• No results found

2,2′ Sulfonyl­bis­(2 benzoyl 3 phenyl­oxirane)

N/A
N/A
Protected

Academic year: 2020

Share "2,2′ Sulfonyl­bis­(2 benzoyl 3 phenyl­oxirane)"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1174

R. V. Krishnakumaret al. C30H22O6S DOI: 10.1107/S1600536802017634 Acta Cryst.(2002). E58, o1174±o1176 Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

2,2

000

-Sulfonylbis(2-benzoyl-3-phenyloxirane)

R. V. Krishnakumar,aM. Subha

Nandhini,bS. Renuga,b

S. Natarajan,b* S. Selvarajcand

S. Perumalc

aDepartment of Physics, Thiagarajar College,

Madurai 625 009, India,bDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, andcDepartment of Chemistry, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail: s_natarajan50@yahoo.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.011 AÊ

Rfactor = 0.084

wRfactor = 0.221

Data-to-parameter ratio = 14.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

The X-ray crystallographic study of the title compound, C30H22O6S, demonstrates the relative con®guration between

the aryl and aroyl groups (cis) on one hand, and that between the two oxirane rings (cis) on the other. The crystal packing is

characterized by a CÐH O interaction and C O short

contacts.

Comment

Organic synthesis of small ring heterocycles, such as oxiranes, assumes great importance in view of their reactivity towards a host of reagents and the synthetic potential associated with them. Details of chemical synthesis, NMR studies and preliminary crystallographic data for the title compound, (I), have already been reported (Renuga et al., 1999). Interest-ingly, (I) exhibits stereoisomerism and the dif®culty in ascer-taining the con®guration arises because one of the C atoms of each oxirane ring is a chiral center, as a result of which the molecule further exhibits diastereoisomerism with respect to the oxirane rings. Recently, the crystal structure of 2.20

-thio-bis[2-benzoyl-3-(4-chlorophenyl)oxirane] (Krishnakumar et

al., 2002) was elucidated in our laboratory.

Fig. 1 shows the atom-numbering scheme adopted for (I). This study demonstrates the relative con®guration between the aryl and aroyl groups (cis) on one hand and that between the two oxirane rings (cis) on the other. The con®guration of (I), which is symmetrical in solution in the absence of inter-molecular interactions, assumes an unsymmetrical form in the solid state. The absence of symmetry is probably necessitated by the optimum packing considerations, which bring different oxirane rings in proximity, unlike in solution.

Fig. 2 shows the arrangement of molecules in layers parallel

to the (020) plane, viewed down the a axis. The packing

features of (I) are distinctly different from those of 2,20

-thio-bis[2-benzoyl-3-(4-chlorophenyl)oxirane], as its packing is determined, not only by the CÐH O, but also by the Cl Cl interactions. The molecules of (I) do not interact directly

among themselves, except for the presence of a CÐH O

(2)

hydrogen bond. In addition, the structure is stabilized by a

number of C O short contacts (see Table 1). Since the

molecules of (I) have aromatic rings, CÐH interactions

are expected to play a dominant role in stabilizing the crystal packing. An investigation (Maloneet al., 1997) on the nature

of CÐH interactions, using the Cambridge Structural

Database (Allen & Kennard, 1993) and theoretical calcula-tions, suggest six possible forms of interactions between an H atom and an aromatic ring. A recent database study (Umezawaet al., 1998) on the nature of CÐH interactions shows that these interactions also contribute signi®cantly to the optimum packing modes observed in the crystal structures

of organic compounds. The observed H distances in (I)

are 3.002 and 3.003 AÊ (below a cut off value of 3.05 AÊ), with

CÐH angles 158 and 133.

Experimental

Colourless single crystals of (I) were obtained as transparent needles from a saturated solution in methanol, by slow evaporation at room temperature.

Crystal data C30H22O6S

Mr= 510.54 Monoclinic,P21=c

a= 13.228 (3) AÊ

b= 11.754 (6) AÊ

c= 18.659 (5) AÊ

= 119.05 (2)

V= 2536.2 (16) AÊ3

Z= 4

Dx= 1.337 Mg mÿ3 CuKradiation Cell parameters from 25

re¯ections

= 14±27

= 1.50 mmÿ1

T= 293 (2) K Needle, colourless 0.400.340.24 mm Data collection

Enraf±Nonius CAD-4 diffractometer

!±2scans

Absorption correction: scan (Northet al., 1968)

Tmin= 0.576,Tmax= 0.698 5012 measured re¯ections 4795 independent re¯ections 3365 re¯ections withI> 2(I)

Rint= 0.019

max= 69.9

h= 0!16

k=ÿ14!0

l=ÿ22!19

2 standard re¯ections every 100 re¯ections intensity decay: <1%

Re®nement Re®nement onF2

R[F2> 2(F2)] = 0.084

wR(F2) = 0.221

S= 1.12 4795 re¯ections 335 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + 14.8815P] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.43 e AÊÿ3

min=ÿ0.45 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.00103 (5)

Table 1

Contact distances (AÊ).

C4 O30i 3.25 (1) C5 O30i 3.24 (1) C7 O10ii 3.27 (1) C8 O2iii 3.46 (1) C12 C140iv 3.41 (1)

C14 O1iii 3.47 (1) C70 O1v 3.29 (1) C80 O1v 3.37 (1) C140 C12vi 3.41 (1)

Symmetry codes: (i) 1ÿx;1

2‡y;32ÿz; (ii)x;32ÿy;21‡z; (iii) 1ÿx;yÿ12;32ÿz; (iv)

1‡x;3

2ÿy;12‡z; (v)x;32ÿy;zÿ12; (vi)xÿ1;23ÿy;zÿ12.

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

C15ÐH15 O2i 0.93 2.60 3.458 (8) 154 Symmetry code: (i) 1ÿx;yÿ1

2;32ÿz.

All H atoms were included in calculated positions with distances of 0.93 (forsp2CÐH) and 0.98 AÊ (forsp3CÐH). In the re®nement,

they were included as riding, withUisovalues equal to 1.2Ueqof the

carrier atom.

Data collection: CAD-4 Software (Enraf±Nonius, 1989); cell re®nement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:PLATON(Spek, 1999); software used to prepare material for publication:SHELXL97.

SP thanks the Council of Scienti®c and Industrial Research (CSIR), India, for ®nancial assistance. The authors thank the UGC for the DRS programme.

References

Figure 2

Packing diagram, showing the arrangement of molecules in layers parallel to the (020) plane, viewed down theaaxis.

Figure 1

(3)

organic papers

o1176

R. V. Krishnakumaret al. C30H22O6S Acta Cryst.(2002). E58, o1174±o1176 Enraf±Nonius (1989).CAD-4Software. Version 5.0. Enraf±Nonius, Delft, The

Netherlands.

Krishnakumar, R. V., Subha Nandhini, M., Renuga, S., Natarajan, S., Selvaraj, S. & PErumal, S. (2002).Acta Cryst.E58, o504±o505.

Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997).J. Chem. Soc. Faraday Trans.93, 3429±3436.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351± 359.

Renuga, S., Selvaraj, S., Perumal, S. & Hewlins, M. J. E. (1999).Tetrahedron, pp. 9309±9316.

Sheldrick, G. M. (1990).Acta Cryst.A46, 467±473.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Spek, A. L. (1999). PLATON for Windows. Utrecht University, The

Netherlands.

Umezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. & Nishio, M. (1998).Bull.

(4)

supporting information

Acta Cryst. (2002). E58, o1174–o1176 [doi:10.1107/S1600536802017634]

2,2

-Sulfonylbis(2-benzoyl-3-phenyloxirane)

R. V. Krishnakumar, M. Subha Nandhini, S. Renuga, S. Natarajan, S. Selvaraj and S. Perumal

S1. Comment

Organic synthesis of small ring heterocycles, such as oxiranes, assume great importance in view of their reactivity

towards a host of reagents and the synthetic potential associated with them. Details of chemical synthesis, NMR studies

and preliminary crystallographic data for the title compound, (I), have already been reported (Renuga et al., 1999).

Interestingly, the (I) exhibits stereoisomerism and the difficulty in ascertaining the configuration arises because one of the

C atoms of each oxirane ring is a chiral center, as a result of which the molecule further exhibits diastereoisomerism with

respect to the oxirane rings. Recently, the crystal structure of 2.2′-thiobis[2-benzoyl-3-(4-chlorophenyl)oxirane]

(Krishnakumar et al., 2002) was elucidated in our laboratory.

Fig. 1 shows the atom-numbering scheme adopted for (I). This study demonstrates the relative configuration between

the aryl and aroyl groups (cis) on one hand and that between the two oxirane rings (cis) on the other. The configuration of

(I), which is symmetrical in solution in the absence of intermolecular interactions, assumes an unsymmetrical

configuration in the solid state. The absence of symmetry is probably necessitated by the optimum packing considerations

which bring different oxirane molecules in proximity, unlike in solution.

Fig. 2 shows the arrangement of molecules in layers parallel to the (020) plane, viewed down the a axis. The packing

features of (I) are distinctly different from those of the 2.2′-thiobis[2-benzoyl-3-(4-chlrophenyl)oxirane], as its packing is

determined, not only by the C—H···O, but also by the Cl···Cl interactions. The molecules of (I) do not directly interact

among themselves, except for the presence of a C—H···O hydrogen bond. In addition, the structure is stablized by a

number of C···O short contacts (see Table 1). Since the molecules of (I) have aromatic rings, C—H···π interactions are

expected to play a dominent role in stablizing the crystal packing. An investigation (Malone et al., 1997) on the nature of

C—H···π interactions using the Cambridge Structural Database (Allen & Kennard, 1993) and theoretical calculations

suggest six possible forms of interactions between an H atom and an aromatic ring. A recent database study (Umezawa et

al., 1998) on the nature of C—H···π interactions shows that these interactions also contribute sufficiently to the optimum

packing modes observed in the crystal structures of organic compounds. The observed H···π distances are 3.002 and

3.003 Å (below a cut off value of 3.05 Å), with C—H···π angles 158 and 133°.

S2. Experimental

Colourless single crystals of (I) were obtained as transparent needles from a saturated solution in methanol by slow

evaporation at room temperature.

S3. Refinement

All H atoms were included in calculated positions with distances of 0.93 (for sp2 C—H) and 0.98 Å (for sp3 C—H). In the

(5)

supporting information

[image:5.610.128.485.70.319.2]

sup-2

Acta Cryst. (2002). E58, o1174–o1176

Figure 1

View of (I), showing the atom-numbering scheme adopted, with the displacement ellipsoids drawn at the 50% probability

level.

Figure 2

Packing diagram, showing the arrangement of molecules in layers parallel to the (020) plane viewed down the a axis.

2,2′-Sulfonylbis(2-benzoyl-3-phenyloxirane)

Crystal data

C30H22O6S

Mr = 510.54

Monoclinic, P21/c Hall symbol: -P 2ybc

a = 13.228 (3) Å

b = 11.754 (6) Å

c = 18.659 (5) Å

[image:5.610.120.486.373.579.2]
(6)

V = 2536.2 (16) Å3

Z = 4

F(000) = 1064

Dx = 1.337 Mg m−3

Cu radiation, λ = 1.54180 Å Cell parameters from 25 reflections

θ = 14–27°

µ = 1.50 mm−1

T = 293 K Needle, colourless 0.40 × 0.34 × 0.24 mm

Data collection

Enraf-Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω–2θ scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.576, Tmax = 0.698 5012 measured reflections

4795 independent reflections 3365 reflections with I > 2σ(I)

Rint = 0.019

θmax = 69.9°, θmin = 3.8°

h = 0→16

k = −14→0

l = −22→19

2 standard reflections every 100 reflections intensity decay: <1%

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.084

wR(F2) = 0.221

S = 1.12 4795 reflections 335 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + 14.8815P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.43 e Å−3 Δρmin = −0.45 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.00103 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S1 0.34843 (13) 0.65913 (13) 0.61230 (9) 0.0489 (4)

O1 0.3329 (3) 0.7980 (4) 0.7185 (3) 0.0511 (10)

O2 0.5153 (4) 0.9143 (4) 0.7170 (3) 0.0610 (12)

O3 0.2596 (4) 0.5918 (4) 0.6147 (3) 0.0655 (13)

O1′ 0.3611 (4) 0.8300 (4) 0.5232 (3) 0.0614 (12)

O2′ 0.1911 (4) 0.9329 (4) 0.5424 (4) 0.0777 (15)

O3′ 0.4373 (4) 0.6069 (4) 0.6007 (3) 0.0643 (13)

(7)

supporting information

sup-4

Acta Cryst. (2002). E58, o1174–o1176

C2 0.3932 (5) 0.7034 (5) 0.7715 (4) 0.0451 (13)

H2 0.3484 0.6330 0.7600 0.054*

C3 0.4710 (5) 0.7266 (5) 0.8579 (4) 0.0477 (14)

C4 0.5008 (6) 0.8379 (6) 0.8894 (4) 0.0564 (16)

H4 0.4728 0.9000 0.8541 0.068*

C5 0.5711 (6) 0.8550 (7) 0.9719 (4) 0.0673 (19)

H5 0.5904 0.9287 0.9921 0.081*

C6 0.6135 (6) 0.7645 (8) 1.0253 (4) 0.073 (2)

H6 0.6602 0.7766 1.0812 0.087*

C7 0.5853 (6) 0.6553 (7) 0.9943 (4) 0.070 (2)

H7 0.6144 0.5933 1.0295 0.083*

C8 0.5156 (6) 0.6380 (6) 0.9128 (4) 0.0581 (17)

H8 0.4972 0.5638 0.8934 0.070*

C9 0.5236 (5) 0.8109 (5) 0.7213 (3) 0.0420 (13)

C10 0.6313 (5) 0.7487 (5) 0.7431 (3) 0.0439 (13)

C11 0.7208 (5) 0.8060 (6) 0.7392 (4) 0.0564 (16)

H11 0.7119 0.8819 0.7233 0.068*

C12 0.8221 (6) 0.7499 (8) 0.7592 (5) 0.074 (2)

H12 0.8815 0.7880 0.7561 0.089*

C13 0.8369 (6) 0.6368 (8) 0.7839 (5) 0.075 (2)

H13 0.9061 0.5998 0.7978 0.090*

C14 0.7496 (6) 0.5800 (7) 0.7877 (4) 0.0668 (19)

H14 0.7594 0.5041 0.8038 0.080*

C15 0.6467 (5) 0.6346 (5) 0.7679 (4) 0.0496 (15)

H15 0.5878 0.5957 0.7710 0.060*

C1′ 0.2779 (5) 0.7659 (5) 0.5325 (3) 0.0437 (13)

C2′ 0.2976 (5) 0.7468 (6) 0.4613 (4) 0.0562 (16)

H2′ 0.3405 0.6775 0.4640 0.067*

C3′ 0.2155 (6) 0.7870 (7) 0.3774 (4) 0.0643 (19)

C4′ 0.1838 (7) 0.8986 (8) 0.3593 (5) 0.085 (3)

H4′ 0.2110 0.9532 0.4006 0.102*

C5′ 0.1088 (8) 0.9298 (11) 0.2767 (7) 0.109 (4)

H5′ 0.0866 1.0052 0.2630 0.131*

C6′ 0.0693 (9) 0.8468 (14) 0.2168 (7) 0.121 (5)

H6′ 0.0212 0.8671 0.1624 0.145*

C7′ 0.0994 (8) 0.7365 (13) 0.2360 (6) 0.110 (4)

H7′ 0.0693 0.6812 0.1953 0.132*

C8′ 0.1735 (7) 0.7067 (9) 0.3145 (5) 0.084 (3)

H8′ 0.1967 0.6313 0.3267 0.101*

C9′ 0.1763 (5) 0.8315 (5) 0.5273 (4) 0.0502 (15)

C10′ 0.0649 (5) 0.7747 (5) 0.5037 (4) 0.0497 (14)

C11′ −0.0185 (6) 0.8325 (7) 0.5134 (4) 0.0646 (19)

H11′ −0.0026 0.9050 0.5361 0.078*

C12′ −0.1249 (7) 0.7845 (8) 0.4900 (6) 0.086 (3)

H12′ −0.1803 0.8243 0.4970 0.103*

C13′ −0.1489 (6) 0.6763 (8) 0.4557 (5) 0.083 (3)

H13′ −0.2202 0.6426 0.4402 0.099*

(8)

H14′ −0.0833 0.5472 0.4221 0.083*

C15′ 0.0398 (5) 0.6670 (6) 0.4679 (4) 0.0567 (16)

H15′ 0.0942 0.6277 0.4594 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S1 0.0419 (8) 0.0425 (8) 0.0499 (8) −0.0008 (6) 0.0126 (6) −0.0018 (7)

O1 0.046 (2) 0.055 (3) 0.056 (2) 0.0112 (19) 0.027 (2) 0.003 (2)

O2 0.066 (3) 0.038 (2) 0.083 (3) −0.002 (2) 0.040 (3) 0.002 (2)

O3 0.055 (3) 0.056 (3) 0.063 (3) −0.018 (2) 0.011 (2) 0.008 (2)

O1′ 0.048 (2) 0.068 (3) 0.067 (3) −0.008 (2) 0.027 (2) 0.003 (2)

O2′ 0.073 (3) 0.045 (3) 0.111 (4) 0.001 (2) 0.041 (3) −0.010 (3)

O3′ 0.059 (3) 0.059 (3) 0.063 (3) 0.020 (2) 0.020 (2) −0.008 (2)

C1 0.034 (3) 0.039 (3) 0.050 (3) −0.001 (2) 0.020 (2) −0.001 (3)

C2 0.040 (3) 0.043 (3) 0.055 (3) −0.001 (2) 0.025 (3) 0.002 (3)

C3 0.046 (3) 0.058 (4) 0.050 (3) −0.001 (3) 0.032 (3) 0.005 (3)

C4 0.067 (4) 0.053 (4) 0.057 (4) −0.002 (3) 0.036 (3) 0.006 (3)

C5 0.078 (5) 0.077 (5) 0.052 (4) −0.014 (4) 0.036 (4) −0.009 (4)

C6 0.068 (5) 0.101 (6) 0.047 (4) −0.004 (4) 0.026 (4) 0.010 (4)

C7 0.074 (5) 0.076 (5) 0.059 (4) 0.014 (4) 0.032 (4) 0.016 (4)

C8 0.065 (4) 0.055 (4) 0.061 (4) 0.008 (3) 0.036 (3) 0.004 (3)

C9 0.044 (3) 0.043 (3) 0.040 (3) −0.004 (3) 0.021 (3) 0.000 (2)

C10 0.035 (3) 0.053 (3) 0.042 (3) −0.006 (3) 0.017 (2) 0.003 (3)

C11 0.054 (4) 0.061 (4) 0.061 (4) −0.012 (3) 0.034 (3) −0.001 (3)

C12 0.051 (4) 0.092 (6) 0.091 (6) −0.012 (4) 0.043 (4) −0.005 (5)

C13 0.045 (4) 0.099 (6) 0.080 (5) 0.015 (4) 0.029 (4) 0.001 (5)

C14 0.055 (4) 0.069 (5) 0.073 (5) 0.014 (4) 0.029 (4) 0.013 (4)

C15 0.044 (3) 0.048 (3) 0.053 (4) 0.003 (3) 0.021 (3) 0.007 (3)

C1′ 0.037 (3) 0.045 (3) 0.046 (3) −0.008 (2) 0.017 (2) 0.000 (3)

C2′ 0.045 (3) 0.071 (4) 0.052 (4) −0.004 (3) 0.023 (3) −0.004 (3)

C3′ 0.050 (4) 0.093 (6) 0.059 (4) −0.008 (4) 0.035 (3) 0.011 (4)

C4′ 0.057 (4) 0.099 (7) 0.088 (6) −0.015 (4) 0.027 (4) 0.024 (5)

C5′ 0.073 (6) 0.131 (9) 0.115 (8) −0.007 (6) 0.039 (6) 0.060 (8)

C6′ 0.075 (7) 0.196 (15) 0.089 (8) −0.006 (8) 0.038 (6) 0.054 (9)

C7′ 0.082 (6) 0.187 (13) 0.065 (6) −0.008 (8) 0.038 (5) −0.003 (7)

C8′ 0.068 (5) 0.124 (8) 0.061 (5) 0.006 (5) 0.032 (4) −0.006 (5)

C9′ 0.053 (4) 0.040 (3) 0.056 (4) 0.002 (3) 0.026 (3) −0.005 (3)

C10′ 0.041 (3) 0.053 (4) 0.051 (3) 0.006 (3) 0.019 (3) 0.009 (3)

C11′ 0.058 (4) 0.066 (5) 0.072 (5) 0.021 (4) 0.033 (4) 0.021 (4)

C12′ 0.058 (5) 0.103 (7) 0.112 (7) 0.024 (5) 0.052 (5) 0.036 (6)

C13′ 0.042 (4) 0.095 (7) 0.101 (6) −0.005 (4) 0.026 (4) 0.034 (5)

C14′ 0.047 (4) 0.069 (5) 0.073 (5) −0.007 (3) 0.014 (3) 0.014 (4)

(9)

supporting information

sup-6

Acta Cryst. (2002). E58, o1174–o1176

Geometric parameters (Å, º)

S1—O3′ 1.432 (4) C13—C14 1.366 (10)

S1—O3 1.435 (4) C13—H13 0.9300

S1—C1 1.801 (6) C14—C15 1.383 (8)

S1—C1′ 1.820 (6) C14—H14 0.9300

O1—C1 1.414 (6) C15—H15 0.9300

O1—C2 1.443 (7) C1′—C2′ 1.490 (8)

O2—C9 1.220 (7) C1′—C9′ 1.511 (8)

O1′—C1′ 1.413 (7) C2′—C3′ 1.484 (9)

O1′—C2′ 1.433 (8) C2′—H2′ 0.9800

O2′—C9′ 1.218 (7) C3′—C4′ 1.369 (11)

C1—C2 1.490 (8) C3′—C8′ 1.394 (11)

C1—C9 1.523 (7) C4′—C5′ 1.417 (12)

C2—C3 1.457 (8) C4′—H4′ 0.9300

C2—H2 0.9800 C5′—C6′ 1.381 (16)

C3—C8 1.376 (9) C5′—H5′ 0.9300

C3—C4 1.410 (9) C6′—C7′ 1.352 (16)

C4—C5 1.374 (9) C6′—H6′ 0.9300

C4—H4 0.9300 C7′—C8′ 1.355 (12)

C5—C6 1.376 (10) C7′—H7′ 0.9300

C5—H5 0.9300 C8′—H8′ 0.9300

C6—C7 1.383 (11) C9′—C10′ 1.476 (8)

C6—H6 0.9300 C10′—C11′ 1.381 (8)

C7—C8 1.357 (9) C10′—C15′ 1.394 (9)

C7—H7 0.9300 C11′—C12′ 1.374 (10)

C8—H8 0.9300 C11′—H11′ 0.9300

C9—C10 1.472 (8) C12′—C13′ 1.390 (12)

C10—C11 1.393 (8) C12′—H12′ 0.9300

C10—C15 1.401 (8) C13′—C14′ 1.368 (11)

C11—C12 1.373 (10) C13′—H13′ 0.9300

C11—H11 0.9300 C14′—C15′ 1.377 (9)

C12—C13 1.389 (11) C14′—H14′ 0.9300

C12—H12 0.9300 C15′—H15′ 0.9300

C4···O3′i 3.25 (1) C14···O1iii 3.47 (1)

C5···O3′i 3.24 (1) C7′···O1v 3.29 (1)

C7···O1′ii 3.27 (1) C8′···O1v 3.37 (1)

C8···O2iii 3.46 (1) C14′···C12vi 3.41 (1)

C12···C14′iv 3.41 (1)

O3′—S1—O3 120.8 (3) C15—C14—H14 119.8

O3′—S1—C1 108.1 (3) C14—C15—C10 119.9 (6)

O3—S1—C1 107.9 (3) C14—C15—H15 120.0

O3′—S1—C1′ 107.7 (3) C10—C15—H15 120.0

O3—S1—C1′ 107.7 (3) O1′—C1′—C2′ 59.1 (4)

C1—S1—C1′ 103.3 (3) O1′—C1′—C9′ 116.2 (5)

(10)

C1′—O1′—C2′ 63.1 (4) O1′—C1′—S1 110.3 (4)

O1—C1—C2 59.5 (3) C2′—C1′—S1 112.5 (4)

O1—C1—C9 116.8 (5) C9′—C1′—S1 119.5 (4)

C2—C1—C9 123.0 (5) O1′—C2′—C3′ 118.3 (6)

O1—C1—S1 110.5 (4) O1′—C2′—C1′ 57.8 (4)

C2—C1—S1 115.0 (4) C3′—C2′—C1′ 122.5 (6)

C9—C1—S1 117.7 (4) O1′—C2′—H2′ 115.3

O1—C2—C3 118.2 (5) C3′—C2′—H2′ 115.3

O1—C2—C1 57.6 (3) C1′—C2′—H2′ 115.3

C3—C2—C1 122.9 (5) C4′—C3′—C8′ 119.5 (8)

O1—C2—H2 115.3 C4′—C3′—C2′ 123.0 (8)

C3—C2—H2 115.3 C8′—C3′—C2′ 117.4 (8)

C1—C2—H2 115.3 C3′—C4′—C5′ 119.0 (10)

C8—C3—C4 117.4 (6) C3′—C4′—H4′ 120.5

C8—C3—C2 120.0 (6) C5′—C4′—H4′ 120.5

C4—C3—C2 122.6 (6) C6′—C5′—C4′ 119.2 (11)

C5—C4—C3 120.2 (6) C6′—C5′—H5′ 120.4

C5—C4—H4 119.9 C4′—C5′—H5′ 120.4

C3—C4—H4 119.9 C7′—C6′—C5′ 121.0 (11)

C4—C5—C6 121.0 (7) C7′—C6′—H6′ 119.5

C4—C5—H5 119.5 C5′—C6′—H6′ 119.5

C6—C5—H5 119.5 C6′—C7′—C8′ 120.0 (12)

C5—C6—C7 118.9 (7) C6′—C7′—H7′ 120.0

C5—C6—H6 120.6 C8′—C7′—H7′ 120.0

C7—C6—H6 120.6 C7′—C8′—C3′ 121.3 (10)

C8—C7—C6 120.4 (7) C7′—C8′—H8′ 119.4

C8—C7—H7 119.8 C3′—C8′—H8′ 119.4

C6—C7—H7 119.8 O2′—C9′—C10′ 122.5 (6)

C7—C8—C3 122.2 (7) O2′—C9′—C1′ 116.5 (6)

C7—C8—H8 118.9 C10′—C9′—C1′ 121.0 (5)

C3—C8—H8 118.9 C11′—C10′—C15′ 119.3 (6)

O2—C9—C10 123.9 (5) C11′—C10′—C9′ 118.9 (6)

O2—C9—C1 118.0 (5) C15′—C10′—C9′ 121.7 (6)

C10—C9—C1 118.1 (5) C12′—C11′—C10′ 121.1 (8)

C11—C10—C15 119.3 (6) C12′—C11′—H11′ 119.4

C11—C10—C9 118.6 (6) C10′—C11′—H11′ 119.4

C15—C10—C9 122.1 (5) C11′—C12′—C13′ 119.5 (8)

C12—C11—C10 119.7 (7) C11′—C12′—H12′ 120.3

C12—C11—H11 120.2 C13′—C12′—H12′ 120.3

C10—C11—H11 120.2 C14′—C13′—C12′ 119.4 (7)

C11—C12—C13 120.8 (7) C14′—C13′—H13′ 120.3

C11—C12—H12 119.6 C12′—C13′—H13′ 120.3

C13—C12—H12 119.6 C13′—C14′—C15′ 121.7 (8)

C14—C13—C12 119.9 (7) C13′—C14′—H14′ 119.2

C14—C13—H13 120.0 C15′—C14′—H14′ 119.2

C12—C13—H13 120.0 C14′—C15′—C10′ 119.0 (7)

C13—C14—C15 120.4 (7) C14′—C15′—H15′ 120.5

(11)

supporting information

sup-8

Acta Cryst. (2002). E58, o1174–o1176

C2—O1—C1—C9 −114.3 (6) C2′—O1′—C1′—C9′ −115.2 (6)

C2—O1—C1—S1 107.6 (4) C2′—O1′—C1′—S1 104.7 (5)

O3′—S1—C1—O1 178.7 (4) O3′—S1—C1′—O1′ −44.1 (5)

O3—S1—C1—O1 −49.2 (4) O3—S1—C1′—O1′ −175.9 (4)

C1′—S1—C1—O1 64.7 (4) C1—S1—C1′—O1′ 70.1 (4)

O3′—S1—C1—C2 −116.4 (4) O3′—S1—C1′—C2′ 19.9 (5)

O3—S1—C1—C2 15.8 (5) O3—S1—C1′—C2′ −111.9 (4)

C1′—S1—C1—C2 129.6 (4) C1—S1—C1′—C2′ 134.1 (4)

O3′—S1—C1—C9 41.0 (5) O3′—S1—C1′—C9′ 177.3 (4)

O3—S1—C1—C9 173.1 (4) O3—S1—C1′—C9′ 45.5 (5)

C1′—S1—C1—C9 −73.0 (5) C1—S1—C1′—C9′ −68.4 (5)

C1—O1—C2—C3 113.0 (6) C1′—O1′—C2′—C3′ 112.4 (6)

C9—C1—C2—O1 104.0 (6) C9′—C1′—C2′—O1′ 102.6 (6)

S1—C1—C2—O1 −100.0 (4) S1—C1′—C2′—O1′ −101.0 (4)

O1—C1—C2—C3 −104.8 (6) O1′—C1′—C2′—C3′ −105.3 (7)

C9—C1—C2—C3 −0.8 (9) C9′—C1′—C2′—C3′ −2.7 (10)

S1—C1—C2—C3 155.2 (5) S1—C1′—C2′—C3′ 153.7 (6)

O1—C2—C3—C8 169.5 (5) O1′—C2′—C3′—C4′ −10.7 (10)

C1—C2—C3—C8 −122.6 (6) C1′—C2′—C3′—C4′ 57.2 (10)

O1—C2—C3—C4 −8.4 (8) O1′—C2′—C3′—C8′ 166.5 (6)

C1—C2—C3—C4 59.4 (8) C1′—C2′—C3′—C8′ −125.5 (7)

C8—C3—C4—C5 −0.4 (9) C8′—C3′—C4′—C5′ 0.0 (11)

C2—C3—C4—C5 177.6 (6) C2′—C3′—C4′—C5′ 177.2 (7)

C3—C4—C5—C6 −0.1 (11) C3′—C4′—C5′—C6′ 0.3 (13)

C4—C5—C6—C7 0.8 (11) C4′—C5′—C6′—C7′ 1.1 (16)

C5—C6—C7—C8 −1.1 (12) C5′—C6′—C7′—C8′ −2.9 (17)

C6—C7—C8—C3 0.6 (11) C6′—C7′—C8′—C3′ 3.2 (14)

C4—C3—C8—C7 0.2 (10) C4′—C3′—C8′—C7′ −1.8 (12)

C2—C3—C8—C7 −177.8 (6) C2′—C3′—C8′—C7′ −179.1 (7)

O1—C1—C9—O2 −24.7 (8) O1′—C1′—C9′—O2′ −23.3 (8)

C2—C1—C9—O2 −94.3 (7) C2′—C1′—C9′—O2′ −92.2 (8)

S1—C1—C9—O2 110.3 (6) S1—C1′—C9′—O2′ 113.0 (6)

O1—C1—C9—C10 154.0 (5) O1′—C1′—C9′—C10′ 155.8 (5)

C2—C1—C9—C10 84.5 (7) C2′—C1′—C9′—C10′ 86.9 (8)

S1—C1—C9—C10 −70.9 (6) S1—C1′—C9′—C10′ −67.9 (7)

O2—C9—C10—C11 −16.3 (9) O2′—C9′—C10′—C11′ −12.2 (10)

C1—C9—C10—C11 165.1 (5) C1′—C9′—C10′—C11′ 168.8 (6)

O2—C9—C10—C15 163.3 (6) O2′—C9′—C10′—C15′ 164.3 (7)

C1—C9—C10—C15 −15.4 (8) C1′—C9′—C10′—C15′ −14.7 (9)

C15—C10—C11—C12 0.5 (10) C15′—C10′—C11′—C12′ 1.4 (10)

C9—C10—C11—C12 −180.0 (6) C9′—C10′—C11′—C12′ 178.0 (7)

C10—C11—C12—C13 −0.6 (11) C10′—C11′—C12′—C13′ −0.2 (12)

C11—C12—C13—C14 0.6 (13) C11′—C12′—C13′—C14′ −0.6 (12)

C12—C13—C14—C15 −0.6 (12) C12′—C13′—C14′—C15′ 0.2 (12)

(12)

C11—C10—C15—C14 −0.4 (9) C11′—C10′—C15′—C14′ −1.8 (10)

C9—C10—C15—C14 −179.9 (6) C9′—C10′—C15′—C14′ −178.3 (6)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+3/2, z+1/2; (iii) −x+1, y−1/2, −z+3/2; (iv) x+1, −y+3/2, z+1/2; (v) x, −y+3/2, z−1/2; (vi) x−1, −y+3/2,

z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C15—H15···O2iii 0.93 2.60 3.458 (8) 154

Figure

Figure 1

References

Related documents

In a surprise move, the Central Bank of Peru (BCRP) reduced its benchmark interest rate by 25 basis points (bps) to 3.25% in mid-January following disappointing economic growth data

In general, human capital strategy including training, development, and empowerment is formulated in universities of medical sciences throughout the country and

Although total labor earnings increase with the unskilled unions’ bargaining power, we can say nothing when the increase in production is due to stronger skilled unions, since

House Republicans are proposing to shortchange students, workers, our nation’s health, and the economy by cutting overall funding for the Departments of Labor, Education, and

The distributor may seek to limit the producer’s right to terminate until distributor has recouped its advance (assuming it has given the producer an advance.) Another

Development of the curriculum of the Master of Advanced Industrial Management European Academy on Industrial Management (AIM) Industrial enterprises &amp; Organizations.

In addition to the Code of Business Conduct and Ethics, Molina Medicare has developed an extensive set of policies and procedures to implement the Medicare Compliance/FWA plan,

• Storage node - node that runs Account, Container, and Object services • ring - a set of mappings of OpenStack Object Storage data to physical devices To increase reliability, you