• No results found

2 Methyl­propan 2 aminium O methyl {1 [(2,4 di­chloro­phen­­oxy)acet­­oxy]ethyl}phosphonate acetone solvate

N/A
N/A
Protected

Academic year: 2020

Share "2 Methyl­propan 2 aminium O methyl {1 [(2,4 di­chloro­phen­­oxy)acet­­oxy]ethyl}phosphonate acetone solvate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1180

Peng and He C

4H12N+C11H12Cl2O6PC3H6O doi:10.1107/S1600536807004953 Acta Cryst.(2007). E63, o1180–o1181

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2-Methylpropan-2-aminium

O

-methyl

{1-[(2,4-dichlorophenoxy)acetoxy]ethyl}-phosphonate acetone solvate

Hao Peng and Hong-Wu He*

Key Laboratory of Pesticides and Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China.

Correspondence e-mail: he1208@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.054

wRfactor = 0.152

Data-to-parameter ratio = 20.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 23 January 2007 Accepted 30 January 2007

#2007 International Union of Crystallography All rights reserved

In the title compound, C4H12N +

C11H12Cl2O6P

C3H6O, all

bond lengths and angles are normal. Three ammonium H

atoms participate in N—H O hydrogen bonds, which

stabilize the crystal packing along with weak intermolecular

C—H O interactions.

Comment

Phosphonic acid analogues of naturally occurring phosphates or carboxylic acids continue to attract considerable interest as potential regulators, mediators or inhibitors of metabolic processes. A series of 1-(substituted phenoxyacetoxy)alkyl-phosphonate derivatives have been synthesized and shown to be endowed with significant herbicidal activity (Heet al., 2005; Wang & He, 2004; Chenet al., 2006). Obviously, introduction of alkali metal ions or ammonium ions could efficiently enhance the water-solubility of these compounds. As a continuation of our research work aimed at a search for novel agrochemicals, we report here the crystal structure of the title compound, (I).

Figure 1

(2)

In (I) (Fig. 1), all bond lengths and angles show normal

values (Allen et al., 1987). The P1—O6 bond length of

1.6005 (15) A˚ is significantly longer than the P1—O4 and P1— O5 distances of 1.4805 (13) and 1.4964 (13) A˚ , respectively.

Three ammonium H atoms participate in N—H O

hydrogen bonds (Table 1), which stabilize the crystal packing

(Fig. 2) along with weak intermolecular C—H O

inter-actions (Table 1).

Experimental

The title compound was prepared according to the literature proce-dure of Smithet al.(1980). Recrystallization from a water–acetone mixture (20:1v/v) over 3 d gave colourless crystals of (I).

Crystal data

C4H12N+C11H12Cl2O6P

C3H6O

Mr= 474.30

Monoclinic,P21=c

a= 21.1519 (14) A˚

b= 9.8097 (7) A˚

c= 11.7381 (8) A˚

= 97.915 (1) V= 2412.4 (3) A˚3

Z= 4

Dx= 1.306 Mg m 3 MoKradiation

= 0.37 mm1

T= 293 (2) K Block, colourless 0.300.200.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: none 25260 measured reflections

5528 independent reflections 4184 reflections withI> 2(I)

Rint= 0.056

max= 27.5

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.054

wR(F2) = 0.152

S= 1.03 5528 reflections 273 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0874P)2] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.42 e A˚ 3

min=0.37 e A˚ 3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N8—H8B O5i

0.89 1.97 2.841 (2) 164 N8—H8C O5ii 0.89 1.96 2.8419 (19) 170 C4—H4 O2ii

0.93 2.37 3.295 (3) 172 N8—H8A O4 0.89 1.84 2.7290 (19) 178

Symmetry codes: (i)xþ1;yþ1 2;zþ

1

2; (ii)x;yþ 1 2;z

1 2.

Carbon-bound H atoms were positioned geometrically, with C— H = 0.93–0.98 A˚ , and refined as riding, withUiso(H) = 1.2–1.5Ueq(C).

N-bound H atoms were located in a difference map but subsequently placed in idealized positions, with N—H = 0.89 A˚ , and refined as riding, withUiso(H) = 1.2Ueq(N).

Data collection:SMART(Bruker, 2001); cell refinement:SAINT

(Bruker, 2001); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

PLATON (Spek, 2003); software used to prepare material for publication:PLATON.

