• No results found

cyclo Bis­[2 methyl­sulfanyl 6 ([1,3,4]­thia­diazol 2 yl­sulfanyl­methyl)­pyridinium] diperchlorate

N/A
N/A
Protected

Academic year: 2020

Share "cyclo Bis­[2 methyl­sulfanyl 6 ([1,3,4]­thia­diazol 2 yl­sulfanyl­methyl)­pyridinium] diperchlorate"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2002). E58, o1277±o1279 DOI: 10.1107/S1600536802019050 Chan, Yang and Szeto C18H16N6S62+2ClO42ÿ

o1277

organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cyclo

-Bis[2-methylsulfanyl-6-([1,3,4]thia-diazol-2-ylsulfanylmethyl)pyridinium]

diperchlorate

Kannie Wai Yan Chan, Chi Yang and Lap Szeto*

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China

Correspondence e-mail: lszeto@hkucc.hku.hk

Key indicators

Single-crystal X-ray study

T= 301 K

Mean(C±C) = 0.005 AÊ

Rfactor = 0.080

wRfactor = 0.051

Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title compound, C18H16N6S62+2ClO4ÿ, the macrocyclic

cation shows a twisted conformation and possesses crystal-lographic twofold symmetry. This conformation is stabilized

by intramolecular NÐH N and CÐH N hydrogen bonds.

In the crystal, the cations and anions are connected through

CÐH O hydrogen bonds.

Comment

Lanthanide(III) complexes, especially those of Gd3+, Eu3+and

Tb3+, have a variety of applications as luminescent biomedical

diagnostic and therapeutic agents, such as magnetic resonance imaging contrast agents, RNA hydrolysis catalysts and ¯uor-escence imaging agents (Laiet al., 2002; Lamet al., 2001; Li &

Wong, 2002). The macrocyclic ligand cyclo

-bis(2-methyl-sulfanyl-6-([1,3,4]thiadiazol-2-ylsulfanylmethyl)pyridine) has more than one organic chromophore, which may have effec-tive energy transfer and luminescent enhancement. Moreover, its preorganized structure, with six donor N atoms, may prompt in forming thermodynamically and kinetically stable Ln complexes. These are important features for further molecular exploration and for the development of new phar-maceutical compounds. Herein we report the structure of this macrocyclic ligand in a diprotonated form, as its perchloric salt, (I).

The asymmetric unit of (I) contains one-half of the C18H16N6S62+cation, with the other half related by a

crystal-lographic twofold axis (S1 and S4 lie on the twofold axis), and

a ClO4ÿ anion (Fig. 1). The macrocyclic cation exhibits a

twisted conformation. This conformation is stabilized by

intramolecular NÐH N and CÐH N hydrogen bonds,

with N N and C N distances in the ranges 2.999 (4)±

3.097 (4) and 2.870 (4)±2.958 (4) AÊ, respectively (Table 2). The two thiadiazole rings form dihedral angles of 45.1 (2) and

66.7 (2)with each pyridine ring. The dihedral angle between

the two symmetry-related pyridine rings is 91.1 (2), while the

two thiadiazole rings have a dihedral angle of 47.6 (2). In the

crystal, the cations and anions are linked, through CÐH O

hydrogen bonds (Table 2), to form a three-dimensional

(2)

organic papers

o1278

Chan, Yang and Szeto C18H16N6S62+2ClO42ÿ Acta Cryst.(2002). E58, o1277±o1279

network structure. The structure is further stabilized by

face-to-face ±-stacking interactions of pyridine rings, with a

Cg Cgi distance of 3.822 (2) AÊ [Cg and Cgi denote the

centroids of the pyridine rings at (x, y, z) and (1

2ÿx, 12ÿy,

1ÿz), respectively].

Experimental

Compound (I) was prepared according to the procedures reported by Yang & Wong (2001). Crystals suitable for X-ray data collection were obtained by slow evaporation of a CH2Cl2/MeOH (3:1;v:v) solution

of the compound at room temperature. Crystal data

C18H16N6S62+2ClO4ÿ

Mr= 707.69 Monoclinic,C2=c a= 12.311 (3) AÊ b= 14.700 (2) AÊ c= 15.205 (3) AÊ = 98.79 (2) V= 2719.2 (9) AÊ3

Z= 4

Dx= 1.729 Mg mÿ3 MoKradiation Cell parameters from 25

re¯ections = 2.5±14

= 0.76 mmÿ1

T= 301.2 K Block, yellow 0.450.360.15 mm

Data collection

Rigaku AFC-7Rdiffractometer !/2scans

Absorption correction: scan (Northet al., 1968) Tmin= 0.916,Tmax= 0.999

2629 measured re¯ections 2399 independent re¯ections 2399 re¯ections withI> 0

Rint= 0.037

max= 25

h= 0!14 k= 0!17 l=ÿ18!17 3 standard re¯ections

every 250 re¯ections intensity decay: 0.1%

Re®nement

Re®nement onF R= 0.080 wR= 0.051 S= 1.40 2399 re¯ections 183 parameters

H-atom parameters constrained

w= 1/[2(F

o) + (0.008Fo)2] (/)max< 0.001

max= 0.51 e AÊÿ3

min=ÿ0.32 e AÊÿ3

Extinction correction: Zachariasen type 2 Gaussian isotropic Extinction coef®cient: 5.8529 (2)

Table 1

Selected geometric parameters (AÊ,).

S1ÐC1 1.719 (4)

S2ÐC1 1.743 (4)

S2ÐC2 1.816 (4)

S3ÐC8 1.806 (4)

S3ÐC9 1.742 (4)

S4ÐC9 1.706 (4)

N1ÐN1i 1.384 (6)

N1ÐC1 1.295 (4)

N2ÐC3 1.349 (4)

N2ÐC7 1.357 (4)

N3ÐN3i 1.388 (6)

N3ÐC9 1.292 (4)

C2ÐC3 1.490 (4)

C3ÐC4 1.374 (5)

C4ÐC5 1.377 (5)

C5ÐC6 1.369 (5)

C6ÐC7 1.375 (4)

C7ÐC8 1.484 (5)

C1ÐS1ÐC1i 86.3 (2)

C1ÐS2ÐC2 99.6 (2) C8ÐS3ÐC9 99.1 (2) C9iÐS4ÐC9 87.1 (2)

N1iÐN1ÐC1 111.9 (2)

C3ÐN2ÐC7 123.3 (3) N3iÐN3ÐC9 111.9 (2)

S1ÐC1ÐS2 119.5 (2) S1ÐC1ÐN1 115.0 (3) S2ÐC1ÐN1 125.5 (3) S2ÐC2ÐC3 113.6 (2) N2ÐC3ÐC2 119.2 (3)

N2ÐC3ÐC4 118.4 (3) C2ÐC3ÐC4 122.4 (3) C3ÐC4ÐC5 120.0 (3) C4ÐC5ÐC6 119.9 (3) C5ÐC6ÐC7 120.3 (3) N2ÐC7ÐC6 118.0 (3) N2ÐC7ÐC8 119.4 (3) C6ÐC7ÐC8 122.5 (3) S3ÐC8ÐC7 111.5 (2) S3ÐC9ÐS4 120.1 (2) S3ÐC9ÐN3 125.3 (3) S4ÐC9ÐN3 114.6 (3)

Symmetry code: (i)ÿx;y;1 2ÿz.

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N2ÐH2N N1 0.87 2.20 2.999 (4) 153 N2ÐH2N N3 0.87 2.59 3.097 (4) 118 C2ÐH2B N1 0.95 2.57 2.958 (4) 105 C8ÐH8B N3 0.95 2.47 2.870 (4) 105 C2ÐH2B O4ii 0.95 2.42 3.275 (5) 149

C8ÐH8A O1iii 0.95 2.53 3.463 (5) 165

C8ÐH8B O1iv 0.95 2.58 3.307 (5) 133

C8ÐH8B O3iv 0.95 2.50 3.339 (4) 148

Symmetry codes: (ii)1

2ÿx;12‡y;12ÿz; (iii)ÿx;ÿy;1ÿz; (iv)xÿ12;12‡y;z.

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with NÐH and CÐH distances ®xed at 0.87 and 0.95 AÊ, respectively. All unique re¯ections were included in the re®nement onFand, as a result, theRvalue is high (0.080).

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell re®nement:MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Mole-cular Structure Corporation, 1992); program(s) used to solve struc-ture: SIR92 (Altomare et al., 1994); program(s) used to re®ne structure:TEXSAN; molecular graphics:ORTEPII (Johnson, 1976); software used to prepare material for publication:TEXSAN.

The authors are grateful for ®nancial support from the Hong Kong Research Grants Council. WYC acknowledges the receipt of a postgraduate studentship administered by The University of Hong Kong.

Figure 1

(3)

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Lai, P. W., Wong, W. T., Li, K. F. & Cheah, K. W. (2002).New J. Chem.26, 576± 581.

Lam, W. H., Wong, W. T., Wen, G., Zhang, X. X. & Gao, S. (2001).New J. Chem.25, 531±533.

Li, C. & Wong, W. T. (2002).Chem. Commun.pp. 2034±2035.

Molecular Structure Corporation (1992).MSC/AFC Diffractometer Control SoftwareandTEXSAN.MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351± 359.

Yang, C. & Wong, W. T. (2001).J. Mater. Chem.11, 2898±2900.

(4)

supporting information

sup-1

Acta Cryst. (2002). E58, o1277–o1279

supporting information

Acta Cryst. (2002). E58, o1277–o1279 [https://doi.org/10.1107/S1600536802019050]

cyclo

-Bis[2-methylsulfanyl-6-([1,3,4]thiadiazol-2-ylsulfanylmethyl)pyridinium]

diperchlorate

Kannie Wai Yan Chan, Chi Yang and Lap Szeto

(I)

Crystal data

C18H16N6S62+·2ClO42− Mr = 707.69

Monoclinic, C2/c Hall symbol: -C 2yc a = 12.311 (3) Å b = 14.700 (2) Å c = 15.205 (3) Å β = 98.79 (2)° V = 2719.2 (9) Å3 Z = 4

F(000) = 1440.00 Dx = 1.729 Mg m−3

Mo radiation, λ = 0.7107 Å Cell parameters from 25 reflections θ = 2.5–14°

µ = 0.76 mm−1 T = 301 K Block, yellow

0.45 × 0.36 × 0.15 mm

Data collection

Rigaku AFC-7R diffractometer

Radiation source: X-ray tube Graphite monochromator ω/2θ scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.916, Tmax = 0.999 2629 measured reflections

2399 independent reflections 2399 reflections with I > 0 Rint = 0.037

θmax = 25°, θmin = 2° h = 0→14

k = 0→17 l = −18→17

3 standard reflections every 250 reflections intensity decay: 0.1%

Refinement

Refinement on F

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.080 wR(F2) = 0.051 S = 1.40 2399 reflections 183 parameters 0 restraints

H-atom parameters constrained w = 1/[(σ)2(Fo) + (p/2)2(Fo)2] p = 0.016 (Δ/σ)max < 0.001

Δρmax = 0.51 e Å−3 Δρmin = −0.32 e Å−3 Extinction correction:

Zachariasen_type_2_Gaussian_isotropic Extinction coefficient: 5.8529

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-2

Acta Cryst. (2002). E58, o1277–o1279

S3 −0.05192 (8) 0.38241 (7) 0.42764 (6) 0.0511 (3) S4 0.0000 0.43897 (9) 0.2500 0.0643 (5) O1 0.1958 (3) −0.2868 (2) 0.3430 (2) 0.083 (1) O2 0.1213 (3) −0.4248 (2) 0.3847 (2) 0.077 (1) O3 0.3052 (3) −0.4153 (2) 0.3726 (2) 0.094 (1) O4 0.1762 (3) −0.4092 (2) 0.2446 (2) 0.097 (1) N1 0.0323 (2) 0.0578 (2) 0.2915 (2) 0.0462 (9) N2 0.0825 (2) 0.1636 (2) 0.4615 (2) 0.0353 (8) N3 −0.0119 (3) 0.2733 (2) 0.2932 (2) 0.054 (1) C1 0.0556 (3) −0.0239 (2) 0.3201 (2) 0.043 (1) C2 0.2206 (3) 0.0499 (2) 0.4376 (2) 0.045 (1) C3 0.1767 (3) 0.1200 (2) 0.4936 (2) 0.0384 (9) C4 0.2292 (3) 0.1428 (2) 0.5771 (2) 0.047 (1) C5 0.1865 (3) 0.2098 (3) 0.6251 (2) 0.052 (1) C6 0.0899 (3) 0.2515 (2) 0.5908 (2) 0.046 (1) C7 0.0360 (3) 0.2278 (2) 0.5080 (2) 0.0352 (9) C8 −0.0704 (3) 0.2691 (2) 0.4688 (2) 0.045 (1) C9 −0.0214 (3) 0.3548 (2) 0.3227 (2) 0.0387 (10) H2A 0.2920 0.0329 0.4657 0.0543 H2B 0.2253 0.0759 0.3811 0.0543 H2N 0.0511 0.1469 0.4087 0.0787 H4 0.2950 0.1124 0.6016 0.0558 H5 0.2240 0.2269 0.6819 0.0621 H6 0.0599 0.2971 0.6243 0.0552 H8A −0.1170 0.2720 0.5131 0.0536 H8B −0.1037 0.2321 0.4209 0.0536

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3

Acta Cryst. (2002). E58, o1277–o1279

C7 0.042 (2) 0.033 (2) 0.033 (2) −0.007 (2) 0.014 (2) −0.003 (1) C8 0.039 (2) 0.051 (2) 0.047 (2) 0.000 (2) 0.015 (2) −0.008 (2) C9 0.037 (2) 0.035 (2) 0.042 (2) 0.006 (2) 0.000 (2) −0.001 (2)

Geometric parameters (Å, º)

Cl1—O1 1.434 (3) N2—H2N 0.87 Cl1—O2 1.434 (3) N3—N3i 1.388 (6) Cl1—O3 1.428 (3) N3—C9 1.292 (4) Cl1—O4 1.408 (3) C2—C3 1.490 (4) S1—C1 1.719 (4) C2—H2A 0.95 S1—C1i 1.719 (4) C2—H2B 0.95 S2—C1 1.743 (4) C3—C4 1.374 (5) S2—C2 1.816 (4) C4—C5 1.377 (5) S3—C8 1.806 (4) C4—H4 0.95 S3—C9 1.742 (4) C5—C6 1.369 (5) S4—C9 1.706 (4) C5—H5 0.95 S4—C9i 1.706 (4) C6—C7 1.375 (4) N1—N1i 1.384 (6) C6—H6 0.95 N1—C1 1.295 (4) C7—C8 1.484 (5) N2—C3 1.349 (4) C8—H8A 0.95 N2—C7 1.357 (4) C8—H8B 0.95

(7)

supporting information

sup-4

Acta Cryst. (2002). E58, o1277–o1279

C3—C2—H2B 108.4 S3—C9—N3 125.3 (3) H2A—C2—H2B 109.5 S4—C9—N3 114.6 (3)

Symmetry code: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N2—H2N···N1 0.87 2.20 2.999 (4) 153 N2—H2N···N3 0.87 2.59 3.097 (4) 118 C2—H2B···N1 0.95 2.57 2.958 (4) 105 C8—H8B···N3 0.95 2.47 2.870 (4) 105 C2—H2B···O4ii 0.95 2.42 3.275 (5) 149 C8—H8A···O1iii 0.95 2.53 3.463 (5) 165 C8—H8B···O1iv 0.95 2.58 3.307 (5) 133 C8—H8B···O3iv 0.95 2.50 3.339 (4) 148

References

Related documents

Analyzed interrelated problems are: (i) stability of interfirm R&amp;D cooperation, (ii) organization of interfirm R&amp;D cooperation, (iii) asymmetries between

The standard mean deviation of the studied variables for Gonion- Gnathion/Sella Nasion(Go-Gn/SN), Infradental-Menton (vertical), Lower Facial Height (ANS-Menton) showed higher

Task Three – Case-specific Social Welfare Analysis: Finally, a comprehensive social welfare analysis (Rouhani et al., 2016b) focusing on major real-life managed lanes is

Also, unlike in Tsionas and Kumbhakar (2014) we find that a posteriori persistent inefficiency distribution

We can see that switching the search method from weighted maximum matching to a cohesion- constrained ITG (D-ITG) has produced a 34% rel- ative reduction in alignment error rate..

In order to test our second hypo- thesis, POS blocks that contain more closed class than open class tags are removed from the queries, on the assumption that these blocks are

Although both domains contain a large number of English in- clusions, their type-token ratio amounts to 0.29 in the internet data and 0.15 in the space travel data (Table 1),

The table reports the daily average gross return (i.e. before transaction costs) obtained by the each portfolio policy alongside each covariance model over the out-of-sample