• No results found

Bis[2 (cyclo­hexyl­imino­methyl)­phenolato]zinc(II)

N/A
N/A
Protected

Academic year: 2020

Share "Bis[2 (cyclo­hexyl­imino­methyl)­phenolato]zinc(II)"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m1197–m1198 doi:10.1107/S1600536805015990 Han-Na Hou [Zn(C

13H16NO)2]

m1197

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[2-(cyclohexyliminomethyl)phenolato]zinc(II)

Han-Na Hou

Department of Chemistry, Hubei Institute of Education, Wuhan 430205, People’s Republic of China

Correspondence e-mail: houhanna@163.com

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.039

wRfactor = 0.105

Data-to-parameter ratio = 17.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, [Zn(C13H16NO)2], is a mononuclear

zinc(II) complex. The central ZnIIion, lying on an inversion centre, is coordinated by two N atoms and two O atoms from two Schiff base 2-cyclohexyliminomethylphenolate anions, resulting in a square-planar geometry.

Comment

Schiff base complexes have been studied extensively because

of their interesting structures and varied applications

(Bhaduri, et al., 2003; You, 2005). Zinc(II) has long been recognized as a structural template in protein folding or as a Lewis acid catalyst that can readily adopt 4-, 5- or 6-coordi-nation (Vallee & Auld, 1993; Lipscomb & Stra¨ter, 1996). As part of an investigation of the structures of Schiff base zinc(II) compounds, the title compound, (I) (Fig. 1), a mononuclear zinc(II) complex, is reported here.

The central ZnII ion, lying on an inversion centre, is in a square-planar geometry and is four-coordinated by two N atoms and two O atoms from two Schiff base molecules. Both

the Zn—O bond length of 1.891 (2) A˚ and the Zn—N bond

length of 2.015 (2) A˚ are comparable with the corresponding values observed in other Schiff base zinc(II) complexes (Kratochvı´l et al., 1991; Tatar et al., 1999). As expected, the cyclohexyl group adopts a chair conformation to minimize steric effects. There are no short intermolecular contacts in the crystal structure of (I) (Fig. 2).

Experimental

Salicylaldehyde (0.1 mmol, 12.1 mg), cyclohexylamine (0.1 mmol, 10.1 mg) and Zn(CH3COO)22H2O (0.1 mmol, 22.0 mg) were dissolved in methanol (10 ml). The mixture was stirred at room temperature for 1 h to give a clear yellow solution. After the solution had been kept in air for 3 d, yellow block-shaped crystals of (I) were formed.

(2)

Crystal data

[Zn(C13H16NO)2] Mr= 469.91 Triclinic,P1 a= 6.470 (2) A˚ b= 7.814 (2) A˚ c= 12.035 (2) A˚

= 97.70 (3) = 101.90 (3) = 104.88 (3)

V= 564.1 (3) A˚3

Z= 1

Dx= 1.383 Mg m3 MoKradiation Cell parameters from 3750

reflections

= 2.8–28.3 = 1.11 mm1 T= 298 (2) K Block, yellow 0.280.250.21 mm

Data collection

Bruker SMART CCD diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.746,Tmax= 0.800 5204 measured reflections

2502 independent reflections 2457 reflections withI> 2(I) Rint= 0.056

max= 27.5 h=8!8 k=10!10 l=15!15

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.039 wR(F2) = 0.105 S= 1.14 2502 reflections 142 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0413P)2 + 0.3104P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.42 e A˚

3 min=0.49 e A˚

[image:2.610.47.298.71.309.2]

3

Table 1

Selected geometric parameters (A˚ ,).

Zn1—O1 1.891 (2) Zn1—N1 2.015 (2)

O1i

—Zn1—N1 89.54 (8) O1—Zn1—N1 90.46 (8)

Symmetry code: (i)x;yþ2;zþ2.

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.98 A˚ and with the constraintUiso(H) = 1.2Ueq(C) applied.

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 1998); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics:

SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.

The author thanks the Hubei Institute of Education for funding this study.

References

Bhaduri, S., Tasiopoulos, A. J., Bolcar, M. A., Abbound, K. A., Streib, W. E. & Christou, G. (2003).Inorg. Chem.42, 1483–1492.

Bruker (1998).SMART(Version 5.628) andSAINT(Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Kratochvı´l, B., Ondra´cek, J., Novotny´, J. & Haber, V. (1991).Acta Cryst.C47, 2207–2209.

Lipscomb, W. N. & Stra¨ter, N. (1996).Chem. Rev.96, 2375–2434. Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of

Go¨ttingen, Germany.

Sheldrick, G. M. (1997b).SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Tatar, L., U¨ lku¨, D. & Atakol, O. (1999).Acta Cryst.C55, 508–510. Vallee, B. L. & Auld, D. S. (1993).Acc. Chem. Res.26, 543–551. You, Z.-L. (2005).Acta Cryst.C61, m295–m297.

Figure 2

[image:2.610.316.568.72.235.2]

The crystal packing in (I), viewed along theaaxis.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, m1197–m1198

supporting information

Acta Cryst. (2005). E61, m1197–m1198 [https://doi.org/10.1107/S1600536805015990]

Bis[2-(cyclohexyliminomethyl)phenolato]zinc(II)

Han-Na Hou

Bis(2-cyclohexyliminomethylphenolato)zinc(II)

Crystal data [Zn(C13H16NO)2] Mr = 469.91

Triclinic, P1 Hall symbol: -P 1 a = 6.470 (2) Å b = 7.814 (2) Å c = 12.035 (2) Å α = 97.70 (3)° β = 101.90 (3)° γ = 104.88 (3)° V = 564.1 (3) Å3

Z = 1 F(000) = 248 Dx = 1.383 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3750 reflections θ = 2.8–28.3°

µ = 1.11 mm−1 T = 298 K Block, yellow

0.28 × 0.25 × 0.21 mm

Data collection Bruker SMART CCD

diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.746, Tmax = 0.800

5204 measured reflections 2502 independent reflections 2457 reflections with I > 2σ(I) Rint = 0.056

θmax = 27.5°, θmin = 1.8° h = −8→8

k = −10→10 l = −15→15

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.039 wR(F2) = 0.105 S = 1.14 2502 reflections 142 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0413P)2 + 0.3104P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.42 e Å−3 Δρmin = −0.49 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Zn1 0.0000 1.0000 1.0000 0.02973 (14)

O1 −0.1285 (3) 0.8932 (3) 0.84185 (14) 0.0409 (4) N1 0.2119 (3) 0.8502 (2) 1.00771 (15) 0.0270 (4) C1 0.1740 (4) 0.7962 (3) 0.79940 (19) 0.0294 (4) C2 −0.0230 (4) 0.8430 (3) 0.76706 (19) 0.0313 (5) C3 −0.1113 (5) 0.8304 (4) 0.6476 (2) 0.0417 (6)

H3 −0.2427 0.8582 0.6235 0.050*

C4 −0.0069 (5) 0.7777 (4) 0.5664 (2) 0.0479 (6)

H4 −0.0682 0.7715 0.4884 0.058*

C5 0.1894 (5) 0.7336 (4) 0.5991 (2) 0.0481 (6)

H5 0.2598 0.6990 0.5437 0.058*

C6 0.2765 (4) 0.7420 (3) 0.7138 (2) 0.0382 (5)

H6 0.4066 0.7114 0.7361 0.046*

C7 0.2698 (4) 0.7898 (3) 0.91772 (19) 0.0295 (4)

H7 0.3840 0.7371 0.9301 0.035*

C8 0.3129 (3) 0.8153 (3) 1.12203 (18) 0.0279 (4)

H8 0.3703 0.9320 1.1761 0.034*

C9 0.5023 (4) 0.7328 (3) 1.1279 (2) 0.0342 (5)

H9A 0.6183 0.8077 1.1006 0.041*

H9B 0.4506 0.6138 1.0784 0.041*

C10 0.5931 (4) 0.7182 (4) 1.2529 (2) 0.0407 (6)

H10A 0.7115 0.6626 1.2562 0.049*

H10B 0.6538 0.8383 1.3010 0.049*

C11 0.4134 (4) 0.6065 (4) 1.3001 (2) 0.0429 (6)

H11A 0.3654 0.4825 1.2579 0.051*

H11B 0.4735 0.6067 1.3810 0.051*

C12 0.2177 (4) 0.6798 (4) 1.2894 (2) 0.0396 (5)

H12A 0.2609 0.7971 1.3403 0.047*

H12B 0.1015 0.5996 1.3137 0.047*

C13 0.1301 (4) 0.6979 (3) 1.1653 (2) 0.0356 (5)

H13A 0.0100 0.7517 1.1618 0.043*

H13B 0.0727 0.5791 1.1156 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, m1197–m1198

C2 0.0338 (11) 0.0293 (10) 0.0295 (10) 0.0103 (8) 0.0061 (9) 0.0023 (8) C3 0.0421 (14) 0.0485 (14) 0.0318 (12) 0.0184 (11) 0.0004 (10) 0.0031 (10) C4 0.0575 (17) 0.0590 (16) 0.0257 (11) 0.0186 (13) 0.0070 (11) 0.0059 (11) C5 0.0546 (17) 0.0617 (17) 0.0335 (13) 0.0215 (13) 0.0199 (12) 0.0059 (12) C6 0.0379 (13) 0.0463 (13) 0.0367 (12) 0.0187 (10) 0.0151 (10) 0.0077 (10) C7 0.0283 (10) 0.0310 (10) 0.0334 (11) 0.0138 (8) 0.0093 (8) 0.0085 (8) C8 0.0258 (10) 0.0325 (10) 0.0286 (10) 0.0119 (8) 0.0074 (8) 0.0091 (8) C9 0.0303 (11) 0.0411 (12) 0.0396 (12) 0.0168 (9) 0.0137 (9) 0.0159 (10) C10 0.0288 (11) 0.0543 (14) 0.0453 (14) 0.0177 (10) 0.0078 (10) 0.0230 (12) C11 0.0430 (14) 0.0496 (14) 0.0453 (14) 0.0196 (11) 0.0131 (11) 0.0254 (12) C12 0.0394 (13) 0.0493 (14) 0.0377 (12) 0.0161 (11) 0.0158 (10) 0.0194 (11) C13 0.0266 (10) 0.0469 (13) 0.0370 (12) 0.0114 (9) 0.0107 (9) 0.0153 (10)

Geometric parameters (Å, º)

Zn1—O1i 1.891 (2) C7—H7 0.9300

Zn1—O1 1.891 (2) C8—C9 1.518 (3)

Zn1—N1 2.015 (2) C8—C13 1.529 (3)

Zn1—N1i 2.015 (2) C8—H8 0.9800

O1—C2 1.314 (3) C9—C10 1.530 (3)

N1—C7 1.287 (3) C9—H9A 0.9700

N1—C8 1.488 (3) C9—H9B 0.9700

C1—C2 1.409 (3) C10—C11 1.523 (4)

C1—C6 1.410 (3) C10—H10A 0.9700

C1—C7 1.444 (3) C10—H10B 0.9700

C2—C3 1.413 (3) C11—C12 1.508 (4)

C3—C4 1.374 (4) C11—H11A 0.9700

C3—H3 0.9300 C11—H11B 0.9700

C4—C5 1.393 (4) C12—C13 1.523 (3)

C4—H4 0.9300 C12—H12A 0.9700

C5—C6 1.366 (4) C12—H12B 0.9700

C5—H5 0.9300 C13—H13A 0.9700

C6—H6 0.9300 C13—H13B 0.9700

O1i—Zn1—O1 180.0 N1—C8—H8 107.0

O1i—Zn1—N1 89.54 (8) C9—C8—H8 107.0

O1—Zn1—N1 90.46 (8) C13—C8—H8 107.0

O1i—Zn1—N1i 90.46 (8) C8—C9—C10 109.5 (2)

O1—Zn1—N1i 89.54 (8) C8—C9—H9A 109.8

N1—Zn1—N1i 180.0 C10—C9—H9A 109.8

C2—O1—Zn1 125.65 (15) C8—C9—H9B 109.8

C7—N1—C8 118.86 (19) C10—C9—H9B 109.8

C7—N1—Zn1 122.11 (15) H9A—C9—H9B 108.2

C8—N1—Zn1 118.97 (14) C11—C10—C9 111.3 (2)

C2—C1—C6 119.9 (2) C11—C10—H10A 109.4

C2—C1—C7 122.2 (2) C9—C10—H10A 109.4

C6—C1—C7 117.8 (2) C11—C10—H10B 109.4

(6)

O1—C2—C3 119.4 (2) H10A—C10—H10B 108.0

C1—C2—C3 117.3 (2) C12—C11—C10 111.6 (2)

C4—C3—C2 121.3 (2) C12—C11—H11A 109.3

C4—C3—H3 119.3 C10—C11—H11A 109.3

C2—C3—H3 119.3 C12—C11—H11B 109.3

C3—C4—C5 121.1 (2) C10—C11—H11B 109.3

C3—C4—H4 119.5 H11A—C11—H11B 108.0

C5—C4—H4 119.5 C11—C12—C13 111.2 (2)

C6—C5—C4 118.8 (2) C11—C12—H12A 109.4

C6—C5—H5 120.6 C13—C12—H12A 109.4

C4—C5—H5 120.6 C11—C12—H12B 109.4

C5—C6—C1 121.6 (2) C13—C12—H12B 109.4

C5—C6—H6 119.2 H12A—C12—H12B 108.0

C1—C6—H6 119.2 C12—C13—C8 110.77 (19)

N1—C7—C1 126.1 (2) C12—C13—H13A 109.5

N1—C7—H7 116.9 C8—C13—H13A 109.5

C1—C7—H7 116.9 C12—C13—H13B 109.5

N1—C8—C9 117.15 (18) C8—C13—H13B 109.5

N1—C8—C13 108.41 (17) H13A—C13—H13B 108.1 C9—C8—C13 109.88 (18)

N1—Zn1—O1—C2 −34.5 (2) C7—C1—C6—C5 176.0 (2) N1i—Zn1—O1—C2 145.5 (2) C8—N1—C7—C1 173.74 (19) O1i—Zn1—N1—C7 −154.02 (18) Zn1—N1—C7—C1 −9.2 (3) O1—Zn1—N1—C7 25.98 (18) C2—C1—C7—N1 −11.3 (3) O1i—Zn1—N1—C8 23.05 (15) C6—C1—C7—N1 172.8 (2) O1—Zn1—N1—C8 −156.95 (15) C7—N1—C8—C9 8.3 (3) Zn1—O1—C2—C1 25.5 (3) Zn1—N1—C8—C9 −168.85 (15) Zn1—O1—C2—C3 −156.07 (18) C7—N1—C8—C13 −116.7 (2) C6—C1—C2—O1 179.4 (2) Zn1—N1—C8—C13 66.1 (2) C7—C1—C2—O1 3.6 (3) N1—C8—C9—C10 176.51 (19) C6—C1—C2—C3 1.0 (3) C13—C8—C9—C10 −59.2 (3) C7—C1—C2—C3 −174.9 (2) C8—C9—C10—C11 57.6 (3) O1—C2—C3—C4 −179.7 (2) C9—C10—C11—C12 −55.1 (3) C1—C2—C3—C4 −1.2 (4) C10—C11—C12—C13 53.9 (3) C2—C3—C4—C5 0.5 (4) C11—C12—C13—C8 −55.9 (3) C3—C4—C5—C6 0.5 (4) N1—C8—C13—C12 −172.0 (2) C4—C5—C6—C1 −0.7 (4) C9—C8—C13—C12 58.8 (3) C2—C1—C6—C5 0.0 (4)

Figure

Table 1

References

Related documents

Consistent hemisphere diameters at White Island support a bubble length increase as Slug balloon experiments formed similar-sized hemispheres regardless of length. The

The overshoot column for the total sample includes participants who enrolled in training programs with a valid occupation code for the training occupation reported in TAPR

The component items of this general index are groups of national indices aggregated according to a harmonized classification confonning to the ESA (European System of

For future work in the majority/minority logic synthesis methods, it is sug- gested that the synthesis method should be developed to synthesis the equivalent majority and

This paper will discuss the problem of management and development of cash waqf funds included in the freezing of Muslims to endowments, understanding that is still wrong

( 1 ) Délégué également responsable pour les Bahamas, Belize, les îles Cayman et les îles Turks et Caicos.. e) Délégué également responsable pour la république de

Spre finele anului 2000, când a trecut valul următor prin băncile moldovenești, ceea ce a dus la micșorarea bugetelor pentru secțiile de programare și tehnice, au fost

Under Regulation 23 (1) (c) you are required to: Put management systems in place in the designated centre to ensure that the service provided is safe, appropriate to residents'