• No results found

Stable Perturbed Algorithms for a New Class of Generalized Nonlinear Implicit Quasi Variational Inclusions in Banach Spaces

N/A
N/A
Protected

Academic year: 2020

Share "Stable Perturbed Algorithms for a New Class of Generalized Nonlinear Implicit Quasi Variational Inclusions in Banach Spaces"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

Stable Perturbed Algorithms for a New Class of

Generalized Nonlinear Implicit Quasi Variational

Inclusions in Banach Spaces

Salahuddin, Mohammad Kalimuddin Ahmad Department of Mathematics, Aligarh Muslim University, Aligarh, India

Email: salahuddin12@mailcity.com, ahmad_kalimuddin@yahoo.co.in Received August 11,2011; revised October 11, 2011; accepted October 20, 2011

ABSTRACT

In this work, a new class of variational inclusion involving T-accretive operators in Banach spaces is introduced and studied. New iterative algorithms for stability for their class of variational inclusions and its convergence results are established.

Keywords:T-Accretive Operators; Variational Inclusions; Iterative Algorithms; Stability Conditions; Convergence; Strong Accretivity; Banach Spaces

1. Introduction

 

Variational inequality theory provides us with a simple, natural, general and unified framework for studying a wide range of unrelated problems arising in mechanics, physics, optimization and control theory nonlinear pro- gramming, economics, transportation, equilibrium and engineering sciences.

In recent years, variational inequality has been ex- tended and generalized in different direction. A useful and important generalization of the variational inequality is called variational inclusions see [1-7].

Suppose E is a real Banach space with dual space E*,

norm . and dual pairing .,.

: 2

, 2E is the family of all nonempty subsets of E, CB(E) is the family of all non- empty closed bounded subset of E and the generalized

duality mapping E

q

J E  is defined by

 

* *

1 *

: ,

, q

q

* * ,

,

J u f E u

f u

 

 

f f u

u E

 

where q > 1 is a constant. In particular, J2 is the usual

normalized duality mapping. It is known that, in general

 

2

 

2

q q

J uuJ u for all u0 and Jq is simple single valued, if E* is strictly convex. The modulus of

smoothness of E is the function E : 0

, 

0,

defined by

 

sup 1

1:

2

E t u v u v

       1, .uvt

 

A Banach space E is called uniformly smooth if

0

lim E 0

t t t

 

> 0

. E is called q-uniformly smooth, if there

 such that exists a constant

 

q, 1.

E t t q

  

> 0 q

c u v E,

Note that Jq is single valued, if E is uniformly smooth. Xu and Roach [8] and Xu [9] proved the following re- sults.

Lemma 1.1. Let E be a real uniformly smooth Banach

space. Then E is q-uniformly smooth if and only if there exists a constant such that for all

 

, .

q q q

q q

u v  uq v J uc v

:

T EE

: 2

Definition 1.1. [10] Let be a single-valued

operator and M E E be a multivalued operator.

M is said to be T-accretive if M is accretive and

TM E

 

E hold for all > 0.

Remark 1.1. 1) From [11] it is easily establish that if

TI (the identity map on E), then the definition of I- accretive operator is that of m-accretive operator.

2) Example 2.1 in [11] shows that an m-accretive operator need not be T-accretive for some T.

Let T E: E, N E E:  E

: 2

be two single valued mappings. Let M E E  E

t E

 

., : 2 be a set-valued mapping

such that for each fixed , M t E E

, , :

be a

T-accretive operator. For given f g p EE

u E

are map- pings, consider the following problem of finding  such that

 

 

0f uN u u, M pu gu, , (1)

(2)

which is called the generalized nonlinear implicit quasi variational inclusions.

Special Cases:

1) If E is a Hilbert space, then problem (1) is equiva- lent to finding u E such that

,

,

 

 

Dom .,

0 ,

pu M gu

f u N u u

  M pu gu

 

,

(2)

which is called the generalized nonlinear implicit quasi variational inclusions, considered by Ding [12] and Fang

et al. [13].

