• No results found

3 Methyl 1 phenyl N (2 thienylmethyl­ene) 1H pyrazol 5 amine

N/A
N/A
Protected

Academic year: 2020

Share "3 Methyl 1 phenyl N (2 thienylmethyl­ene) 1H pyrazol 5 amine"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o3566

Yanget al. C

15H13N3S doi:10.1107/S1600536806028467 Acta Cryst.(2006). E62, o3566–o3567

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

3-Methyl-1-phenyl-

N

-(2-thienylmethylene)-1

H

-pyrazol-5-amine

Fang Yang, Xiao-Yue Li, Hai-Ying Wang, Sai-Nan Ni and Da-Qing Shi*

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People’s Republic of China

Correspondence e-mail: dqshi@263.net

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C–C) = 0.004 A˚ Rfactor = 0.043 wRfactor = 0.131

Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 10 July 2006 Accepted 21 July 2006

#2006 International Union of Crystallography All rights reserved

The title compound, C15H13N3S, was synthesized by the reaction of 3-methyl-1-phenyl-1H-pyrazol-5-amine and thio-phene-2-carbaldehyde in boiling ethanol. The dihedral angle between the thiophene and pyrazole planes is 14.7 (1)and the

phenyl ring is twisted from the attached pyrazole ring by 32.2 (1).

Comment

Schiff bases are considered as a very important class of organic compounds which have wide applications in many biological situations (Fridovitch & Westheimer, 1962). The reaction of 2-carbaldehyde and 2,6-di2-carbaldehyde derivatives with a diamine results in open-chain and macrocyclic Schiff bases, respectively (Janusz et al., 2004). Studies performed on the synthesis and complexation behaviour of macrocyclic Schiff bases derived from 2,6-thiophene dicarbaldehyde are consid-erably more numerous compared with those of open-chain Schiff bases derived from 2-thiophene carbaldehyde (Hashemia et al., 2001). Studies on the synthesis and metal chelating properties of 2-thiophene carbaldehyde derivatives are very limited (Coakley et al., 1969; Eichhorn & Bailar, 1953). We report here the crystal structure of the title compound, (I).

In the title molecule (Fig. 1), the dihedral angle between the thiophene (S1/C5–C8) and pyrazole (N1/N2/C1–C3) planes is 14.7 (1). The C9–C14 phenyl ring is twisted from the attached

pyrazole ring by 32.2 (1). An intramolecular C14—H14 N3

hydrogen bond [H14 N3 = 2.47 A˚ , C14—N3 = 2.965 (4) A˚ and C14—H14 N3 = 114] is observed.

Experimental

(2)

X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Crystal data

C15H13N3S

Mr= 267.34

Monoclinic,P21=c a= 10.035 (4) A˚

b= 8.194 (3) A˚

c= 16.671 (7) A˚

= 92.438 (5)

V= 1369.6 (9) A˚3

Z= 4

Dx= 1.296 Mg m

3

MoKradiation

= 0.23 mm 1

T= 298 (2) K Block, yellow 0.380.200.17 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.919,Tmax= 0.963

6774 measured reflections 2403 independent reflections 1499 reflections withI> 2(I)

Rint= 0.031

max= 25.0

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.043

wR(F2) = 0.131

S= 1.01 2403 reflections 172 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0542P)2

+ 0.6009P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.17 e A˚ 3 min= 0.26 e A˚ 3

All H atoms were positioned geometrically and treated as riding, with C—H = 0.93 or 0.96 A˚ and Uiso(H) = 1.2Ueq(C) and

1.5Ueq(methyl C).

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.

The authors thank the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province (grant No. 02AXL13) for financial support.

References

Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1998).SMART. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999).SAINT. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Coakley, M. P., Young, L. H. & Gallagher, R. A. (1969).J. Inorg. Nucl. Chem.

31, 1449–1458.

Eichhorn, G. L. & Bailar, J. C. (1953).J. Am. Chem. Soc.75, 2905–2907. Fridovitch, I. & Westheimer, F. H. (1962).J. Am. Chem. Soc.84, 3208–3209. Hashemia, O. R., Kargarb, M. R. & Raoufia, F. (2001).Microchem. J.69, 1–6. Janusz, L., Pawel, H., Maciej, D. & Iwona, J. (2004).Inorg. Chem.43, 5789–

5791.

Sheldrick, G. M. (1996).SADABS. Version 2.05. University of Go¨ttingen, Germany.

