 (10)

S2iii—Gd—S3v 94.396 (18) Cuxiii—Rb—Rbviii 90.0

S3iv—Gd—S3v 89.221 (8) S3—Rb—Rbviii 90.0

S1—Gd—Cuvi 44.81 (2) S3xiv—Rb—Rbviii 90.0

S2i—Gd—Cuvi 99.92 (2) S2xv—Cu—S2xvi 111.60 (6)

S2ii—Gd—Cuvi 44.46 (2) S2xv—Cu—S1iv 107.35 (2)

S2iii—Gd—Cuvi 127.282 (19) S2xvi—Cu—S1iv 107.35 (2)

S3iv—Gd—Cuvi 83.912 (11) S2xv—Cu—S1v 107.35 (2)

S3v—Gd—Cuvi 138.088 (15) S2xvi—Cu—S1v 107.35 (2)

S1—Gd—Cuvii 44.81 (2) S1iv—Cu—S1v 115.92 (8)

S2i—Gd—Cuvii 44.46 (2) S2xv—Cu—Gdxvii 136.22 (2)

S2ii—Gd—Cuvii 99.92 (2) S2xvi—Cu—Gdxvii 54.734 (19)

S2iii—Gd—Cuvii 127.282 (19) S1iv—Cu—Gdxvii 54.453 (10)

S3iv—Gd—Cuvii 138.088 (15) S1v—Cu—Gdxvii 116.41 (3)

S3v—Gd—Cuvii 83.912 (11) S2xv—Cu—Gdv 54.734 (19)

Cuvi—Gd—Cuvii 74.505 (8) S2xvi—Cu—Gdv 136.22 (2)

S1—Gd—Gdviii 90.0 S1iv—Cu—Gdv 116.41 (3)

S2i—Gd—Gdviii 137.043 (17) S1v—Cu—Gdv 54.453 (10)

S2ii—Gd—Gdviii 42.957 (17) Gdxvii—Cu—Gdv 165.22 (3)

S2iii—Gd—Gdviii 90.0 S2xv—Cu—Gdxviii 136.22 (2)

S3iv—Gd—Gdviii 45.389 (4) S2xvi—Cu—Gdxviii 54.734 (19)

S3v—Gd—Gdviii 134.610 (4) S1iv—Cu—Gdxviii 116.41 (3)

Cuvi—Gd—Gdviii 52.748 (4) S1v—Cu—Gdxviii 54.453 (10)

Cuvii—Gd—Gdviii 127.253 (5) Gdxvii—Cu—Gdxviii 74.504 (8)

S1—Gd—Gdix 90.0 Gdv—Cu—Gdxviii 103.536 (9)

S2i—Gd—Gdix 42.957 (17) S2xv—Cu—Gdiv 54.734 (19)

S2ii—Gd—Gdix 137.043 (17) S2xvi—Cu—Gdiv 136.22 (2)

S2iii—Gd—Gdix 90.0 S1iv—Cu—Gdiv 54.453 (10)

S3iv—Gd—Gdix 134.610 (4) S1v—Cu—Gdiv 116.41 (3)

(6)

Cuvi—Gd—Gdix 127.253 (4) Gdv—Cu—Gdiv 74.504 (8)

Cuvii—Gd—Gdix 52.748 (4) Gdxviii—Cu—Gdiv 165.22 (3)

Gdviii—Gd—Gdix 180.0 S2xv—Cu—Rbv 61.78 (3)

S1—Gd—Gdx 97.30 (4) S2xvi—Cu—Rbv 61.78 (3)

S2i—Gd—Gdx 132.805 (17) S1iv—Cu—Rbv 154.77 (5)

S2ii—Gd—Gdx 132.805 (17) S1v—Cu—Rbv 89.32 (4)

S2iii—Gd—Gdx 96.18 (2) Gdxvii—Cu—Rbv 115.816 (18)

S3iv—Gd—Gdx 44.610 (4) Gdv—Cu—Rbv 77.348 (11)

S3v—Gd—Gdx 44.610 (4) Gdxviii—Cu—Rbv 77.348 (11)

Cuvi—Gd—Gdx 116.627 (16) Gdiv—Cu—Rbv 115.816 (18)

Cuvii—Gd—Gdx 116.627 (16) S2xv—Cu—Rbiv 61.78 (3)

Gdviii—Gd—Gdx 90.0 S2xvi—Cu—Rbiv 61.78 (3)

Gdix—Gd—Gdx 90.0 S1iv—Cu—Rbiv 89.32 (4)

S1—Gd—Rb 71.40 (3) S1v—Cu—Rbiv 154.77 (5)

S2i—Gd—Rb 48.985 (18) Gdxvii—Cu—Rbiv 77.348 (11)

S2ii—Gd—Rb 48.985 (18) Gdv—Cu—Rbiv 115.816 (18)

S2iii—Gd—Rb 95.12 (2) Gdxviii—Cu—Rbiv 115.816 (18)

S3iv—Gd—Rb 134.274 (5) Gdiv—Cu—Rbiv 77.348 (11)

S3v—Gd—Rb 134.274 (5) Rbv—Cu—Rbiv 65.454 (19)

Cuvi—Gd—Rb 55.361 (15) S2xv—Cu—Rbxix 124.20 (3)

Cuvii—Gd—Rb 55.361 (15) S2xvi—Cu—Rbxix 124.20 (3)

Gdviii—Gd—Rb 90.0 S1iv—Cu—Rbxix 57.96 (4)

Gdix—Gd—Rb 90.0 S1v—Cu—Rbxix 57.96 (4)

Gdx—Gd—Rb 168.698 (10) Gdxvii—Cu—Rbxix 82.608 (15)

S1vii—Rb—S1vi 77.64 (4) Gdv—Cu—Rbxix 82.608 (15)

S1vii—Rb—S2xi 143.16 (2) Gdxviii—Cu—Rbxix 82.608 (15)

S1vi—Rb—S2xi 92.50 (2) Gdiv—Cu—Rbxix 82.608 (15)

S1vii—Rb—S2i 92.50 (2) Rbv—Cu—Rbxix 147.273 (10)

S1vi—Rb—S2i 143.16 (2) Rbiv—Cu—Rbxix 147.273 (10)

S2xi—Rb—S2i 114.42 (4) Cuvii—S1—Cuvi 115.92 (8)

S1vii—Rb—S2ii 143.16 (2) Cuvii—S1—Gd 80.73 (3)

S1vi—Rb—S2ii 92.50 (2) Cuvi—S1—Gd 80.73 (3)

S2xi—Rb—S2ii 71.63 (4) Cuvii—S1—Gdiii 80.73 (3)

S2i—Rb—S2ii 74.25 (2) Cuvi—S1—Gdiii 80.73 (3)

S1vii—Rb—S2xii 92.50 (2) Gd—S1—Gdiii 144.66 (7)

S1vi—Rb—S2xii 143.16 (2) Cuvii—S1—Rbiv 160.86 (6)

S2xi—Rb—S2xii 74.25 (2) Cuvi—S1—Rbiv 83.22 (3)

S2i—Rb—S2xii 71.63 (3) Gd—S1—Rbiv 103.68 (2)

S2ii—Rb—S2xii 114.42 (4) Gdiii—S1—Rbiv 103.68 (2)

S1vii—Rb—Cuvi 173.91 (2) Cuvii—S1—Rbv 83.22 (3)

S1vi—Rb—Cuvi 108.45 (2) Cuvi—S1—Rbv 160.86 (6)

S2xi—Rb—Cuvi 38.564 (19) Gd—S1—Rbv 103.68 (2)

S2i—Rb—Cuvi 82.57 (2) Gdiii—S1—Rbv 103.68 (2)

S2ii—Rb—Cuvi 38.564 (19) Rbiv—S1—Rbv 77.64 (4)

S2xii—Rb—Cuvi 82.57 (2) Cuxvi—S2—Gdxx 80.81 (3)

S1vii—Rb—Cuvii 108.45 (2) Cuxvi—S2—Gdxxi 80.81 (3)

S1vi—Rb—Cuvii 173.91 (2) Gdxx—S2—Gdxxi 94.09 (3)

(7)

supporting information

sup-5

Acta Cryst. (2004). E60, i95–i96

S2i—Rb—Cuvii 38.564 (19) Gdxx—S2—Gdiii 97.14 (3)

S2ii—Rb—Cuvii 82.57 (2) Gdxxi—S2—Gdiii 97.14 (3)

S2xii—Rb—Cuvii 38.564 (19) Cuxvi—S2—Rbxi 79.65 (3)

Cuvi—Rb—Cuvii 65.453 (19) Gdxx—S2—Rbxi 158.07 (4)

S1vii—Rb—Cuxiii 38.82 (2) Gdxxi—S2—Rbxi 92.531 (13)

S1vi—Rb—Cuxiii 38.82 (2) Gdiii—S2—Rbxi 102.75 (3)

S2xi—Rb—Cuxiii 122.790 (19) Cuxvi—S2—Rbxii 79.65 (3)

S2i—Rb—Cuxiii 122.790 (19) Gdxx—S2—Rbxii 92.531 (13)

S2ii—Rb—Cuxiii 122.790 (19) Gdxxi—S2—Rbxii 158.07 (4)

S2xii—Rb—Cuxiii 122.790 (19) Gdiii—S2—Rbxii 102.75 (3)

Cuvi—Rb—Cuxiii 147.273 (10) Rbxi—S2—Rbxii 74.25 (2)

Cuvii—Rb—Cuxiii 147.273 (10) Gdxxii—S3—Gdvii 180.000 (11)

S1vii—Rb—S3 72.175 (10) Gdxxii—S3—Gdxxiii 89.221 (8)

S1vi—Rb—S3 72.175 (10) Gdvii—S3—Gdxxiii 90.779 (8)

S2xi—Rb—S3 138.666 (15) Gdxxii—S3—Gdvi 90.779 (8)

S2i—Rb—S3 71.016 (19) Gdvii—S3—Gdvi 89.221 (8)

S2ii—Rb—S3 71.016 (18) Gdxxiii—S3—Gdvi 180.000 (11)

S2xii—Rb—S3 138.666 (15) Gdxxii—S3—Rb 91.304 (8)

Cuvi—Rb—S3 109.301 (7) Gdvii—S3—Rb 88.696 (8)

Cuvii—Rb—S3 109.301 (7) Gdxxiii—S3—Rb 91.304 (8)

Cuxiii—Rb—S3 66.865 (10) Gdvi—S3—Rb 88.696 (8)

S1vii—Rb—S3xiv 72.175 (10) Gdxxii—S3—Rbxxiv 88.697 (8)

S1vi—Rb—S3xiv 72.175 (10) Gdvii—S3—Rbxxiv 91.303 (8)

S2xi—Rb—S3xiv 71.016 (19) Gdxxiii—S3—Rbxxiv 88.697 (8)

S2i—Rb—S3xiv 138.666 (15) Gdvi—S3—Rbxxiv 91.303 (8)

S2ii—Rb—S3xiv 138.666 (15) Rb—S3—Rbxxiv 180.0

Symmetry codes: (i) −x−1/2, −y+1/2, z−1/2; (ii) −x+1/2, −y+1/2, z−1/2; (iii) x, y, −z+1/2; (iv) x+1/2, y+1/2, z; (v) x−1/2, y+1/2, z; (vi) x+1/2, y−1/2, z; (vii)

References

Related documents

Considering a range of tax and benefit systems, particularly those having benefit taper rates whereby some benefits are received by income groups other than those at the bottom of

Results suggest that the probability of under-educated employment is higher among low skilled recent migrants and that the over-education risk is higher among high skilled

The focus of dissemination will be on scientific publications, presentations at scientific and other meetings, project website as well as the stakeholders and

6, an effect of steady torsion on fatigue crack growth (FCG) rate is observed. Results show that fatigue crack growth in rotating bending decreases with higher levels of steady

Acknowledging the lack of empirical research on design rights, our paper wishes to investigate the risk of piracy and the perceptions of the registered and unregistered design

Proprietary Schools are referred to as those classified nonpublic, which sell or offer for sale mostly post- secondary instruction which leads to an occupation..

In vitro release studies revealed that the rate of drug release from PLGA NPs was 95.38% in 10 h with zidovudine, and 97.37% in 10 h with lamivudine which was slower when compared

institutions outside the juvenile justice system, racial disparities will persist in juvenile justice. Ultimately, many institutions drive disproportionately in juvenile justice, and