2) If M u t

 

u t E, 

u E

M u for all , then problem

(2) is equivalent to finding  such that

 

 

Dom

0 ,

pu M

f u N u

  u

M pu

 

,

: 2

(3)

where M E E

 

,

is a maximal monotone mapping. The problem (3) was considered by Huang [14].

3) If M u t  

 

, E

u E

u t for each t , then prob- lem (2) is equivalent to finding such that

 

 

 

,

,

Dom .,

, , ,

pu gu

f u N u u v pu pu

  

   gu  v gu

 

R

    t E

(4)

where :E E such that for each  ,

is a proper convex lower semi- continuous function with

 

., :t E R

  

 



 

 

 .,t

 .

0

f

u E

 

.,

, ,

u M pu u

:

T EE

: 2

Range p Dom  (5) The problem (4) was considered by Ding [15] for g to be an identity mapping.

4) If and g is the identity mapping, then prob- lem (1) is equivalent to finding such that

 

Dom

0 ,

pu M

N u u

  (6)

which is called the generalized strongly nonlinear im- plicit quasi variational inclusions, considered by Shim et al. [16].

Remark 1.2.For a suitable choice of f, g, p, N, M and

the space E, a number of classes of variational inequali- ties, complementarity problems and the variational in- clusions can be obtained as special cases of the general- ized nonlinear implicit quasivariational inclusions (1).

Let be a strictly monotone operator and

E

M E E 

 

, .

be a T-accretive operator. Fang and Huang [11] defined the resolvent operator

 

 

1

(., )

, .,

M t T

J vTM tv  v E

:

T EE

: 2

(7)

By Theorem 2.2 in [11], we know that if is a strictly accretive operator and M E E  E

(., ) , :

M t T

is a

T-accretive operator, then the operator J EE

:

T EE

> 0

is a single valued. From the proof of Theorem 2.3 in [11], it is easy to obtain the following result.

Lemma 1.2. [10] Let be a strictly accre-

tive operator with constant and for each fixed t E , M E E:  2E

(., ) , :

M t T

be a T-accretive operator then the operator JEE is Lipschitz continuous with constant 1 , i.e.,

 

 

(., ) (., )

, ,

1 , .

M t M t

T T

J u J v u v u v E

    

a b

q 2q

aqbq

 

 

2 max , 2 max ,

2 .

q q

q q

q q q

a b a b a b

a b

  

 

(8)

Lemma 1.3. Let a and b be two nonnegative real

numbers. Then

. (9) Proof.

Definition 1.2. Let Mn

0,1, 2,

n

and M be a maximal mono- tone mappings for  . The sequence

Mn

G n

is said to be graph converges to M (write M M)

if for every

 

u v, Graph M

 

, there exists a sequences

u v,

Graph Mn

n

uu vnv n 

n

n n such that and

as .

Lemma 1.4. [3] Let M and M be the maximal mono-

tone mappings for n0,1, 2,. Then MnG M

 

 

,

n

M M

if and only if

JuJu u E

(10)

1

M

J IM

  .

 and

for every  > 0, where

 

n ,

 

bn and

Lemma 1.5. Let a n

be three se-

quences of nonnegative numbers satisfying the following condition. There exists a positive integers such that

c

0 n

1 1 , for 0

n n n n n n

a   t ab tc n n (11)

 

0,1 n t

0 n

n t

,

where

  limnbn0

0 n

n c

, and



. Then an0 as n .

0

inf a n n:

  n  . Then 0.

Proof. Let  

> 0.

Sup- pose that  Then an > 0 for all n n 0. It

follows from (11), that

1

1 1

2 2

n n n n n n

n n n n n

a a t t b c

a b t t c

 

    

 

   

 

.

n nn0 n ,

1 0 nn

(12)

for all 0 Since b as there exists

such that

1

1

, for all .

(3)

Combining (11) and (12), we have , 0, if ;

q

Tu Tv J u v u v

1

a a 1

2

nn tncn

1 n n

for all , which implies that

1

1

2 n n

n n

t a

 

1 1

. n n n

c

 

 

 

0 This is a contradiction. Therefore,  

anj 0

j

and so there exists a subsequence

 

such that

as . It follows from (11) that

n a

j

n

a

 

1

jjb tn nj jcnj

.

j 

j k1

E

: 2

n n

a a

and so as A simple induction leads

to as for all and this means

that as n . This completes the proof.

1 0

j n

a  0 

0  j k n

a

a  

 

:

T En

Lemma 1.6.Let be a strictly accretive op-

erator and for a fixed tE , M E E  E

 

,

be a T-accretive operator in the first variable. If u is a solu- tion of the problem (1) if and only if

 

(., )

 

,

M gu

T

g uJ  T pu f u N u u 

> 0

where  is a constant and

1

., .

M gu

u E

 

 

 

, , ,

0 ,

, .

pu gu u T pu

u u

N u u

 

 

 



, :

T g EE (., )

,

M gu

T

J T

Proof. is a solution of (1)

 

 

 

 

 

 

 

 

 

 

(., ) ,

0 ,

0 ,

0

,

.,

M gu

T

f u N u u M pu gu

f u N u u M

T pu f u N u

M pu gu

T pu f u N

T M gu pu

pu J T pu f u

  

 

 

   

   

    

    

 

  

2. Existence and Uniqueness Theorems

In this section, we show the existence and uniqueness of solutions for the problem (1) in terms of Lemma 1.6.

Definition 2.1.Let E be a real uniformly smooth Ba-

nach space and be two single valued op- erators; T is said to be

1) Accretive if

, q

Tu Tv J u v  0, u v E, 

or, equivalently

2

, 0

Tu Tv J u v   , u v E,  ;

2) Strictly accretive if T is accretive and

   

> 0

r

3) Strongly accretive if there exists a constant such that

, q q, ,

Tu Tv J u v  r u v u v E

or, equivalently

2 2

, , , ;

Tu Tv J u v  r u v u v E

4) Lipschitz continuous if there exists a constant s > 0 such that

, , ;

Tu Tv s u v u v E

> 0

5) Strongly accretive with respect to g if there exists a constant  such that

, q q, ,

Tu Tv J gu gv   gu gv u v E

or, equivalently

2 2

, , , .

Tu Tv J gu gv   gu gv u v E :

N E E E :

Definition 2.2. Let and g EE

be the maps, then

1) N .,.

> 0 is said to be strongly accretive with respect to first argument if there exists a constant  such that

 

,.

  

,. , q

q, ,

N uN v J u v  u v u v E

 

  

or, equivalently

2 2

,. ,. , , , ;

N uN v J u v  u v u v E

> 0

2) N is said to relaxed accretive with respect to g if there exists a constant  such that

 

,.

  

,. ,

,

, ;

q q

N u N v J gu gv gu gv

u v E

    

 

> 0

3) N is Lipschitz continuous in first argument if there exists a constant  such that

 

,.

 

,. , , .

N uN v  u v u v E

: E

Theorem 2.1.Let E be a q-uniformly smooth Banach

space and T E be a strongly accretive and Lipschitz continuous with positive constants and

respectively. Let be the strongly accretive and Lipschitz continuous with positive constants p E: E

and

respectively. Let be Lipschitz con- tinuous with positive constants

, :

f g EE

and respectively. Let N E E:  E

1 p

> 0

be relaxed accretive with respect to in the first and second arguments with constants

and > 0 respectively, where 1 is defined by

:

p EE

  

 

 

p u1T p u T pu for all u E. Assume that N is Lipschitz continuous with respect to first and second argument with constants  > 0 and

(4)

> 0

respectively. Let M E E:  2E be a T-accre-

tive operator with second argument. If there exist con- stants > 0 and > 0 such that for all u v w, , ,E

 

 

(., ) (.,

, ,

M gu M

T T

)

gv

JwJw  gu gv (13) and

1 1,

Q P

 

(14)

where

1

1 q q 1

1

2 1.

q

q q q q q q q q

q

P   q     C   



    

 

* uE. Then the problem (1) has a unique solution

Proof. By Lemma 1.6, it is enough to show that the mapping F:EE has a unique fixed point u*E

where F is defined as follows.

 

(., )

 

 

 

, ,

M gu

T

F u  u pu J T pu f u N u u

q

C

 

Q q

and

 

 

u E

(15)  . From (13) and (15), we have

for all

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

., .,

, ,

., .,

, ,

., .,

, ,

, ,

, ,

, ,

M gu M gv

T T

M gu M gu

T T

M gu M gv

T T

F u F v u pu J T pu f u N u u v pv J T pv f v N v v

u v pu pv J T pu f u N u u J T pv f v N v v

J T v N v v J T pv f v N v v

u v pu pv

 

 

 

   

   

   

             

            

   

   

   

    1

pv f

  (16)

 

 

 

 

 

 

 

 

 

 

 

1

, ,

1 , ( , ) .

T pu T pv N u u N v v f u f v gu gv

u v pu pv T pu T pv N u u N v v f u f v u v

    

 

 

 

      

           

Now since p is strongly accretive and Lipschitz continuous, we have

,

1

1 .

q q q

q q

q q q q

q

q q

q

q q

q

u v pu pv u v q pu pv J u v C pu pv

u v q u v C u v

q C u v

u v pu pv q C u v

 

 

 

         

     

   

       

(17)

By the strong accretivity of p with constant  , we have

1

,

1

q q

q q

pu pv u v    pu pv J u v   pu pv J u v   u v

u v pu pv

   

that is N u u

 

,N v u

 

, u v. (20)

 

,

 

,

N v u N v v pu pv  u v . (18)

.

u v

   (21)

Since f is Lipschitz continuous, we get Similarly, by the strong accretivity of T with constant

 we have

 

 

f uf v  u v . (22)

   

T puT pv  pu pv

By

. (19)

Since N E E:  E is a relaxed accretive with re- nd second argumen

spect to p in the first a > 0

 -Lipschitz continuity of N with respect to first ent and

t with constant argum -Lipschitz continuity of N with respect

nd arguments, we have

 and > 0 re have

(5)

 

 

 

 

 

 

, , , q

q

N J T pu T pv

T T pv

  

and similarly

q q

q

q q

u u N v u

pu

pu pv

u v



 

  

  

(23)

 

 

 

,

, ,

. q

q

q q

N v u N v v J T pu T pv

u v

 

 

  

,p

 

 

 

 

(24)

From (23) and (24), Lipschitz continuity of T , Lemma 1.1 and Lemma 1.3, we have

 

 

 

 

 

 

 

 

 

 

, ,

, , , , ,

2 q

q q q

q q

q q q q q q q q q q q q

q

q

q q q q q q q q

T pu T pv N u u N v v

T pu T pv q N u u N v v J T pu T pv C N u u N v v

T pu T pv u v q u v C u v

q C u v

 

      

         

  

      

       

 

   

(25)

Now from (16), (17), (22) and (25), we have

 

 

2 q .

q

1 1

1

1 2

1

,

q q

q q q q q q q q q

q q

F u F v q C q C u v

Q P u v u v

             

 

 

 

          

 

 

  

 

(26)

where

1 q

1q

q

Q qC   and

1

2 q

q q q q q q q q

q

P   q      C    

 

n n 1

, n

and  Q 1P x x

  .

From (14), we know that 0 < < 1 . Therefore, there

u E such that

 

exists a unique  F u u. This

3.

tru urbed iterative

solving the problem (1) and tive se- ith er- completes the proof.

Perturbed Algorithm

In this section, we cons ct some new pert algorithms with errors for

s and Stability

prove the convergence and stability of the itera quences generated by the perturbed algorithms w rors.

Definition 3.1. Let T be a self mapping of E and

1 ,

n n

x  f T x define an iterative procedure which yields a sequence of point

 

xn in E. Suppose that

x E

 :Txx

  and

 

xn converges to a fixed

point x of T. Let

 

ynE and let

1 .

n yn f yn

  T, 1) If limnn 0 that n

iterative procedure

implies limyn x

 , then the

defined by   f T x is

said to be T-stable or stable with respect to T. 2) If n

0

n

 

implies that limn yn x

  , then the

e

iterativ procedure

 

xn is lmost T-stable. stability results of iterative algorithms have been

several a 19]. As was sh

he stabi of the theoretical and numerical interest.

Remark 3.1.An iterative procedure

 

n said to be a Some

established by Ha

uthors [17- own by

rder and Hicks [20], the study on t lity is both

x which is T- stable is almost T-stable and an iterative procedure

 

xn which is almost T-stable need not be T-stable [21].

Algorithm 3.1.Let f p g T E, , , : E and :

N E E E be the five single valued mappings. Let

 

Mn of M be the set-valued mapping from E E into

the power set of E such that for each t E , Mn

 

.,t

and M

 

.,t are T-accretive mappings and

 

., G

 

.,

n

M t M t . For any given u0E, the per- turbed iterative sequence

 

un with errors is defined as

follows :

(6)

.,

1 1

n n

M gv

n n n n n

u    u  vpv

,

,

n T n n

n n n n n n T

J T pv f v

v u w pw T

T

 

 

 

,

,

,

n n n n n

n n n n n n

n n n n n

N v v e l

pw f w N w w r

pu f u N u u s

  

  

  

   

  

  

)

n

 

 



(27

1

JMn.,gwn

   

., 

,

1 Mn gun

n n n n n n T

wuu pu J

 

     

for n0,1, 2,, where

 

n ,

 

n and

 

n are three sequences in [0,1],

 

en ,

 

rn ,

sn

and

 

ln are four sequences in E satisfying the following condi-

: tions

0 0

,

n n

n n n

n n

 

 

 

 

lim lim lim 0

. n

n n

s e r

l



  

  (28)

From Algorithm 3.1, we obtain the following algorithm for the problem (3).

Algorithm 3.2.Let f p T E, , : E and :

N E E E be four single valued mappings. Let

 

Mn and M be T-accretive mappings from E into the

power of E such that MnG M . For any given

0

uE, define the perturbed iterative sequences

 

un with errors as follows:

 

1 1 , ,

, n

n M

n n n n n n T n n n n n n n

n n n

n

u u v pv J T pv f v N v v e l

w

pu u s

    

 

          

 

 

 

0,1,

n

,

,

1

1 n

M

n n n T

M

n n n n n n T

v u w p J T

w u u pu J T

 

 

    

 

,

n n n n n n

pw f w N w w  r (29)

f u

 

n N u

n n n n

2,, then

 

n  ,

 

n ,

   

n , en ,

r

,

 

n

n s and

 

ln are same as Algorithm 3.1

Rem n

nd M rithms

.

ark 3.2.For a suitable choice of T f g N M, , , , , Algorithm 3.1 reduces to several known Algo-

[22-24] as special cases.

Theorem 3.1. Let , , ,

a

f p g T and N be the same as in rem 2.1. Suppose that

 

Mn and M are set-valued

ings from E E into the power set of E such that t E , n

 

.,

exists constants > 0 and > 0 s

, ,

u v z

uch that for each E

and n0

 

 

 

(., )

M u

Theo mapp

for each M t and M

 

.,t are T-accretive ings and n

 

., G

 

.,

mapp M t M t . Assume that there

 

(., )

, ,

(., ) (., )

, ,

n

M v

T T

n

M u M v

T T

J z J z u v

z J z u v

 

 

   

J    (30)

and the condition (13) holds. Let

 

yn E and define a sequence

 

n

be a sequence in

 of real numbers as follows:

 

 

1

n n n n n

xyz pz T

   

 

 

 

 

 

.,

1 ,

., ,

.,

1 ,

,

, n

n

n n

n

M gx

n n T

M gz

n T n n n n n n

M gy

n n n n n n n

x px J T N e

J pz f z N z z r

py f y N y y s

  

  

 

 

   



(31)

,

1 n

n n n n n T

zyypyJT

where

 

n

n n n

  y   yn  pxn f xn x xn n nnln

 ,

 

n ,

 

n ,

 

en ,

 

rn ,

 

sn and

 

ln are s defined orithm 3.1. Then

the following ho ame seq

ld u s:

ences in Alg

que

 

n defined by Algorithm 3.1 con- e unique solution u of the prob- lem

1) The se verges strongly

(1).

nce u

to th

2) If nn nn with

0

n

lim n 0

n  , then nlimyn u

  .

3) If nlimyn u

implies that lim 0 n

n

   .

Proof. Let uE be the unique solution of the prob- lem (1). It is easy to see that the conclusion (1) follows from the conclusion (2). Now we prove that (2) is true. It follows from Lemma 1.6 that

n

(7)

 

.,

 

 

,

M gu

n n T

u 1u upuJ

T puf uN u u

,

.

 

  (32)

From (27), (31) and (32), we have

 

 

 

 

 

 

 

1 

u  upu

    

 

 

.,

1 1 ,

.,

1 ,

,

1 ,

1 ,

, n

n

M gu

n n n n T

M gx

n n n n T n n n n n n n

n n n T n n n

n n

y u y u u pu J T pu f u N u u

y y x px J T px f x N x x e l

f N x x

   

    

 

       

 

  

        

 

 

 

         

 

 

 

 ., 

1 n n

n n

M gx

n yn x px J T px

  

     xn

 

 

 

 

   

 

 

,

., .,

, ,

., ,

1

, n

n

n n

T n

n n n n n n

M gu

M gx

n T n n n n T

n n n n n n

M gx

n T n n

J T

u x px pu

J T px f x N x x J T pu u N u

x u px pu

J T px f x

 

  

    

 

 

  

 

 

 

 

 

     

 

     

  

  

 

 

 

.,

M gu

pu

 

 f uN u u,   en ln



,un en ln

 

1 y u

   

    

yu

 

 

 

 

 

 

 

 

 

 

 

 

., ,

., .,

, ,

., .,

, ,

, ,

, ,

, ,

1

n n

n n

n

n

M gx

n n T

M gu

M gx

n T T

M gu M gu

n T T n n n

n n n

N x x J T pu f u N u u

J T pu f u N u u J T pu f u N u u

J T pu f u N u u J T pu f u N u u e l

y

 

 

  

    

     

 

 

   

       

       

 

    

   

   

   

   

     

   

 

 

 

 

 

 

*

, ,

1

, ,

1

n n n

n

n n n n

n n n n n n n

n n n n n n

n

n n n

n

n n n n n n n n

n

n n n n n

u x u px pu

T px T pu f x f u N x x N u u

gx gu G e l

y u x u px pu

T px T pu N x x N u u

f x f u x u G e l

y u x u px pu

   

  

 

 

  

   

  

  

  

   

     

    

       

   

      

       

 

 

* *

, ,

,

n n n

n

n n n n n n n n n

T px T pu N x x N u u

x u x u G e l

 

   

  

  

         

(33) where

 

.,

 

 

 

.,

 

 

, , , ,

n

M gu M gu

n T T

GJ T pu f u N u u  J T pu f u N u u   0. (34) It follows from (17) and (25), that

(8)

1 q ,

q n

q

n u pxn pu q

 

     Cx u

 

 

x f xnf u  xnu ,

 

1

. q

q xn u

  (35)

Substituting (35) into (33), we have

, , q q q q 2q q q q

n n n

T px T puN x x N u u    q     C

 

,

n n

n n

x u

l

1 1

n n n

n n n n

y u y u

G e

 

 

 

   (36)

 

     

  

where

1

n n n

n n n n n

x u y u

z u G r

  

 

   

    (38)

and again

1

1

and 1 q q

q

q q q q q q q

q

Q P Q q C

P q C

 

1

,

2 q q .

 

        

     

     

(37) From (14), at 0 < < 1

1

1 1

n n n

n n n n n n

n n n n n n

n n n n

z u y u

y u G s

y u G s

y u G s

   

   

 

   

   

     

   

(39)

where

1 n

1 

1

we know th  . Similarly, we

have From (38) and (39), we get    .

1 1

,

n n n n n n n n n n n

n n n n n n n n n

n n n n n n n n

1 n

x u y u y u G s G r

y u G s G r

y u G s G r

      

     

   

  

       

     

   

(40)

d (40), we get

 

 

 

since

1n

1

1. From (36) an

 

 

 

2

2

1

1 .

1

n n n n n n n n n n n n n n n n

n n n n n n n n n n n n n

y u G s G r G e l

G s G r G e l

         

1 1

1 1

n n n n

n n

y u y u

y u

 

         

          

 

           

(41)

 

    

    

1 1 .

n n n n n n

at a b t c

Let    

From the assumption, we know that

 

 

bn ,

 

an ,

2

1

.

n n n n n n n n

n n n

b G s G r

G e

, , 1

1

n n n n n n n

ayucl  t  

      

  

   

(42)

We can write (42) as follows:

n c

and

 

tn satisfy the conditions of Lemma 1.5. This im- nd so n

plies that an0 a yu.

he condition (3). Suppose that Next, we prove t

lim n

n y u

  . It follows (28), (38) and (39) that zn u

and xnu. From (31), we have

 

 

 

 

.,

1 ,

.,

1 ,

1 ,

1 ,

n

n n

M gx

n n n n n n n T n n n n n n n

M gx

n n n n n n n n n T n n n n

y y x px J T px f x N x x e l

y u e l y x px J T px f x N x x

     

    

 

 

         

 

          

 

As in the proof of (36), we have

. n

u

(43)

 

 

., ,

1 ,

. n

n

M gx

n n n n n T n n n n

n n n n n n

y x px J T px f x N x x u

x u G

   

  

 

     

 

  

(44)

It follows from (43) and (44) that

1  y u 

  

1 1 .

n yn u n en ln n xn u n xn u nGn

        

(9)

This implies that limnn0. This completes the proof. Theorem 3.2. Let f, p, N and T be the same as in Theo-

ccretive mappings

from E into the power set of E such that n G

rem 3.1. Let

 

Mn and M be T-a

M

.

M 

Assume that there exists constant > 0 such that hold. Let

(14)

 

yn be a sequence in E and define

 

n as

follows:

 

 

1 ,

,

,

, ,

1 ,

1 ,

n n n n n T n n n n n n

n M

n n n T n n n n n n

n M

n n n n n n T n n n n n

x px T x N x x e l

x y pz J T pz f z N z z r

z y y py J T py f y N y y s

  

  

    

  

     

 

    

 

 

       

(46) (1 n) n

n n n

y y

z

 

 

 

 

n

M J

pxn f

n

 

 

where

 

n ,

 

n ,

 

n ,

 

en ,

 

rn ,

 

sn and

 

ln

same in Algorithm 3.2, then

are

1) The sequence

 

un define orithm 3.2, con- verges s

d by Alg

trongly to unique solution u* of the problem (3),

2) If nn nn with 

 

and

0 n

n

,

3) ynu implies that limn n 0 lim

n n 0, then

*

*

n

yu

lim n

lim

n   .

ve o r is to establish existence and zed nonlinear implicit quasi in Banach spaces. We de- ped the T-r rator with T-accretive map-

by using th of Fang and Huang [11] and

Pe ] and proved that the problem (1) is equivalent to a fixed point problem. On the basis of fixed point formulation we suggested perturbed iterative algorithm with errors and by the theory of Hick and Harder [ proved the convergence and stability of iterativ quences generated by algorithms.

A further attention is required for the study of varia-

tio e useful mathematical

ols to deal with the problems arising in mathematical sciences.

REFERENCES

[1] S. Adly, “Perturbed Algorithms and Sensitivity Analysis Inclusions,” Journal of Mathematical Analysis and Applications, Vol. 201, No. 2, 1996, pp. 609-630. doi:10.1006/jmaa.1996.0277

4. Conclusions

f this pape lts of generali

problem The objecti

uniqueness resu variational inclusion velo

ing

esolvent ope e concepts p

ng [10

20] we e se-

nal inclusions that might provid to

for a General Class of Variational

[2] Ya. Alber, “Metric and Generalized Projection Operators in Banach Spaces: Properties and Applications,” In: A.

ations of Nonlinear e Type, Marcel Dek-ker, New York, 1996, pp. 15-50.

[3] H. Attouch, “Variational Convergence for Functions and

icable Mat

“Variational and Quasi- ication to Free Boundary , 1984.

“Iterative Algorithms for l Inclusions Systems with (A, ch Spaces,” Advances in Nonlinear Variational Inequalities, Vol. 11, No. 1, 2006, pp. 15-30.

[6] R. U. Verma, “Generalized System for Relaxed Coercive Variational Inequalities and Projection Methods,” Journal of Optimization Theory and Applications, Vol. 121, No. 1, 2004, pp. 203-210.

doi:10.1023/B:JOTA.0000026271.19947.05

Kartsatos, Ed., Theory and Applic Operators of Monotone and Accretiv

Operators,” Appl hematics Series, Pitman, Mas- sachusetts, 1984.

[4] C. Baiocchi and A. Capelo, Variational Inequalities Appl oblems,” Wiley, New York [5]

Nonlinear Fuzzy Variationa η)-accretive Mappings in Bana Pr

H. Y. Lan and R. U. Verma,

[7] R. U. Verma, “Approximation Solvability of a New Class of Nonlinear Set-Valued Variational Inclusions Involving (A, η)-Monotone Mappings,” Journal of Mathematical Analysis and Applications, Vol. 337, No. 2, 2008, pp. 975. doi:10.1016/j.jmaa.2007.01.114 969- [8] Z. B. Xu and G. F. Roach, “Character tic Inequalities Uniformly Convex and Uniformly Smooth anach Spaces,”

Ap catio ol. 157,

.1 16/00 1 9014

is B

Journal of Mathematical Analysis and pli ns, V No. 1, 1991, pp. 189-210.

doi:10 0 22-247X(9 ) 4-O [9]

tions,” 991, pp

1127-1

Z. B. Xu, “Inequalities in Banach Spaces with Applica-

Nonlinear Analysis, Vol. 16, No. 12, 1 . 138. doi:10.1016/0362-546X(91)90200-K

W. Peng l Inclusions with T- Accretive Operators in Banach Spaces,” Applied Mathe-matics Letters, Vol. 19, No. 3, 2004, pp. 273-282. doi:10.1016/j.aml.2005.04.009

[10] , “Set Valued Variationa

[11] Y. P. Fang and N. J. Huang, “H-accretive Opera

Resolvent Operator Technique for Solving Variational Inclusions in Banach Spaces,” Applied Mathematics Let-ters, Vol. 17, No. 6, 2004, pp. 647-653.

doi:10.1016/S0893-9659(04)90099-7

tors and

[12] X. P. Ding, “Generalized Implic sions with Fuzzy Set Valued Ma

matics with Applications, Vol. 38, No. 1, 1999, pp. 71-79. [13] Y. P. Fang, N. J. Huang, J. M. Kang and Y. J. Cho, “Gen-

eralized Nonlinear Implicit Quasivariational Inclusions,”

Journal Inequalities and Ap

261-275. [1

it Quasivariational Inclu- ppings,” Computer Mathe-

plications, Vol. 3, 2005, pp. 4] N. J. Huang, “Mann and Ishikawa Type Perturbed Algo- rithms for Generalized Nonlinear Implicit

References

Related documents

The objectives to be achieved through this concept are Study of seismic resistant design of elevated water tanks as per IS CODE: 1893 and IITK-GSDMA guidelines,

In vitro , we observe that FOXF1::VENUS is expressed by a high frequency of cells in hemangioblast culture and differentiating EBs; by day 6 of differentiation EB cells either

a) Inadequate Facilities and Counseling Resources: There is a problem of inadequate facilities and supply of materials for effective vocational education. b)

In NG2-CreER T2 animals, we never observed DCX + neuroblasts expressing the reporter YFP, either in the striatum or in the subventricular zone- olfactory bulb (SVZ-OB) system (data

Through the interviews with the research participants, three categories emerged: sodium and renal disease; Diabetes Mellitus in chronic kidney patients and

[2009] define two basic groups of features that can be used for author profiling: content dependent features ( i.e. , certain subjects, keywords, and key phrases that are mainly used

In the present study we used CRISPR/Cas9 technology to generate an AQP4ex − / − mouse model and evaluate the effect on the overall AQP4 expression, polarization,

AD: Alzheimer ’ s Disease; AUC: Area under the Curve; CI: Confidence interval; DEX-Q: Dysexecutive Questionnaire; DSM-5/-IV/-III-R: Diagnostic and Statistical Manual of