The authors gratefully acknowledge the financial support of this work by the National Basic Research Programme of China (grant No. 2003CB114400) and the National Natural Science Foundation of China (grant No. 20372023).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2001).SMART(Version 5.628),SAINT(Version 6.45) andSADABS

(Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, T., Shen, P., Li, Y. J. & He, H. W. (2006).J. Fluorine Chem.127, 291–295. He, H. W., Wang, T. & Yuan, J. L. (2005).J. Organomet. Chem.609, 2608–2613. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Smith, D. J. H., Ogilvie, K. K. & Gillen, M. F. (1980).Tetrahedron Lett.21, 861– 864.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

[image:2.610.49.292.73.219.2]

Wang, T. & He, H. W. (2004).Synth. Commun.34, 1415–1423. Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2007). E63, o1180–o1181

supporting information

Acta Cryst. (2007). E63, o1180–o1181 [https://doi.org/10.1107/S1600536807004953]

2-Methylpropan-2-aminium

O

-methyl

{1-[(2,4-dichlorophenoxy)acetoxy]ethyl}-phosphonate acetone solvate

Hao Peng and Hong-Wu He

2-Methylpropan-2-aminium O-methyl {1-[(2,4-dichlorophenoxy)acetoxy]ethyl}phosphonate acetone solvate

Crystal data

C4H12N+·C11H12Cl2O6P−·C3H6O

Mr = 474.30 Monoclinic, P21/c Hall symbol: -P 2ybc

a = 21.1519 (14) Å

b = 9.8097 (7) Å

c = 11.7381 (8) Å

β = 97.915 (1)°

V = 2412.4 (3) Å3

Z = 4

F(000) = 1000

Dx = 1.306 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 6125 reflections

θ = 2.3–25.5°

µ = 0.37 mm−1

T = 293 K Block, colourless 0.30 × 0.20 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

25260 measured reflections 5528 independent reflections

4184 reflections with I > 2σ(I)

Rint = 0.056

θmax = 27.5°, θmin = 1.0°

h = −27→27

k = −12→12

l = −15→15

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.054

wR(F2) = 0.152

S = 1.03 5528 reflections 273 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0874P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.42 e Å−3 Δρmin = −0.37 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 0.03529 (3) 0.58097 (9) 0.33632 (7) 0.0790 (3) Cl2 0.05140 (5) 0.27289 (11) −0.03560 (9) 0.1076 (3) N8 0.44768 (7) 0.51555 (15) 0.12326 (13) 0.0317 (3)

H8A 0.4477 0.4666 0.1871 0.048*

H8B 0.4849 0.5584 0.1254 0.048*

H8C 0.4418 0.4606 0.0624 0.048*

O1 0.17116 (7) 0.55474 (19) 0.37945 (16) 0.0652 (5) O2 0.24655 (8) 0.33963 (19) 0.47536 (17) 0.0673 (5) O3 0.33450 (6) 0.46065 (13) 0.45685 (13) 0.0422 (3) O4 0.44570 (7) 0.36757 (14) 0.31961 (12) 0.0424 (3) O5 0.43467 (6) 0.13508 (13) 0.41453 (11) 0.0380 (3) O6 0.34305 (7) 0.24511 (14) 0.28321 (12) 0.0450 (4) O7 0.22733 (12) 0.8359 (3) 0.2121 (3) 0.1262 (10) P1 0.40599 (2) 0.26877 (5) 0.37354 (4) 0.03149 (15) C1 0.08063 (11) 0.4906 (2) 0.2515 (2) 0.0533 (6) C2 0.05191 (12) 0.4250 (3) 0.1550 (2) 0.0630 (7)

H2 0.0078 0.4281 0.1356 0.076*

C3 0.08848 (13) 0.3550 (3) 0.0875 (2) 0.0649 (7) C4 0.15341 (13) 0.3485 (3) 0.1149 (2) 0.0658 (7)

H4 0.1777 0.3001 0.0684 0.079*

C5 0.18231 (11) 0.4141 (3) 0.2114 (2) 0.0585 (6)

H5 0.2265 0.4103 0.2298 0.070*

C6 0.14692 (10) 0.4859 (2) 0.2818 (2) 0.0503 (6) C7 0.23840 (11) 0.5703 (3) 0.4042 (2) 0.0594 (6)

H7A 0.2479 0.6418 0.4610 0.071*

H7B 0.2549 0.5986 0.3348 0.071*

C8 0.27180 (10) 0.4413 (2) 0.44875 (19) 0.0451 (5) C9 0.37686 (9) 0.34753 (19) 0.49753 (17) 0.0352 (4)

H9 0.3530 0.2800 0.5359 0.042*

C10 0.43021 (11) 0.4045 (2) 0.58262 (19) 0.0473 (5)

H10A 0.4547 0.4679 0.5444 0.071*

H10B 0.4573 0.3315 0.6144 0.071*

H10C 0.4126 0.4503 0.6433 0.071*

C11 0.30375 (12) 0.1269 (2) 0.2866 (2) 0.0561 (6)

H11A 0.3299 0.0467 0.2911 0.084*

H11B 0.2732 0.1234 0.2181 0.084*

H11C 0.2818 0.1314 0.3527 0.084*

C12 0.1209 (2) 0.8430 (9) 0.1333 (5) 0.199 (3)

H12A 0.1103 0.9255 0.0909 0.299*

(5)

supporting information

sup-3 Acta Cryst. (2007). E63, o1180–o1181

H12C 0.1326 0.7739 0.0822 0.299*

C13 0.17452 (18) 0.8687 (4) 0.2240 (4) 0.0971 (12) C14 0.1595 (3) 0.9276 (6) 0.3312 (5) 0.173 (2)

H14A 0.1293 0.8704 0.3625 0.260*

H14B 0.1415 1.0167 0.3165 0.260*

H14C 0.1978 0.9344 0.3853 0.260*

C15 0.33202 (11) 0.5419 (2) 0.1079 (2) 0.0500 (5)

H15A 0.3330 0.4835 0.1738 0.075*

H15B 0.3260 0.4878 0.0391 0.075*

H15C 0.2974 0.6055 0.1066 0.075*

C16 0.39448 (9) 0.61890 (18) 0.11469 (16) 0.0344 (4) C17 0.40579 (12) 0.7068 (2) 0.2220 (2) 0.0543 (6)

H17A 0.4058 0.6504 0.2888 0.081*

H17B 0.3724 0.7735 0.2197 0.081*

H17C 0.4462 0.7520 0.2252 0.081*

C18 0.39792 (12) 0.7009 (2) 0.0059 (2) 0.0513 (6)

H18A 0.3637 0.7661 −0.0041 0.077*

H18B 0.3941 0.6407 −0.0591 0.077*

H18C 0.4381 0.7479 0.0122 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

C15 0.0419 (12) 0.0516 (13) 0.0565 (14) 0.0018 (10) 0.0074 (10) 0.0056 (11) C16 0.0411 (11) 0.0313 (10) 0.0312 (10) 0.0045 (8) 0.0065 (8) 0.0007 (7) C17 0.0652 (15) 0.0503 (13) 0.0477 (13) 0.0086 (11) 0.0090 (11) −0.0163 (10) C18 0.0647 (15) 0.0421 (12) 0.0468 (13) 0.0055 (10) 0.0063 (11) 0.0163 (10)

Geometric parameters (Å, º)

Cl1—C1 1.720 (2) C9—C10 1.508 (3)

Cl2—C3 1.744 (3) C9—H9 0.98

N8—C16 1.508 (2) C10—H10A 0.9600

N8—H8A 0.8900 C10—H10B 0.9600

N8—H8B 0.8900 C10—H10C 0.9600

N8—H8C 0.8900 C11—H11A 0.9600

O1—C6 1.368 (3) C11—H11B 0.9600

O1—C7 1.420 (3) C11—H11C 0.9600

O2—C8 1.193 (3) C12—C13 1.467 (6)

O3—C8 1.330 (2) C12—H12A 0.9600

O3—C9 1.464 (2) C12—H12B 0.9600

O4—P1 1.4805 (13) C12—H12C 0.9600

O5—P1 1.4964 (13) C13—C14 1.460 (6)

O6—C11 1.430 (3) C14—H14A 0.9600

O6—P1 1.6005 (15) C14—H14B 0.9600

O7—C13 1.189 (4) C14—H14C 0.9600

P1—C9 1.8279 (19) C15—C16 1.515 (3)

C1—C2 1.370 (4) C15—H15A 0.9600

C1—C6 1.399 (3) C15—H15B 0.9600

C2—C3 1.366 (4) C15—H15C 0.9600

C2—H2 0.9300 C16—C17 1.518 (3)

C3—C4 1.368 (4) C16—C18 1.520 (3)

C4—C5 1.371 (4) C17—H17A 0.9600

C4—H4 0.9300 C17—H17B 0.9600

C5—C6 1.382 (3) C17—H17C 0.9600

C5—H5 0.9300 C18—H18A 0.9600

C7—C8 1.507 (3) C18—H18B 0.9600

C7—H7A 0.9700 C18—H18C 0.9600

C7—H7B 0.9700

C16—N8—H8A 109.5 H10A—C10—H10B 109.5

C16—N8—H8B 109.5 C9—C10—H10C 109.5

H8A—N8—H8B 109.5 H10A—C10—H10C 109.5

C16—N8—H8C 109.5 H10B—C10—H10C 109.5

H8A—N8—H8C 109.5 O6—C11—H11A 109.5

H8B—N8—H8C 109.5 O6—C11—H11B 109.5

C6—O1—C7 118.28 (18) H11A—C11—H11B 109.5

C8—O3—C9 118.33 (16) O6—C11—H11C 109.5

C11—O6—P1 122.20 (13) H11A—C11—H11C 109.5

O4—P1—O5 118.84 (8) H11B—C11—H11C 109.5

(7)

supporting information

sup-5 Acta Cryst. (2007). E63, o1180–o1181

O5—P1—O6 110.45 (8) C13—C12—H12B 109.5

O4—P1—C9 109.69 (8) H12A—C12—H12B 109.5

O5—P1—C9 106.30 (8) C13—C12—H12C 109.5

O6—P1—C9 104.36 (9) H12A—C12—H12C 109.5

C2—C1—C6 120.6 (2) H12B—C12—H12C 109.5

C2—C1—Cl1 120.09 (18) O7—C13—C14 121.9 (5)

C6—C1—Cl1 119.3 (2) O7—C13—C12 120.9 (5)

C3—C2—C1 119.6 (2) C14—C13—C12 117.1 (5)

C3—C2—H2 120.2 C13—C14—H14A 109.5

C1—C2—H2 120.2 C13—C14—H14B 109.5

C2—C3—C4 121.2 (3) H14A—C14—H14B 109.5

C2—C3—Cl2 119.1 (2) C13—C14—H14C 109.5

C4—C3—Cl2 119.7 (2) H14A—C14—H14C 109.5

C3—C4—C5 119.4 (2) H14B—C14—H14C 109.5

C3—C4—H4 120.3 C16—C15—H15A 109.5

C5—C4—H4 120.3 C16—C15—H15B 109.5

C4—C5—C6 121.1 (2) H15A—C15—H15B 109.5

C4—C5—H5 119.4 C16—C15—H15C 109.5

C6—C5—H5 119.4 H15A—C15—H15C 109.5

O1—C6—C5 125.5 (2) H15B—C15—H15C 109.5

O1—C6—C1 116.3 (2) N8—C16—C15 107.79 (15)

C5—C6—C1 118.1 (2) N8—C16—C17 107.20 (16)

O1—C7—C8 112.9 (2) C15—C16—C17 111.34 (17)

O1—C7—H7A 109.0 N8—C16—C18 106.89 (15)

C8—C7—H7A 109.0 C15—C16—C18 111.25 (18)

O1—C7—H7B 109.0 C17—C16—C18 112.09 (18)

C8—C7—H7B 109.0 C16—C17—H17A 109.5

H7A—C7—H7B 107.8 C16—C17—H17B 109.5

O2—C8—O3 125.3 (2) H17A—C17—H17B 109.5

O2—C8—C7 126.0 (2) C16—C17—H17C 109.5

O3—C8—C7 108.68 (18) H17A—C17—H17C 109.5

O3—C9—C10 107.68 (16) H17B—C17—H17C 109.5

O3—C9—P1 108.60 (13) C16—C18—H18A 109.5

C10—C9—P1 112.37 (14) C16—C18—H18B 109.5

O3—C9—H9 109 H18A—C18—H18B 109.5

C10—C9—H9 109 C16—C18—H18C 109.5

P1—C9—H9 109 H18A—C18—H18C 109.5

C9—C10—H10A 109.5 H18B—C18—H18C 109.5

C9—C10—H10B 109.5

C11—O6—P1—O4 159.12 (17) C2—C1—C6—C5 0.4 (4) C11—O6—P1—O5 28.91 (19) Cl1—C1—C6—C5 −179.13 (19) C11—O6—P1—C9 −84.95 (18) C6—O1—C7—C8 −75.4 (3)

C6—C1—C2—C3 −0.3 (4) C9—O3—C8—O2 2.4 (3)

Cl1—C1—C2—C3 179.2 (2) C9—O3—C8—C7 −179.38 (17)

C1—C2—C3—C4 0.3 (4) O1—C7—C8—O2 −8.9 (4)

(8)

Cl2—C3—C4—C5 179.6 (2) C8—O3—C9—P1 102.00 (17)

C3—C4—C5—C6 0.4 (4) O4—P1—C9—O3 64.43 (14)

C7—O1—C6—C5 8.8 (4) O5—P1—C9—O3 −165.90 (12) C7—O1—C6—C1 −170.6 (2) O6—P1—C9—O3 −49.12 (14) C4—C5—C6—O1 −179.8 (3) O4—P1—C9—C10 −54.59 (16) C4—C5—C6—C1 −0.4 (4) O5—P1—C9—C10 75.09 (16) C2—C1—C6—O1 179.8 (2) O6—P1—C9—C10 −168.13 (14) Cl1—C1—C6—O1 0.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N8—H8B···O5i 0.89 1.97 2.841 (2) 164

N8—H8C···O5ii 0.89 1.96 2.8419 (19) 170

C4—H4···O2ii 0.93 2.37 3.295 (3) 172

N8—H8A···O4 0.89 1.84 2.7290 (19) 178

Figure

Figure 2N8—H8B� � �O5iN8—H8C� � �O5iiA portion of the crystal packing, viewed down the b axis

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical