4 Meth­oxy­phenyl 4 toluene­sulfonate: supramolecular aggregation through C—H⋯O and C—H⋯π interactions

10 

Loading....

Loading....

Loading....

Loading....

Loading....

Full text

(1)

organic papers

o830

Nagarajan Vembuet al. C14H14O4S DOI: 10.1107/S1600536803010444 Acta Cryst.(2003). E59, o830±o832 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

4-Methoxyphenyl 4-toluenesulfonate:

supramolecular aggregation through

CÐH

O and CÐH

p

interactions

Nagarajan Vembu,aMaruthai

Nallu,a* Jered Garrison,b

Khadijah Hindiband

Wiley J. Youngsb

aDepartment of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India, and bDepartment of Chemistry, University of Akron, 190, East Buchtel Commons, Akron, Ohio 44325-3601, USA

Correspondence e-mail: mnalv2003@yahoo.com

Key indicators

Single-crystal X-ray study T= 100 K

Mean(C±C) = 0.003 AÊ Rfactor = 0.058 wRfactor = 0.128

Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title molecule, C14H14O4S, the dihedral angle between the mean planes of the 4-tolyl and 4-methoxyphenyl rings is 7.2 (1). There are weak intermolecular CÐH O hydrogen

bonds which generate rings of motifsR1

2(6),R12(9) andR21(4).

There are also CÐH interactions which stack the

molecules in layers in the crystal lattice.

Comment

p-Toluenesulfonates are used in monitoring the merging of lipids (Yachi et al., 1989), studying membrane fusion during acrosome reaction (Spungin et al., 1992), development of immunoaf®nity chromatography for the puri®cation of human coagulation factor (Tharakanet al., 1992), chemical studies on viruses (Alfordet al., 1991), development of technology for linking photosensitizers to model monoclonal antibodies (Jiang et al., 1990) and chemical modi®cation of sigma sub

units of E. coli RNA polymerase (Narayanan & Krakow,

1983). An X-ray study of the title compound, (I), was under-taken in order to determine its crystal and molecular structure because of the biological importance of its analogs.

A search of Version 5.23 (July 2002 updates) of the Cambridge Structural Database (Allen, 2002) revealed 16 structures (with the following refcodes: KAWDAN, FIXCAQ, NEDXUP, NEDYAW, NEDYIE, NUNCII, RASSOT, RELVUZ, SIMVUF, TCPTOS, TEBFOV, TMPDTS, TSMIPH, WOHCUR, ZZZBDA10 and MIWHIJ) that are closely related to the title compound (I). The SÐC, SÐO and S O bond lengths (Table 1) are comparable to those found in these structures. The dihedral angle between the mean planes of the 4-tolyl and the 4-methoxyphenyl rings is 7.2 (1). This

shows their approximately coplanar orientation, similar to that found in 2,4-dinitrophenyl 4-toluenesulfonate (Vembuet al., 2003a) and in contrast to the non-coplanar orientation in 2-chlorophenyl 4-toluenesulfonate (Vembuet al., 2003b) and the non-coplanar orientation in 8-tosyloxyquinoline (Vembu et al., 2003c).

The crystal structure of (I) is stabilized by weak CÐH O interactions (Table 2). The range of the H O distances agrees with those found for weak CÐH O bonds (Desiraju & Steiner, 1999). The C3ÐH3 O1iii and C1ÐH1C O1iii

(2)

interactions constitute a pair of bifurcated acceptor bonds involving H atoms of the neighboring 4-tolyl moiety (see Table 2 for symmetry code). They generate a ring of graph-set (Etter, 1990; Bernstein et al., 1995) motif R1

2(6). The C1Ð H1C O1iiiand C1ÐH1C O2iii interactions form a pair of bifurcated donor bonds involving the sulfonyl O atoms. They generate a ring of graph set motifR2

1(4). The H1C O1iiiand H1C O2iii distances differ by 0.10 AÊ. The resulting con®g-uration is best regarded as a three-center symmetrical hydrogen-bonded chelate (Desiraju, 1989) and is also observed in 2-chlorophenyl 4-toluenesulfonate (Vembuet al., 2003b) and 8-tosyloxyquinoline (Vembu et al., 2003c). The inter-fusion of R1

2(6) and R21(4) motifs generates a ring of

graph set motif R2

2(8). The C6ÐH6 O2iv and C13Ð

H13 O2iv interactions constitute a pair of bifurcated acceptor bonds involving the H atoms of the neighboring 4-tolyl and 4-methoxyphenyl moieties (see Table 2 for symmetry code). They generate a ring of graph-set motifR1

2(9) (Fig. 2). The supramolecular aggregation is completed by the presence of four CÐH interactions which pack the mol-ecules in a slipped stack along thebaxis (Fig. 3). The geometry

of the CÐH interactions obtained fromPLATON(Spek,

1998) is given in Table 2, whereCg1 andCg2 are the centroids of the 4-tolyl and 4-methoxyphenyl rings, respectively.

Experimental

4±Toluenesulfonyl chloride (4.7 mmol) dissolved in acetone (4 ml) was added dropwise to 4-methoxyphenol (4 mmol) in aqueous NaOH (2.5 ml, 10%) with vigorous shaking. The precipitated

4-methoxy-phenyl 4-toluenesulfonate (2.7 mmol, yield 67%) was ®ltered off and recrystallized from diethyl ether.

Crystal data

C14H14O4S

Mr= 278.31

Monoclinic,P21=c a= 14.778 (5) AÊ

b= 5.6665 (18) AÊ

c= 16.133 (5) AÊ

= 108.049 (5)

V= 1284.6 (7) AÊ3 Z= 4

Dx= 1.439 Mg mÿ3

MoKradiation

Cell parameters from 5896 re¯ections

= 2.6±27.6

= 0.26 mmÿ1

T= 100 (2) K

Plate, colorless

0.400.200.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.736,Tmax= 0.974

10615 measured re¯ections

2956 independent re¯ections 2687 re¯ections withI> 2(I)

Rint= 0.042

max= 27.7

h=ÿ19!19

k=ÿ7!7

l=ÿ20!21

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.058 wR(F2) = 0.128

S= 1.24

2956 re¯ections 228 parameters

All H-atom parameters re®ned

w= 1/[2(F

o2) + (0.0403P)2

+ 1.3915P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.002 max= 0.58 e AÊÿ3 min=ÿ0.45 e AÊÿ3

Acta Cryst.(2003). E59, o830±o832 Nagarajan Vembuet al. C14H14O4S

o831

organic papers

Figure 1

The molecular structure of the title compound, (I), showing displacement ellipsoids at the 50% probability level.

Figure 2

Diagram showing some of the CÐH O interactions.

Figure 3

(3)

organic papers

o832

Nagarajan Vembuet al. C14H14O4S Acta Cryst.(2003). E59, o830±o832

Table 1

Selected geometric parameters (AÊ,).

SÐO2 1.4200 (19)

SÐO1 1.4223 (18)

SÐO3 1.5936 (17)

SÐC5 1.745 (2)

O3ÐC8 1.417 (3)

O4ÐC11 1.359 (3)

O4ÐC14 1.432 (3)

C1ÐC2 1.495 (3)

O2ÐSÐO1 118.77 (11)

O2ÐSÐO3 108.41 (11)

O1ÐSÐO3 108.13 (10)

O2ÐSÐC5 109.71 (11)

O1ÐSÐC5 109.97 (11)

O3ÐSÐC5 100.21 (10)

C8ÐO3ÐS 114.78 (13)

C11ÐO4ÐC14 117.35 (18)

C5ÐSÐO3ÐC8 162.5 (2)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

C1ÐH1A O1i 0.92 (5) 2.67 (4) 3.424 (3) 141 (3)

C1ÐH1B O1ii 0.95 (4) 2.96 (4) 3.551 (3) 122 (3)

C1ÐH1C O1iii 0.94 (4) 2.73 (4) 3.534 (4) 143 (3)

C1ÐH1C O2iii 0.94 (4) 2.83 (4) 3.728 (3) 160 (3)

C3ÐH3 O1iii 0.90 (3) 2.61 (3) 3.454 (3) 155 (2)

C6ÐH6 O2iv 0.93 (3) 2.75 (3) 3.383 (3) 126 (2)

C9ÐH9 O4v 0.94 (3) 2.69 (3) 3.414 (3) 135 (2)

C13ÐH13 O2iv 0.93 (3) 2.58 (3) 3.426 (3) 152 (2)

C14ÐH14A O2vi 0.96 (3) 2.84 (3) 3.486 (4) 125 (2)

C14ÐH14A O3vii 0.96 (3) 2.71 (3) 3.131 (3) 107 (2)

C14ÐH14B O4viii 0.99 (3) 2.53 (3) 3.425 (3) 152 (2)

C3ÐH3 Cg2ix 0.90 (3) 3.17 3.742 124

C7ÐH7 Cg1x 0.95 (3) 2.88 3.644 138

C10ÐH10 Cg2xi 0.89 (3) 2.85 3.527 134

C12ÐH12 Cg1vii 0.90 (3) 3.09 3.781 135

Symmetry codes: (i) x;3

2ÿy;12‡z; (ii) 1ÿx;12‡y;52ÿz; (iii) x;12ÿy;12‡z; (iv)

x;1‡y;z; (v) ÿx;yÿ1

2;32ÿz; (vi) x;12ÿy;zÿ12; (vii) x;32ÿy;zÿ12; (viii)

ÿx;1ÿy;1ÿz; (ix)x;5

2ÿy;12‡z; (x) 1ÿx;yÿ12;32ÿz; (xi)ÿx;12‡y;12ÿz.

All the H atoms were located in a difference Fourier map and their positional coordinates and isotropic displacement parameters were re®ned. The CÐH bond lengths are in the range 0.89 (3)±0.99 (3) AÊ, the HÐCÐH angles for the methyl group are in the range 98 (3)± 112 (2) and the CÐCÐH angles for the aromatic rings are in the

range 118.1 (2)±121.9 (2).

Data collection:SMART(Bruker, 1998); cell re®nement:SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL(Sheldrick, 1998); software used to prepare material for publication:SHELXTL.

NV thanks the University Grants Commission±SERO, Government of India, for the award of a Faculty Improvement Programme Grant [TFTNBD097 dt., 07.07.99].

References

Alford, R. L., Honda, S., Lawrence, C. B. & Belmont, J. W. (1991).Virology,

183, 611±619.

Allen, F. H. (2002).Acta Cryst.B58, 380±388.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995).Angew. Chem.

Int. Ed. Engl.34, 1555±1573.

Bruker (1998).SMART-NTandSAINT-NT. Versions 5.0. Bruker AXS Inc.,

Madison, Wisconsin, USA.

Desiraju, G. R. (1989).Crystal Engineering: The Design of Organic Solids.

Amsterdam: Elsevier.

Desiraju, G. R. & Steiner, T. (1999).The Weak Hydrogen Bond in Structural

Chemistry and Biology. New York: Oxford University Press.

Etter, M. C. (1990).Acc. Chem. Res.23, 120±126.

Jiang, F. N., Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990).J. Immunol. Methods,134, 139±149.

Narayanan, C. S. & Krakow, J. S. (1983).Nucleic Acids Res.11, 2701±2716.

Sheldrick, G. M. (1996).SADABS. University of GoÈttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of

GoÈttingen, Germany.

Sheldrick, G. M. (1998).SHELXTL.University of GoÈttingen, Germany.

Spek, A. L. (1998).PLATON.Utrecht University, The Netherlands.

Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992).FEBS Lett.

311, 155±160.

Tharakan, J., Highsmith, F., Clark, D. & Drohsn, W. (1992).J. Chromatogr.595, 103±111.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003a).Acta Cryst.E59, o378±o380.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003b).Acta Cryst.E59, o503±o505.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003c).Acta Cryst.E59, o776±o779.

Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M.

(4)

supporting information

sup-1

Acta Cryst. (2003). E59, o830–o832

supporting information

Acta Cryst. (2003). E59, o830–o832 [doi:10.1107/S1600536803010444]

4-Methoxyphenyl 4-toluenesulfonate: supramolecular aggregation through C

H

···

O and C

H

···

π

interactions

Nagarajan Vembu, Maruthai Nallu, Jered Garrison, Khadijah Hindi and Wiley J. Youngs

S1. Comment

p-Toluenesulfonates are used in monitoring the merging of lipids (Yachi et al., 1989), studying membrane fusion during

acrosome reaction (Spungin et al., 1992), development of immunoaffinity chromatography for the purification of human

coagulation factor (Tharakan et al., 1992), chemical studies on viruses (Alford et al., 1991), development of technology

for linking photosensitizer to model monoclonal antibody (Jiang et al., 1990) and chemical modification of sigma sub

units of the E. coli RNA polymerase (Narayanan & Krakow, 1983). An X-ray study of the title compound, (I), was

undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues.

A search of Version 5.23 (July 2002 updates) of the Cambridge Structural Database (Allen, 2002) revealed 16 structures

(with the following refcodes: KAWDAN, FIXCAQ, NEDXUP, NEDYAW, NEDYIE, NUNCII, RASSOT, RELVUZ,

SIMVUF, TCPTOS, TEBFOV, TMPDTS, TSMIPH, WOHCUR, ZZZBDA10 and MIWHIJ) that are closely related to the

title compound (I). The S—C, S—O and S═O bond lengths (Table 1) are comparable to those found in these structures.

The dihedral angle between the mean planes of the 4-tolyl and the 4-methoxyphenyl rings is 7.2 (1)°. This shows their

near coplanar orientation similar to that found between the mean planes of the 4-tolyl and dinitrophenyl rings in

2,4-dinitrophenyl 4-toluenesulfonate (Vembu et al., 2003a) and in contrast to the non-coplanar orientation of 4-tolyl and

2-chlorophenyl rings in 2-2-chlorophenyl 4-toluenesulfonate (Vembu et al., 2003b) and the non-coplanar orientation of the

4-tolyl and quinoline rings in 8-tosyloxyquinoline (Vembu et al., 2003c).

The crystal structure of (I) is stabilized by weak C—H···O interactions (Table 2). The range of the H···O distances agree

with those found for weak C—H···O bonds (Desiraju & Steiner, 1999). The C3—H3···O1iii and C1—H1C···O1iii

interactions constitute a pair of bifurcated acceptor bonds involving H atoms of the neighbouring 4-tolyl moiety (see

Table 2 for symmetry code). They generate a ring of graph set (Etter, 1990; Bernstein et al., 1995) motif R1

2(6). The C1—

H1C···O1iii and C1—H1C···O2iii interactions form a pair of bifurcated donor bonds involving the sulfonyl O atoms. They

generate a ring of graph set motif R2

1(4). The H1C···O1iii and H1C···O2iii distances differ by 0.10 Å. The resulting

configuration is best regarded as a three center symmetrical hydrogen-bonded chelate (Desiraju, 1989) and is also

observed in 2-chlorophenyl 4-toluenesulfonate (Vembu et al., 2003b), 8-tosyloxyquinoline (Vembu et al., 2003c) and

4-dimethylaminopyridinium picrate (Vembu et al., 2003 d). The inter-fusion of R1

2(6) and R21(4) motifs generate a ring of

graph set motif R2

2(8). The C6—H6···O2iv and C13—H13···O2iv interactions constitute a pair of bifurcated acceptor bonds

involving the H atoms of the neighbouring 4-tolyl and 4-methoxyphenyl moieties (see Table 2 for symmetry code). They

generate a ring of graph-set motif R1

2(9) (Fig. 2).

The supramolecular aggregation is completed by the presence of four C—H···π interactions which pack the molecules in

a slip stack along the b axis (Fig. 3). The geometry of the C—H···π interactions obtained from PLATON (Spek, 1998) is

(5)

supporting information

sup-2

Acta Cryst. (2003). E59, o830–o832

S2. Experimental

4-Toluenesulfonyl chloride (4.7 mmol) dissolved in acetone (4 ml) was added dropwise to 4-methoxyphenol (4 mmol) in

aqueous NaOH (2.5 ml, 10%) with vigorous shaking. The precipitated 4-methoxyphenyl 4-toluenesulfonate (2.7 mmol,

yield 67%) was filtered off and recrystallized from diethyl ether.

S3. Refinement

All the H atoms were located in the difference Fourier map and their positional coordinates and isotropic displacement

paramaters were refined. The C—H bond lengths are in the range 0.89 (3)–0.99 (3) Å, the H—C—H angles for the

methyl group are in the range 98 (3)–112 (2)° and the C—C—H angles for the aromatic rings are in the range 118.1 (2)–

121.9 (2)°.

Figure 1

The molecular structure of the title compound, (I), showing 50% probablity ellipsoids.

Figure 2

(6)

supporting information

sup-3

Acta Cryst. (2003). E59, o830–o832

Figure 3

Projection of the crystal structure of (I) along the b axis.

4-Methoxyphenyl 4-toluenesulfonate

Crystal data

C14H14O4S

Mr = 278.31 Monoclinic, P21/c

a = 14.778 (5) Å

b = 5.6665 (18) Å

c = 16.133 (5) Å

β = 108.049 (5)°

V = 1284.6 (7) Å3

Z = 4

F(000) = 584

Dx = 1.439 Mg m−3

Melting point = 72–73 K Mo radiation, λ = 0.71073 Å Cell parameters from 5896 reflections

θ = 2.6–27.6°

µ = 0.26 mm−1

(7)

supporting information

sup-4

Acta Cryst. (2003). E59, o830–o832

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.736, Tmax = 0.974

10615 measured reflections 2956 independent reflections 2687 reflections with I > 2σ(I)

Rint = 0.042

θmax = 27.7°, θmin = 1.5°

h = −19→19

k = −7→7

l = −20→21

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.058

wR(F2) = 0.128

S = 1.24 2956 reflections 228 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

All H-atom parameters refined

w = 1/[σ2(F

o2) + (0.0403P)2 + 1.3915P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.002

Δρmax = 0.58 e Å−3

Δρmin = −0.45 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S 0.29343 (4) 0.31557 (10) 1.01208 (3) 0.01666 (16)

O1 0.36007 (12) 0.3968 (3) 0.97108 (10) 0.0222 (4)

O2 0.27097 (13) 0.0713 (3) 1.00823 (11) 0.0255 (4)

O3 0.19711 (11) 0.4602 (3) 0.97292 (10) 0.0186 (4)

O4 0.06857 (12) 0.5138 (3) 0.61427 (10) 0.0204 (4)

C1 0.4361 (2) 0.6151 (5) 1.38654 (16) 0.0244 (5)

C2 0.39454 (16) 0.5464 (4) 1.29296 (15) 0.0169 (5)

C3 0.34358 (17) 0.3382 (4) 1.26940 (15) 0.0186 (5)

C4 0.30937 (17) 0.2696 (4) 1.18300 (15) 0.0170 (5)

C5 0.32683 (16) 0.4115 (4) 1.12017 (14) 0.0160 (4)

C6 0.37595 (17) 0.6218 (4) 1.14139 (15) 0.0186 (5)

C7 0.40901 (17) 0.6875 (4) 1.22803 (15) 0.0189 (5)

C8 0.16490 (16) 0.4770 (4) 0.88075 (14) 0.0158 (5)

C9 0.10953 (16) 0.2981 (4) 0.83259 (15) 0.0171 (5)

(8)

supporting information

sup-5

Acta Cryst. (2003). E59, o830–o832

C12 0.15840 (17) 0.6912 (4) 0.75221 (15) 0.0181 (5) C13 0.18938 (17) 0.6716 (4) 0.84253 (15) 0.0186 (5)

C14 0.0923 (2) 0.7116 (5) 0.56985 (16) 0.0257 (6)

H1A 0.438 (3) 0.775 (8) 1.396 (3) 0.064 (12)*

H1B 0.502 (3) 0.586 (7) 1.404 (2) 0.060 (11)*

H1C 0.407 (3) 0.538 (7) 1.423 (3) 0.065 (12)*

H3 0.332 (2) 0.249 (5) 1.311 (2) 0.028 (8)*

H4 0.2766 (19) 0.126 (5) 1.1668 (17) 0.020 (7)*

H6 0.3870 (18) 0.717 (5) 1.0984 (18) 0.018 (7)*

H7 0.4447 (19) 0.829 (5) 1.2449 (18) 0.020 (7)*

H9 0.0927 (19) 0.165 (5) 0.8590 (18) 0.020 (7)*

H10 0.042 (2) 0.207 (5) 0.7107 (19) 0.025 (7)*

H12 0.1737 (19) 0.819 (5) 0.7264 (17) 0.017 (7)*

H13 0.2274 (19) 0.788 (5) 0.8764 (18) 0.019 (7)*

H14A 0.160 (2) 0.720 (5) 0.5829 (19) 0.025 (7)*

H14B 0.060 (2) 0.680 (5) 0.508 (2) 0.028 (8)*

H14C 0.065 (2) 0.857 (5) 0.5862 (18) 0.025 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S 0.0244 (3) 0.0148 (3) 0.0106 (3) 0.0031 (2) 0.0051 (2) −0.0009 (2) O1 0.0254 (9) 0.0279 (9) 0.0149 (8) 0.0048 (7) 0.0087 (7) 0.0016 (7) O2 0.0412 (11) 0.0161 (9) 0.0177 (9) 0.0022 (8) 0.0068 (8) −0.0025 (7) O3 0.0237 (9) 0.0209 (8) 0.0111 (8) 0.0037 (7) 0.0053 (6) −0.0012 (6) O4 0.0282 (9) 0.0206 (9) 0.0113 (8) −0.0039 (7) 0.0048 (7) 0.0006 (6) C1 0.0309 (14) 0.0265 (14) 0.0152 (12) −0.0039 (11) 0.0064 (10) −0.0049 (10) C2 0.0182 (11) 0.0172 (11) 0.0154 (11) 0.0028 (9) 0.0057 (9) −0.0019 (9) C3 0.0239 (12) 0.0194 (12) 0.0146 (11) −0.0006 (9) 0.0092 (9) 0.0030 (9) C4 0.0225 (12) 0.0134 (11) 0.0160 (11) −0.0024 (9) 0.0075 (9) −0.0001 (9) C5 0.0208 (11) 0.0146 (11) 0.0119 (10) 0.0021 (9) 0.0040 (8) −0.0011 (8) C6 0.0259 (12) 0.0147 (11) 0.0166 (11) 0.0011 (9) 0.0083 (9) 0.0042 (9) C7 0.0238 (12) 0.0135 (11) 0.0195 (11) −0.0020 (9) 0.0069 (9) −0.0038 (9) C8 0.0200 (11) 0.0167 (11) 0.0100 (10) 0.0047 (9) 0.0036 (8) −0.0011 (8) C9 0.0211 (11) 0.0146 (11) 0.0174 (11) −0.0005 (9) 0.0083 (9) 0.0018 (9) C10 0.0202 (11) 0.0129 (11) 0.0181 (11) −0.0001 (9) 0.0064 (9) −0.0038 (9) C11 0.0177 (11) 0.0166 (11) 0.0139 (10) 0.0031 (9) 0.0050 (8) 0.0000 (9) C12 0.0217 (12) 0.0133 (11) 0.0191 (11) −0.0017 (9) 0.0059 (9) 0.0008 (9) C13 0.0227 (12) 0.0133 (11) 0.0186 (11) −0.0001 (9) 0.0045 (9) −0.0042 (9) C14 0.0363 (15) 0.0242 (14) 0.0158 (12) −0.0039 (11) 0.0068 (10) 0.0043 (10)

Geometric parameters (Å, º)

S—O2 1.4200 (19) C5—C6 1.382 (3)

S—O1 1.4223 (18) C6—C7 1.381 (3)

S—O3 1.5936 (17) C6—H6 0.93 (3)

S—C5 1.745 (2) C7—H7 0.95 (3)

(9)

supporting information

sup-6

Acta Cryst. (2003). E59, o830–o832

O4—C11 1.359 (3) C8—C9 1.381 (3)

O4—C14 1.432 (3) C9—C10 1.376 (3)

C1—C2 1.495 (3) C9—H9 0.94 (3)

C1—H1A 0.92 (5) C10—C11 1.385 (3)

C1—H1B 0.95 (4) C10—H10 0.89 (3)

C1—H1C 0.94 (4) C11—C12 1.388 (3)

C2—C7 1.386 (3) C12—C13 1.390 (3)

C2—C3 1.388 (3) C12—H12 0.90 (3)

C3—C4 1.383 (3) C13—H13 0.93 (3)

C3—H3 0.90 (3) C14—H14A 0.96 (3)

C4—C5 1.380 (3) C14—H14B 0.99 (3)

C4—H4 0.94 (3) C14—H14C 0.98 (3)

O2—S—O1 118.77 (11) C5—C6—H6 120.9 (17)

O2—S—O3 108.41 (11) C6—C7—C2 121.4 (2)

O1—S—O3 108.13 (10) C6—C7—H7 120.5 (17)

O2—S—C5 109.71 (11) C2—C7—H7 118.1 (17)

O1—S—C5 109.97 (11) C13—C8—C9 122.2 (2)

O3—S—C5 100.21 (10) C13—C8—O3 118.6 (2)

C8—O3—S 114.78 (13) C9—C8—O3 119.3 (2)

C11—O4—C14 117.35 (18) C10—C9—C8 118.4 (2)

C2—C1—H1A 114 (3) C10—C9—H9 119.7 (17)

C2—C1—H1B 109 (2) C8—C9—H9 121.9 (16)

H1A—C1—H1B 98 (3) C9—C10—C11 120.6 (2)

C2—C1—H1C 113 (3) C9—C10—H10 120.3 (19)

H1A—C1—H1C 110 (4) C11—C10—H10 119.1 (19)

H1B—C1—H1C 111 (3) O4—C11—C10 115.6 (2)

C7—C2—C3 118.7 (2) O4—C11—C12 124.3 (2)

C7—C2—C1 120.1 (2) C10—C11—C12 120.2 (2)

C3—C2—C1 121.1 (2) C11—C12—C13 119.3 (2)

C4—C3—C2 120.9 (2) C11—C12—H12 120.6 (17)

C4—C3—H3 120 (2) C13—C12—H12 120.2 (17)

C2—C3—H3 119.0 (19) C8—C13—C12 119.4 (2)

C5—C4—C3 118.9 (2) C8—C13—H13 120.3 (17)

C5—C4—H4 119.9 (16) C12—C13—H13 120.3 (17)

C3—C4—H4 121.2 (16) O4—C14—H14A 109.3 (18)

C4—C5—C6 121.6 (2) O4—C14—H14B 104.7 (17)

C4—C5—S 119.54 (18) H14A—C14—H14B 112 (2)

C6—C5—S 118.71 (17) O4—C14—H14C 109.7 (17)

C7—C6—C5 118.5 (2) H14A—C14—H14C 112 (2)

C7—C6—H6 120.7 (17) H14B—C14—H14C 109 (2)

O2—S—O3—C8 −82.6 (2) C3—C2—C7—C6 −1.7 (4)

O1—S—O3—C8 47.4 (2) C1—C2—C7—C6 176.4 (2)

C5—S—O3—C8 162.5 (2) S—O3—C8—C13 −94.7 (2)

C7—C2—C3—C4 1.3 (4) S—O3—C8—C9 85.8 (2)

C1—C2—C3—C4 −176.7 (2) C13—C8—C9—C10 0.2 (3)

(10)

supporting information

sup-7

Acta Cryst. (2003). E59, o830–o832

C3—C4—C5—C6 −1.2 (4) C8—C9—C10—C11 0.4 (3)

C3—C4—C5—S 174.4 (2) C14—O4—C11—C10 −179.9 (2)

O2—S—C5—C4 −13.4 (2) C14—O4—C11—C12 0.8 (3)

O1—S—C5—C4 −145.8 (2) C9—C10—C11—O4 180.0 (2)

O3—S—C5—C4 100.5 (2) C9—C10—C11—C12 −0.6 (3)

O2—S—C5—C6 162.4 (2) O4—C11—C12—C13 179.7 (2)

O1—S—C5—C6 30.0 (2) C10—C11—C12—C13 0.4 (3)

O3—S—C5—C6 −83.7 (2) C9—C8—C13—C12 −0.4 (4)

C4—C5—C6—C7 0.9 (4) O3—C8—C13—C12 −180.0 (2)

S—C5—C6—C7 −174.8 (2) C11—C12—C13—C8 0.1 (3)

C5—C6—C7—C2 0.6 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C1—H1A···O1i 0.92 (5) 2.67 (4) 3.424 (3) 141 (3)

C1—H1B···O1ii 0.95 (4) 2.96 (4) 3.551 (3) 122 (3)

C1—H1C···O1iii 0.94 (4) 2.73 (4) 3.534 (4) 143 (3)

C1—H1C···O2iii 0.94 (4) 2.83 (4) 3.728 (3) 160 (3)

C3—H3···O1iii 0.90 (3) 2.61 (3) 3.454 (3) 155 (2)

C6—H6···O2iv 0.93 (3) 2.75 (3) 3.383 (3) 126 (2)

C9—H9···O4v 0.94 (3) 2.69 (3) 3.414 (3) 135 (2)

C13—H13···O2iv 0.93 (3) 2.58 (3) 3.426 (3) 152 (2)

C14—H14A···O2vi 0.96 (3) 2.84 (3) 3.486 (4) 125 (2)

C14—H14A···O3vii 0.96 (3) 2.71 (3) 3.131 (3) 107 (2)

C14—H14B···O4viii 0.99 (3) 2.53 (3) 3.425 (3) 152 (2)

C3—H3···Cg2ix 0.90 (3) 3.17 3.742 124

C7—H7···Cg1x 0.95 (3) 2.88 3.644 138

C10—H10···Cg2xi 0.89 (3) 2.85 3.527 134

C12—H12···Cg1vii 0.90 (3) 3.09 3.781 135

Figure

Figure 2
Figure 2. View in document p.5
Figure 1
Figure 1. View in document p.5
Figure 3
Figure 3. View in document p.6

References

Updating...