[image:2.610.310.564.68.266.2]

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o3566–o3567

supporting information

Acta Cryst. (2006). E62, o3566–o3567 [https://doi.org/10.1107/S1600536806028467]

3-Methyl-1-phenyl-

N

-(2-thienylmethylene)-1

H

-pyrazol-5-amine

Fang Yang, Xiao-Yue Li, Hai-Ying Wang, Sai-Nan Ni and Da-Qing Shi

3-Methyl-1-phenyl-N-(2-thienylmethylene)-1H-pyrazol-5-amine

Crystal data

C15H13N3S

Mr = 267.34

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 10.035 (4) Å

b = 8.194 (3) Å

c = 16.671 (7) Å

β = 92.438 (5)°

V = 1369.6 (9) Å3

Z = 4

F(000) = 560

Dx = 1.296 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1807 reflections

θ = 2.8–23.8°

µ = 0.23 mm−1

T = 298 K Block, yellow

0.38 × 0.20 × 0.17 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.919, Tmax = 0.963

6774 measured reflections 2403 independent reflections 1499 reflections with I > 2σ(I)

Rint = 0.031

θmax = 25.0°, θmin = 2.0°

h = −10→11

k = −9→9

l = −19→10

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.043

wR(F2) = 0.131

S = 1.01 2403 reflections 172 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0542P)2 + 0.6009P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.17 e Å−3

Δρmin = −0.26 e Å−3

Special details

Experimental. IR (KBr, cm-1): 3099, 1591,1518, 1492, 1433, 1406, 1142, 1041, 1024, 966, 831, 783, 762, 724, 689. 1H

NMR (DMSO-d6): 5.43 (3H, s, CH3), 6.42 (1H, s, CH), 7.25–7.35 (2H, m, ArH), 7.48 (2H, t, J = 8.0 Hz, ArH), 7.69–7.74

(4)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

N1 0.15469 (19) 0.4472 (2) 0.69549 (12) 0.0427 (5) N2 0.0735 (2) 0.4553 (3) 0.62744 (12) 0.0464 (6) N3 0.1598 (2) 0.5093 (3) 0.83491 (13) 0.0494 (6) S1 0.31109 (9) 0.48198 (12) 0.99574 (5) 0.0833 (4) C1 −0.0399 (3) 0.5191 (3) 0.65183 (16) 0.0479 (7) C2 −0.0325 (2) 0.5534 (3) 0.73340 (16) 0.0507 (7) H2 −0.0991 0.5989 0.7635 0.061* C3 0.0929 (2) 0.5069 (3) 0.76092 (15) 0.0444 (6) C4 0.1084 (3) 0.5853 (3) 0.89249 (16) 0.0495 (7)

H4 0.0282 0.6400 0.8828 0.059*

C5 0.1694 (3) 0.5896 (3) 0.97162 (16) 0.0486 (7) C6 0.1285 (3) 0.6719 (4) 1.03697 (18) 0.0639 (8)

H6 0.0523 0.7367 1.0361 0.077*

C7 0.2109 (4) 0.6502 (4) 1.10522 (18) 0.0706 (9)

H7 0.1968 0.6994 1.1544 0.085*

C8 0.3124 (4) 0.5507 (5) 1.09194 (19) 0.0839 (11)

H8 0.3770 0.5218 1.1310 0.101*

C9 0.2881 (2) 0.3894 (3) 0.68847 (15) 0.0419 (6) C10 0.3507 (3) 0.4161 (4) 0.61757 (16) 0.0530 (7) H10 0.3071 0.4730 0.5759 0.064* C11 0.4776 (3) 0.3583 (4) 0.60878 (19) 0.0674 (9) H11 0.5193 0.3754 0.5607 0.081* C12 0.5434 (3) 0.2760 (4) 0.6697 (2) 0.0701 (9) H12 0.6297 0.2382 0.6633 0.084* C13 0.4817 (3) 0.2492 (4) 0.74052 (19) 0.0624 (8) H13 0.5263 0.1930 0.7820 0.075* C14 0.3536 (3) 0.3057 (3) 0.75020 (17) 0.0523 (7) H14 0.3118 0.2874 0.7981 0.063* C15 −0.1541 (3) 0.5456 (4) 0.59229 (18) 0.0651 (8) H15A −0.1292 0.5096 0.5402 0.098* H15B −0.1760 0.6596 0.5901 0.098* H15C −0.2301 0.4846 0.6084 0.098*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o3566–o3567

N2 0.0439 (12) 0.0514 (13) 0.0434 (13) −0.0011 (10) −0.0037 (10) 0.0020 (11) N3 0.0477 (13) 0.0611 (14) 0.0394 (12) 0.0067 (11) 0.0019 (10) −0.0009 (11) S1 0.0893 (7) 0.1016 (7) 0.0576 (5) 0.0401 (5) −0.0150 (5) −0.0129 (5) C1 0.0433 (15) 0.0510 (16) 0.0490 (16) 0.0000 (12) −0.0026 (12) 0.0038 (14) C2 0.0433 (15) 0.0613 (18) 0.0477 (16) 0.0074 (13) 0.0050 (12) 0.0006 (14) C3 0.0436 (14) 0.0471 (15) 0.0427 (15) −0.0003 (12) 0.0032 (12) 0.0040 (13) C4 0.0476 (15) 0.0483 (15) 0.0525 (17) 0.0041 (12) 0.0013 (13) 0.0020 (14) C5 0.0538 (16) 0.0467 (15) 0.0455 (16) −0.0020 (12) 0.0047 (13) 0.0002 (13) C6 0.0688 (19) 0.064 (2) 0.059 (2) 0.0052 (15) 0.0083 (16) −0.0117 (16) C7 0.104 (3) 0.064 (2) 0.0438 (18) −0.0087 (19) 0.0057 (18) −0.0071 (16) C8 0.111 (3) 0.087 (3) 0.051 (2) 0.018 (2) −0.0242 (19) −0.0019 (19) C9 0.0409 (14) 0.0391 (14) 0.0455 (15) −0.0009 (11) −0.0001 (12) −0.0016 (12) C10 0.0487 (16) 0.0654 (18) 0.0449 (16) 0.0008 (13) 0.0016 (13) 0.0013 (15) C11 0.0516 (18) 0.090 (2) 0.062 (2) 0.0066 (16) 0.0127 (15) −0.0039 (18) C12 0.0454 (17) 0.082 (2) 0.083 (2) 0.0117 (15) 0.0031 (17) −0.012 (2) C13 0.0576 (18) 0.0626 (19) 0.066 (2) 0.0157 (15) −0.0107 (15) −0.0001 (17) C14 0.0525 (16) 0.0533 (17) 0.0511 (17) 0.0064 (13) 0.0006 (13) 0.0024 (14) C15 0.0496 (17) 0.084 (2) 0.0609 (19) 0.0078 (15) −0.0093 (14) 0.0000 (17)

Geometric parameters (Å, º)

N1—C3 1.368 (3) C7—C8 1.331 (4)

N1—N2 1.370 (3) C7—H7 0.93

N1—C9 1.430 (3) C8—H8 0.93

N2—C1 1.332 (3) C9—C10 1.379 (3)

N3—C4 1.272 (3) C9—C14 1.380 (3)

N3—C3 1.379 (3) C10—C11 1.373 (4)

S1—C8 1.699 (3) C10—H10 0.93

S1—C5 1.707 (3) C11—C12 1.366 (4)

C1—C2 1.388 (4) C11—H11 0.93

C1—C15 1.499 (4) C12—C13 1.374 (4)

C2—C3 1.375 (3) C12—H12 0.93

C2—H2 0.93 C13—C14 1.382 (4)

C4—C5 1.431 (4) C13—H13 0.93

C4—H4 0.93 C14—H14 0.93

C5—C6 1.360 (4) C15—H15A 0.96

C6—C7 1.390 (4) C15—H15B 0.96

C6—H6 0.93 C15—H15C 0.96

C3—N1—N2 111.67 (19) C7—C8—S1 112.6 (3)

C3—N1—C9 129.9 (2) C7—C8—H8 123.7

N2—N1—C9 118.3 (2) S1—C8—H8 123.7

(6)

C3—C2—C1 106.3 (2) C12—C11—C10 120.8 (3)

C3—C2—H2 126.9 C12—C11—H11 119.6

C1—C2—H2 126.9 C10—C11—H11 119.6

N1—C3—C2 105.8 (2) C11—C12—C13 119.8 (3) N1—C3—N3 119.9 (2) C11—C12—H12 120.1 C2—C3—N3 134.3 (2) C13—C12—H12 120.1 N3—C4—C5 122.5 (2) C12—C13—C14 120.2 (3)

N3—C4—H4 118.8 C12—C13—H13 119.9

C5—C4—H4 118.8 C14—C13—H13 119.9

C6—C5—C4 128.2 (3) C9—C14—C13 119.7 (3) C6—C5—S1 110.2 (2) C9—C14—H14 120.2 C4—C5—S1 121.6 (2) C13—C14—H14 120.2 C5—C6—C7 113.8 (3) C1—C15—H15A 109.5

C5—C6—H6 123.1 C1—C15—H15B 109.5

C7—C6—H6 123.1 H15A—C15—H15B 109.5 C8—C7—C6 112.1 (3) C1—C15—H15C 109.5 C8—C7—H7 124.0 H15A—C15—H15C 109.5 C6—C7—H7 124.0 H15B—C15—H15C 109.5

Figure

Figure 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical