ContentslistsavailableatSciVerseScienceDirect
International
Journal
of
Applied
Earth
Observation
and
Geoinformation
j ourna l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j a g
Mapping
the
distribution
of
the
main
host
for
plague
in
a
complex
landscape
in
Kazakhstan:
An
object-based
approach
using
SPOT-5
XS,
Landsat
7
ETM+,
SRTM
and
multiple
Random
Forests
L.I.
Wilschut
a,b,∗,
E.A.
Addink
a,
J.A.P.
Heesterbeek
b,
V.M.
Dubyanskiy
c,d,
S.A.
Davis
e,
A.
Laudisoit
f,g,
M.
Begon
f, L.A.
Burdelov
d,
B.B.
Atshabar
d,
S.M.
de
Jong
aaUtrechtUniversity,DepartmentofPhysicalGeography,Heidelberglaan2,POBox80115,3508TCUtrecht,TheNetherlands bUtrechtUniversity,FacultyofVeterinaryMedicine,Yalelaan7,3584CLUtrecht,TheNetherlands
cStavropolPlagueControlResearchInstitute,Sovetskaya13-15,Stavropol355035,RussianFederation
dAnti-PlagueInstitute,M.Aikimbayev’sKazakhScienceCentreforQuarantineandZoonoticDiseases,14KapalskayaStreet,Almaty050074,Kazakhstan eRMITUniversity,SchoolofMathematicalandGeospatialSciences,Melbourne,Victoria3000,Australia
fUniversityofLiverpool,InstituteofIntegrativeBiology,CrownStreet,Liverpool,UK
gUniversityofAntwerp,DepartmentofBiology,Groenenborgerlaan171,B-2020Antwerpen,Belgium
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:Received17August2012 Accepted30November2012
Keywords:
Object-basedimageanalysis Stratification Landscapeepidemiology Vector-bornedisease Zoonosis Yersiniapestis Greatgerbil Desertenvironment
a
b
s
t
r
a
c
t
PlagueisazoonoticinfectiousdiseasepresentingreatgerbilpopulationsinKazakhstan.Infectious dis-easedynamicsareinfluencedbythespatialdistributionofthecarriers(hosts)ofthedisease.Thegreat gerbil,themainhostinourstudyarea,livesinburrows,whichcanberecognizedonhighresolution satelliteimagery.Inthisstudy,usingearthobservationdataatvariousspatialscales,wemapthespatial distributionofburrowsinasemi-desertlandscape.
Thestudyareaconsistsofvariouslandscapetypes.Toevaluatewhetheridentificationofburrowsby classificationispossibleintheselandscapetypes,thestudyareawassubdividedintoeightlandscape units,onthebasisofLandsat7ETM+derivedTasselledCapGreennessandBrightness,andSRTMderived standarddeviationinelevation.
Inthefield,904burrowsweremapped.Usingtwosegmented2.5mresolutionSPOT-5XSsatellite scenes,referenceobjectsetswerecreated.RandomForestswerebuiltforbothSPOTscenesandusedto classifytheimages.Additionally,astratifiedclassificationwascarriedout,bybuildingseparateRandom Forestsperlandscapeunit.
Burrowsweresuccessfullyclassifiedinalllandscapeunits.Inthe‘steppeonfloodplain’areas, classi-ficationworkedbest:producer’sanduser’saccuracyinthoseareasreached88%and100%,respectively. Inthe‘floodplain’areaswithamoreheterogeneousvegetationcover,classificationworkedleastwell; there,accuracieswere86and58%respectively.Stratifiedclassificationimprovedtheresultsinall land-scapeunitswherecomparisonwaspossible(four),increasingkappacoefficientsby13,10,9and1%, respectively.
Inthisstudy,aninnovativestratificationmethodusinghigh-andmediumresolutionimagerywas appliedinordertomaphostdistributiononalargespatialscale.Theburrowmapswedevelopedwill helptodetectchangesinthedistributionofgreatgerbilpopulationsand,moreover,serveasaunique empiricaldatasetwhichcanbeusedasinputforepidemiologicalplaguemodels.Thisisanimportant stepinunderstandingthedynamicsofplague.
©2012ElsevierB.V.
1. Introduction
Plague,adiseasemainlyspreadbyrodents,wasresponsiblefor thedeathsofnearlyone-thirdoftheEuropeanhumanpopulation
∗Correspondingauthorat:UtrechtUniversity,DepartmentofPhysicalGeography, Heidelberglaan2,POBox80115,3508TCUtrecht,TheNetherlands.
E-mailaddress:[email protected](L.I.Wilschut).
duringa pandemicin theMiddle Ages(Gage andKosoy, 2005; Haenschetal.,2010).PlagueiscausedbythebacteriumYersinia pestisandcaninfectover200mammalspecies(‘hosts’),suchas prairiedogsintheUnitedStates(Collingeetal.,2005),blackrats in Madagascar(Keelingand Gilligan,2000)andgreat gerbilsin Kazakhstan(Davisetal.,2004).Plagueisavector-bornedisease,i.e. thediseaseistransferredfromhosttohostbyavector,fleasinthe caseofplague.Inthelastdecades,plague,alongwithseveralother vectorborne-diseases,hasbeenresurging(Gubler,1998).Itcauses
0303-2434 ©2012ElsevierB.V.
http://dx.doi.org/10.1016/j.jag.2012.11.007
Open access underCC BY license.
about2000diagnosedhumancasesannually,ofwhichthe major-ityoccurinAfrica(WorldHealthOrganization,2005).Thedisease isstillconsidereddangerous;itisoneofthreediseasesforwhich notificationtotheWHOisobligatory(WorldHealthOrganization, 1983).
Muchofourknowledgeofdiseasedynamicsinnatural popula-tionsisgainedfrominvestigationsusingepidemiologicalmodels (Hudson et al., 2001). For example, populationsize or density oftenmustsurpassacertainthresholdin orderfora diseaseto invadeand/orpersist(Lloyd-Smithetal.,2005),andhigher pop-ulationdensitytypically increasesthetransmissionrate(Begon etal.,2002).Moreover,thespatialdistributionofhostsmay deter-mine local host connectivity, which when increased enhances thelikelihoodofsuccessfuldiseasespread(Keeling,1999).When hostdistributions arepatchy,increasing‘patchiness’mayeither increaseordecreasethechancethatanendemicinfectious dis-easewillpersist(Hagenaarsetal.,2004;KeelingandGilligan,2000; JesseandHeesterbeek,2011;Parketal.,2002).Thus,model stud-iessuggestthatthespatialdistributionofhostsinfluencesdisease dynamicsindifferentways,butempiricaldataonthespatial dis-tributionofinfectedandsusceptiblehostsonapopulationscaleis scarce.
Thedistribution ofanimals is increasingly mappedby earth observationandremotedevicesonseveralspatialscales.Onsmall scales,GPS-receiversarebeingusedtotracktheanimals.Onalarger scale,remotesensingisused:severalexamplesexistofhost-habitat mapping(Boghetal.,2007;Kallurietal.,2007;Estrada-Pe ˜na,2003). Suchremotesensingbasedmapsprovideusefulinformationon thecharacteristicsofafocus(i.e.anareawherethedisease caus-ingagentanditsassociatedvectorand/orhostarepresent).Asa consequenceofrapidtechnologicaladvancementsinrecentyears, highspatialresolutionimagerynowofferstheopportunitytomap actualanimaldistributions,providedthatafeatureassociatedwith theanimal,likeaburrow,canbeidentifiedonsatelliteimages.
Burrowsareconstructedandusedbycertainrodentsfor sleep-ing,nestingand foodstorage.Burrowingrodentsmaydiminish vegetationcoveronandaroundtheirburrowssuchthatitbecomes possibletoseethemonsatelliteimages,asisthecaseforwombats (Vombatusursinus)inAustralia(LöfflerandMargules,1980)and greatgerbils(Rhombomysopimus)in CentralAsia(Addinketal., 2010).
Greatgerbils,socialrodentsthatarenumerousin(semi-)deserts in Central Asia, are important hosts of zoonotic infectious dis-eases,such as tularemia, cutaneous leishmaniasisand bubonic plague (Gage and Kosoy, 2005;Yaghoobi-Ershadi and Javadian, 1996;Atshabaretal.,2010).Plagueinthegreatgerbilhasbeen monitoredextensivelyin Kazakhstansince the1940s, although budgetcutssincethe1990shaveledtoaseveredecreaseinplague surveillance (Gage and Kosoy, 2005; Ouagrham-Gormley et al., 2008).Fromthismonitoring,weknowthatplagueisendemicin 20fociinKazakhstan,themajoritybeingsteppeanddesertfoci (Atshabaretal.,2010).Ineach ofthesefoci,plaguemonitoring, i.e.testingofrodentsandfleas forplague,hasbeencarriedout underthesupervision ofAnti-PlagueStations.Thefinestspatial scaleonwhichmonitoringiscarriedoutistheso-calledsector, anarea, defined by a latitude-longitudegrid, of approximately 9.3km×9.8km.
Thefrequentplagueepizootics(epidemicsinanimal popula-tions)donotresultinmassivedie-offsofgreatgerbils,because thegreatgerbilsare–ingeneral–quiteresistanttothedisease (GageandKosoy,2005;BigginsandKosoy,2001).Theoccurrence oftheseepizooticsisrelatedtotheabundanceofbothhostand vec-tor.AhostabundancethresholdwasfirstdiscoveredbyDavisetal. (2004)whereabundancewasmeasuredasthepercentageof bur-rowsoccupiedbyfamilygroups.Theplaguethresholdmodelwas laterimprovedbyincludingtheabundanceoffleas(Reijniersetal.,
2012).Inbothmodelsburrow(density)mapsformanimportant startingpointforthepredictionofplague.
InapilotstudybyAddinketal.(2010),greatgerbilburrowswere successfullyidentifiedinanareaof6km×10kmusingaQuickbird imagewithaspatialresolutionof2.4m.Althoughthisstudyoffered aconvincingproof-of-concept,burrowswereonlymappedinone landscapetype.Asthedistributionofgreatgerbilsisrelatedtothe landscapebyfoodavailability,localclimateandcompetitionwith otherspecies,thechallengeistomapthegreatgerbilabundance acrossdifferentlandscapes.Moreover,theareainvestigatedinthe pilotstudywassmallerthantheareaofsmallestscaleplague mon-itoringbytheAnti-Plaguestations.Therefore,therelationbetween plaguedynamicsontheonehandandhostabundanceandstructure ontheothercannotbestudiedusingthesedata.Mappingthegreat gerbilburrowsoverlargeareas,coveringseveralplaguemonitoring units,andacrossseverallandscapetypes,willoffertheopportunity tostudytherelationbetweenlandscape,greatgerbildistribution andplagueoccurrence.
Thispaperfocusesthereforeonclassifyingburrowsintwoareas, of60km×60kmand60km×85km,coveringlandscapetypesof fluvialandaeolianorigin.Theobjectivesare:
(1) Toidentifygreatgerbilburrowsbysemi-automated classifi-cation onhighresolutionSPOT-5XSimagesacrossdifferent landscapetypesandevaluatetheaccuracy.
(2)Toconstructamapoflandscapeunitsrepresentingthe variabil-ityandspatialstructureofthelandscapeinthisplaguefocus. (3)TostratifytheSPOT-5XSimagesonthebasisoftheselandscape
units,andsubsequentlyclassifyburrowsperlandscapeunit, usinglocaltrainingdata.
Themethodologyusedtomapthespatialdistributionof bur-rowswasasfollows:landscapeunitswerecreatedonthebasisof Landsat7ETM+andSRTMdata,usingobject-basedanalysis($4.1). Then,theSPOTimagesweresegmentedandtheburrowswere clas-sified,basedonunstratifiedandstratifiedRandomForests($4.2). Finally,theaccuracyforbothapproacheswascalculated($4.3). 2. Studyarea
ThestudyareaisaplaguefocuslocatedinEasternKazakhstan, southofLakeBalkhash(Fig.1),composedoffluvialand aeolian deposits.Theareameasuresapproximately250km×200kmand encompassesa delta systemdeveloped by the Ili River.Asthe courseoftheIliRiverhasshiftedovertime fromNNWtoNW, severalabandonedriver branchescanstillberecognizedinthe landscape(Fig.1).Largedunefieldshaveformedalongandontop oftheabandonedfloodplain.Theirrigatedagriculturalareanorth ofthetownBakanaswasmaskedout.
Soilsaresandy,withvariableclayandloworganicmatter con-tent:intheabandonedriverbedsgraveltosandymaterialisfound, whilefurtherfromtheriverbranches,soilsaremoreclay-richor havedunesformedontop.Insomeareassoilsarehighlysaline. Theclimateinthestudyareaisstronglycontinental.Mean tem-peraturesfluctuatedramatically,dailyandwithinseasons,ranging between−40◦Cinwinterto+40◦Cinsummer(Suslov,1961). Pre-cipitationislessthan200mmperyearandfallsprimarilyinwinter (assnow)andspring(Suslov,1961;Propastin,2008).Inspringsnow meltsquicklyandformssmalllakes(calledtakirs)intopographic depressions(Laity,2008).Oncedriedup,thesetakirsarerecognized easilybecauseoftheirhighalbedo.Vegetationcoverisvariable,but shows,aswellasarelationtosoilmoisturecontent,adeclining trendinthedirectionofLakeBalkhashandwithdistancefromthe IliRiver,withvegetationgraduallychangingfromlargershrubsand reedgrassthicketstolowershrubsandephemeralgrasses.Close
Fig.1.ThestudyareainKazakhstansouthofLakeBalkhash(left),showingtheIliriverdelta,thelocationoftheSPOTsatellitescenesandtheresearchsectors(right).Source: Bingmaps,2011.
tolargeabandonedriverbranches,vegetationcoverishigher,most likelyduetosubsurfaceflow.Inseveralareas,thesoiliscoveredby alayeroflichenandmoss.Overall,plantdiversityandcoverislow duetotheyearlywaterdeficitandextremetemperatures. 2.1. Greatgerbilsandtheirburrows
Inthissandy(semi-)desertintheBalkhashbasin,thegreat ger-bilistheprimaryreservoirhostforplague(Atshabaretal.,2010). Greatgerbilsarediurnal,mainlyfolivorousrodentsthatarewell adaptedtotheclimate. Theylivein familygroups usually con-sistingofonemale,oneormorefemalesandtheiroffspring,and occupyoneburrowperfamily(Randalletal.,2005).Therodents haveaterritorialnatureandspend90%oftheiractivitywithinthe boundariesoftheirownburrow(Rogovinetal.,2003),although visitstootherburrows dooccur(Rothshild,1978).Becausethe numbersofgerbilsfluctuategreatly,bothinter-andintra-annually, burrowsarenotalwaysoccupiedcontinuously:thepercentageof occupiedburrowsisreferredtoas‘occupancy’.Duringwinter, occu-pancyusuallydropsbecausegreatgerbilmortalityincreasesdue totheharshmeteorologicalconditions.Also,becausegreatgerbil movementsarerestricted,nonewburrowsarecreatedduringthis period.
Theburrowsofthegreatgerbil(Fig.2)areomnipresentinthe landscapeandcanbeconsideredasrelativelypermanent,static features (Naumov and Lobachev, 1975).Burrows havemultiple entrances that lead to a network of subterranean tunnels and chambers. Theyvary in size and shape in different landscapes
(NaumovandLobachev,1975).Alongdunes,burrowstendtobe moreelongated;onflatsandysubstrates,burrowsarecircular,and inclay-richsoiltheyaremorecompactanddeeper.Deeper bur-rowswillleadtoamorestabletemperatureinsidetheburrowand henceincreasesurvivalofthegerbils.Dependingonthestabilityof thesoil,aburrowcanextendto3mdeep(NaumovandLobachev,
Fig.2.Burrowinalluvialmaterialwithacrustedsoil.Multipleentrances,belonging tothesameburrow,arevisible.Blacksaxaultrees(Haloxylonammodendron),visible inthebackground,formanimportantfoodsourceforthegreatgerbil.
Fig.3.Flowchartofthesequentialprocessingstepsoftheconstructionofthelandscapeunits(top)andtheburrowclassification(bottom).
1975).Allburrowshavean‘ecologicalcentre’,i.e.thelocationof mostintenseactivitywhichcanberecognizedbyahighdensityof entrances.Onthesurfaceofaburrow,noorrelativelylittle veg-etationispresent.Thisleadstoanincreaseinalbedoandhence enablestherecognitionofburrowsonsatelliteimages.
3. Datapreparation 3.1. Fielddata
Dataonburrowandnon-burrowarealocationswerecollected duringfieldcampaignsinSeptember2010andApril2011,inseven sectors(Fig.1).Inthesesectors54squaresof200mwerelaidoutas referenceareas.Persector,twoorthreelocationswererandomly selected(asfarasaccessibilityallowed,becauseroadsarescarce), sothatvariability withinthesector wouldbe covered.Ateach location,twoorthreesquareswerelaidout,alwaysaminimum distanceof200mapartfromeachother.
Thesquareswerethensystematicallycheckedforburrowsof thegreatgerbil.Burrows,904intotal,werenumberedandmarked. WithaGPSnavigationdevice,theburrowsweremappedby recor-dingthecoordinatesattheecologicalcentre.Inaddition,burrow diametersweremeasured.
3.2. Satelliteimages
Three pan-sharpened 2.5m resolution orthorectified SPOT-5 images containing green, red and NIR spectral bands were acquiredforOctober2010(Astrium,2012).Theycovertwoareas of60km×85kmintheeast(SPOTEast)and60km×60kminthe west(SPOTWest)andoverlapthesevenresearchsectors(Fig.1). SPOTWestwasacquiredon14Octoberandthetwoimages com-posingSPOTEastwereacquiredonthe9October.
Landsat7ETM+images(28.5mresolution)from2000and2001 wereusedforthelandscapestratification togetherwitha 90m resolutionDigitalElevationModel(DEM)acquiredbytheShuttle RadarTopographyMission(SRTM).BothLandsatandSPOTimages wereconvertedtotop-of-atmospherereflectance(Chanderetal., 2009).
4. Methods
AnoverviewoftheprocessingstepsisgiveninFig.3. 4.1. Defininglandscapeunits
In order toconstructlandscape unitsin the Balkhashbasin, firstthemostimportantvariablesthatdeterminethevariability oflandscapesinthisareawerelisted.Thesevariablesaresoiltype, vegetationcoverandlocaltopography.Theselandscapevariables alsodeterminetoalargeextentthephysicalhabitatsuitabilityfor thegreatgerbil.Soiltypeinfluencesthepossibilitiesofquality bur-rowconstruction,asthecohesionofthesoildetermineswhetherit ispossibletoconstructadeepandstableburrow.Vegetationcover reflectsthepresenceoffoodresources.Localtopographyinfluences soildepth,asdepositionalanderosionalprocessesareinfluenced bytopography.Also,alongwithvegetationcover,ithasinfluence ontheabilitytohidefrompredators,likebirdsofprey.A combi-nationofthesethreevariableswillrepresentdifferentlocalgreat gerbilhabitatsandinadditionwilllikelyinfluencetheabilityto detecttheburrowsinsatelliteimages.
Thelandscapeunitsweredefinedinthreesteps(seealsoFig.3): (1)LandscaperepresentativelayerswerecalculatedusingLandsat 7 ETM+ scenesand theSRTM-DEM. Torepresentthe varia-tion in soil types, a soil Brightness layer wasderived from theLandsat imagesusing theTasselled Cap Brightness (TC-Brightness)(CristandCicone,1984).TC-Brightnessisameasure of overall reflectance and makes it possible todifferentiate lightsoilsfromdarkssoils.Thevariationinvegetationcover intheareawasextractedfromtheTasselledCap Greenness (TC-Greenness)(CristandCicone,1984).TC-Greennessdisplays thecontrastbetweenthenear-infraredreflectanceandthe vis-iblereflectanceandisameasureofthepresenceanddensityof greenvegetation.Thelocalvariationintopographywas com-putedusingtheSRTM-DEM,specificallythestandarddeviation oftheSRTM-DEM,calculatedusingawindowsizeof3by3 pixels.ThepixelsofthelocalSRTM-DEMstandarddeviation (DEM-SD)werethenmatchedto28.5mpixelsusingnearest neighbourresampling.
(2)Multi-resolutionsegmentationwasappliedtothesethree lay-ers (giving each layer an equal weight), using eCognition®
Developer Software (Trimble, 2011). Segmentation is the processofgroupingneighbouringpixelsonthebasisofa homo-geneitycriterion(BlaschkeandStrobl,2001).Thishomogeneity criterion(i.e.thescaleparameter) waschosensuchthatthe objectswerelargeenoughtomeaningfullyrepresenta land-scapetype, butsmallenough toavoid groupingofdifferent landscapetypesintooneobject.Thisresultedinamedianobject sizeof6.9km2.
(3)These objects were then classified into different landscape units.Classificationoftheobjectswasessential,becauseobjects withasimilarlandscapetypedonotnecessarilybordereach other,whichmeanstheywouldnothavebeengroupedtogether during segmentation.To classifyeach object inside thetwo SPOT areas,itsmeanvaluesofTC-Greenness,TC-Brightness, andDEM-SDwereobtained,toformthreeobjectattribute lay-ers.Themedianvalueofeachlayerwasthenusedtoseparateit intohighandlowclasses(aboveandbelowthemedian).These highandlowclassesforthethreevariableswerethencombined (2×2×2)toformeightlandscapeunitswitheitherahighora lowvalueforTC-Brightness,TC-Greenness,andDEM-SD,which wedenotebyacapitalandlowercaselettersforahighand lowvalues,respectively(B,b,G,gandD,d).Finally,landscape unitsweregivenageomorphologicalandlandscape-ecological interpretationanddescription,usingfieldobservationsand lit-eratureonthearea(Suslov,1961;Laity,2008).
4.2. Burrowclassification
4.2.1. Creatingareferenceobjectdataset:combiningfieldand satellitedata
First, SPOT images were subjected to an edge-preserving smoothingfilter(NagaoandMatsuyama,1979)inordertoimprove objectstability(Addink,2012).Theywerethensegmentedusing tilingandstitching,tokeepthesegmentationprocessfastand effi-cient.Thethreebands weregiven equalweights andtheshape parameterwassetto0,whichmeansthatpixelsaregroupedbased ontheirreflectancevaluesonly(andnotontheshapeofthe result-ingobject)(BaatzandSchäpe,2000).Segmentationwascarriedout onsuchascalethatobjectsizecoincidedwiththesizeofburrows, resultinginameanobjectsizeof23.8m2.Intotal,inthe
west-ernand eastern9,659,972 and12,868,017 objectswerecreated respectively.
Theobjectsresultingfromthesegmentation haveassociated attributesthatwerecalculatedusingeCognition®.Theseattributes
– also called independent variables – give information onthe spectral-,texture-,shape-,size-andneighbour-propertiesofthe objects.Forexample,thevariableMeanNIRgivesthemean reflec-tionintheNIRbandforanobjectandthevariableNumberofdarker objectsgivesthenumberofdarkerobjectssurroundingthespecific object.Intotal,67independentvariableswerecalculated,ofwhich 42%consistedofspectral-andtexture-,31%ofneighbour-and27% ofshape-andsizevariables.
Theobjectsandassociatedindependentvariableswereusedto createreferenceobjectsets (onefor eachSPOT scene), contain-ingburrowandnon-burrowareaobjects.Usingthemethodfrom Addinketal.(2010),objectsrepresentingburrowswereselectedin twosteps.First,allobjectswithintheestimatedpositionerrorofa burrowfieldlocation,asgivenbytheGPS,weremarkedas poten-tialburrowobjects.Second,fromthosepotentialburrowobjects, foreachfieldobservation,thebrightestobjectwasselected.This iscalculatedbytakingtheaverageofallpixelvaluesinanobject (so-calledBrightness-nottobeconfusedwiththeTC-Brightness mentionedin$4.1).Non-burrowareaobjectsweredefinedasthe
objectsthatwere notmarkedasa potentialburrowobjectand werelocatedcompletelywithinthe200mresearchsquares.The non-burrowareaobjectsincludethereforearangeoflocal land-scapefeatures,suchasapatchofshrubsorgrass,a(partofa)dune, atakiroraroad.
ThereferenceobjectdatasetforSPOTWestthenconsistedof 315burrowobjectsand787non-burrowareaobjects,andforSPOT Eastthesenumberswere589and2311,respectively.
4.2.2. BuildingRandomForests
RandomForestisarobuststatisticalclassifierthatmakesa pre-dictionofatestsetbasedonobservationsfromatrainingset,using multipledecisiontrees(Breiman,2001).Usingthevalues ofthe independentvariables,eachtreeconsistsofnodeswherethe train-ingsetissplitintohomogenoussubsetsofburrowandnon-burrow areas untilthetree is fullygrown,i.e. until thewholetraining setissubdividedintothoseclasses.TheRandomForestsusedin thisstudywerecreatedwiththerandomForestpackage(Liawand Wiener,2002)implementedintheRstatisticalprogramming envi-ronment(RDevelopmentCoreTeam,2011).
Everytreewasconstructedusinga2/3bootstrap(defaultvalue) of thetraining set.The 1/3bootstrap not usedtocalibrate the tree,theso-called“Out-Of-Bag”(OOB)data,are,byrunningthese samplesthroughtheRandomForest,usedtoderiveanerror esti-mate(“OOB-error”).TheaveragevalueoftheOOB-errorsforallthe treesgivesagoodindicationofhowwellclassescanbeseparated (Rodriguez-Galianoetal.,2012b).
ARandomForestchoosesforeachnodeonatreethebest pre-dictivevariablefromarandomsubset(withthesizeofthesquare rootofthetotalnumberofindependentvariables)ofthe predic-torvariables. Thismeans thatif thereare many variables with littlepredictivepower,theRandomForestmightbesub-optimal. Therefore, it isusefulto selectthemostpredictivevariables in advanceofbuildingthefinalRandomForest(Rodriguez-Galiano etal.,2012a).TheRandomForestclassifieritselfcontainsanovel methodtoestimatevariableimportance(Verikasetal.,2011;Cutler etal.,2007),whichcanbeusedtoexcludetheleastpredictive vari-ables inadvance.ByrunningtheRandomForestiterativelyand excludingtheleastpredictivevariablesateveryrun,themost parsi-monioussolutioncanbefoundthathastheleastvariablesamongst thosewithinthesamplingerrorfromthesolutionwiththeabsolute smallestOOB-error(Diaz-Uriarte,2007).
TheRandomForestsbuiltinthisstudyused10,000trees,which isasufficientamountoftreestoensuretheOOB-errorisstable; forotherRandomForestsettingsthedefaultvalueswereused.All RandomForestswereoptimizedbyremovingtheleastpredictive variablesusingtheVarSelRFRpackage(Diaz-Uriarte,2007). 4.2.3. Unstratifiedclassification
ClassificationusingRandomForestisdonebyrunningall obser-vations,inthiscaseobjectswithassociatedvariables,alongeach tree,sothateachobjectgetsmultiple,votes(inthiscase10,000). Themajorityofallthevotesdecidewhetherburrowornon-burrow areaisassignedtoaspecificobject(LiawandWiener,2002).This isthenrepeatedforalltheobjects.
OneRandomForest wasconstructedperSPOTsceneto clas-sifytheburrows.ConstructingoneRandomForestforbothSPOT WestandEastwasnotdesirable,becausetheSPOTimageswere acquiredondifferentdateswithslightlydifferentatmospheric con-ditions.TheRandomForestsweretrainedwithtrainingsetsthat containedequalnumbersofburrowandnon-burrowareaobjects, sinceimbalancedtrainingsetsconsiderablyinfluencetheoutcome oftheRandomForestclassification(StumpfandKerle,2011).80% oftheburrowswereusedfortraining,20%wasusedforvalidation. Forexample,intheeasternImage470burrows(=80%of587)were selectedbydrawingarandomsample.Then,inthesamemanner,
Table1
LandscapeunitsintheBalkhashbasinandtheassociatedfielddata.Thenamesoftheunitsarebuiltupoutofthreeletters,representingahigh(capitalletter)orlowvalue (lowercaseletter)ofTC-Brightness(B/b),TC-Greenness(G/g)orDEM-SD(D/d).RFdenotesRandomForest.
Landscapeunit Locationfielddata Numberofsquares availableforRFanalysis
Numberofburrows availableforRFanalysis
StratifiedRF
bgd East 6 124 RFbgd-East
Bgd EastandWest 24 452 RFBgd-WestandRFBgdEast
bGd East 16 172 RFbGdEast
BGd – 0* 0* (OnlyunstratifiedRF)
BgD EastandWest 6 141 RFBgDWestandRFBgDEast
bgD – 0* 0* (OnlyunstratifiedRF)
bGD East 2 15* (OnlyunstratifiedRF)
BGD – 0* 0* (OnlyunstratifiedRF)
Total EastandWest 54 904
* Noresearchsquares,ortoofewburrowsarelocatedinthislandscapeunit,sotheRFbuilttoclassifythisareaisunstratified,i.e.basedonallthesquaresintherespective
SPOTscene.
470non-burrowareaobjectswereselected.Togethertheyformed theunstratifiedtrainingsetfortheeasternSPOTimage.
4.2.4. Stratifiedclassification:classificationperlandscapeunit Stratificationis theprocessofusing ancillary informationto dividetheinvestigated areaspatiallyinto units(strata),sothat theycanbeanalyzedseparately (Vintrouetal., 2012;Hornstra etal.,2000).Stratificationpriortoclassificationallowsanoptimal classificationprocedureforspecificconditionsindifferentareas. Inourresearch,stratificationwasusedbecauseofthehypothesis thattheabilitytoidentifyburrowswouldbedifferentiallyaffected byrelationshipbetweenaburrowanditssurroundingsindifferent landscapes.Forexample,inthesparselyvegetated,inactive flood-plainsinthestudyarea,burrowsarebetterrecognizablebecause the“background”,i.e.non-burrowarea,isrelativelyhomogenous. Intheareascloserto(abandoned)riverbeds,wherewater avail-abilityleadstomorevariationinvegetationcoverandtype,the burrowsarelessdistinctagainsttheirbackground.
TostratifytheSPOTscenes,theobtainedlandscapeunitsdefine thebordersofthestrata,i.e.insteadofbuildingoneRandom For-estperSPOTscene,RandomForestsarebuiltperlandscapeunit. StratifiedRandomForestscanonlybebuiltwhensufficientfield observationsareavailable,which is thecasefor fourlandscape units(Table1),namelybgd(East),Bgd(WestandEast),bGd(East) andBgD(WestandEast).Foreachofthesesixunitsstratified Ran-domForestswerebuilt(Table1).ThestratifiedRandomForests were–liketheunstratifiedRandomForests–trainedwithbalanced trainingsets,usingburrowsandnon-burrowareaslocatedinthe correspondinglandscapeunit.
4.2.5. RefiningtheRandomForestclassification
Duetotheterritorialnatureofgreatgerbilfamilies,burrows arealwaysatacertainminimumdistancefromeachother,i.e.they haveaninhibitedpattern.Thisinformationwasusedtoimprove theclassificationfollowingtheprocedureofAddinketal.(2010):if aburrowwasadjacenttootherclassifiedburrowobjectsitwould remainclassifiedasaburrowwhentheBrightnessofadjacent bur-rowobjectswaslower,otherwiseitwouldbereclassifiedintoa non-burrowarea.Thisensuredthatlargeburrowsconsistingoftwo objectswouldonlybecountedasoneburrow.
4.3. Validation
RandomForestswerecreatedusing80%oftheburrowfielddata andtheremaining20%wasusedforvalidation.Forvalidationitis importanttohavearepresentativevalidationdataset(Congalton, 1991).The20%validationsetwasconstructedinsuchawaythat theratioofburrowstonon-burrowareasequalledtheratiofound inthefield.
Validationwasdonebycalculatingtheproducer’s,user’sand overallaccuracy(Lillesandetal.,2004)basedoncountsforevery
landscape unit, using the burrowlocations bufferedwith their diameter.AlthoughlandscapeunitsBgdandBgD arepresentin bothSPOTscenes,validationoflandscapeunitsBgdandBgDwas donein thesame manner.The kappacoefficient,a measure of overallaccuracybasedontheclassificationerrormatrix,wasalso calculatedforeachunit(Congalton,1991).Tocomparethe clas-sification accuracies fordifferent landscapeunits, thevalues of theproducer’s,user’sandoverallaccuracy,aswellasthekappa coefficientwerecompared.Toevaluatethedifferencebetweenthe unstratifiedandstratifiedmethod,additionally,significance was testedatthe95%confidencelevelusingtheKappaAnalysisTestof Significance(Congaltonetal.,1983;Congalton,1991).
Moreover,based onthe field data, thedensities of burrows intheresearchsquareswerecalculated,bydividingthenumber ofburrowsinsidetherespectivesquaresbytheareacoveredby thesquares.Then,theratiobetweenthedensitypredictedbythe classificationandthedensityobservedinthefieldwascalculated, togetanestimateoftheaccuracyofthedensityofthecreated burrowmaps.
5. Results
5.1. Landscapeunits
Eight landscape units were distinguished in the Balkhash basinresultingfromthelandscapestratificationusingthelayers TC-Brightness,TC-GreennessandDEM-SD(Table2andFig.4).Four unitsdescribethefloodplaindeposits:steppeoninactive flood-plain(bgd),steppeoninactivefloodplainwithsaltflats(Bgd),active floodplainwithshrubdominatedvegetation(bGd)andfloodplain withdevelopingvegetation(BGd).Theotherfourunitsdescribethe dunes:dynamicdunes(BgD),stabilizedduneswithinactive vege-tation(bgD),stabilizeddunes,withactivevegetationonmoistsoil (bGD)andstabilizedduneswithactivevegetation(BGD).
The steppe on inactive floodplain (bgd) is a unit where a homogenouslow vegetationcoverformedonaveryfine sandy-siltysoil(Fig.5a).Thesteppeoninactivefloodplainwithsaltflats (Bgd)alsohasalowvegetationcoveronmostlysilttoclay-rich soils.Abundant takirs have formedin small depressions inthe landscape(Fig.5b).UnitbGd,theactivefloodplainwithshrub dom-inatedvegetation,coversmostofthecurrentIlideltaandpartof theabandonedIliriverbranch.Inthisunitvegetationcoverismore abundantandconsistsmostlyof2–3mhighshrubs(Fig.5c).The floodplainwithdevelopingvegetation(BGd)isnot prominently presentinthestudyarea.Itconsistsofchlorophyllrichandactive vegetationsuchasreedgrassesformedinsmalldepressionscloseto theIliRiver.Thedynamicdunes(BgD)arelowdunes(<10m)with alowcoverofgrasses(Fig.5d).Thestabilizedduneswithinactive vegetation(bgD)coversonlyasmallareaofthestudyareaandis typifiedbyalowandinactivevegetationcover.Thestabilizeddunes
Table2
Landscapeunitsintheresearcharea.
Landscapeunit[TC-Brightness(B/b) TC-Greenness(G/g)DEM-SD(D/d)]
Description Areacover(%)on
theSPOTscenes
Fielddata Picture
bgd Steppeoninactivefloodplain 3.4 Yes Fig.5a
Bgd Steppeoninactivefloodplainwithsaltflats 47.5 Yes Fig.5b bGd Activefloodplainwithshrubdominatedvegetation 22.5 Yes Fig.5c BGd Floodplainwithdevelopingvegetation 1.5 No –
BgD Dynamicdunes 11.8 Yes Fig.5d
bgD Stabilizeddunes,withinactivevegetation 0.0 No – bGD Stabilizeddunes,withactivevegetationonmoistsoil 12.7 Yes Fig.5e BGD Stabilizeddunes,withactivevegetation 0.6 No –
withactivevegetationonmoistsoil(bGD)ispresentinthesouth andclosetotheIliRiver.Thesedunesarehighercomparedtothe dynamicdunesandhavevegetationthatconsistsofbothgrasses andlowshrubs(Fig.5e).Thestabilizedduneswithactive vegeta-tion(BGD)iscomparabletothepreviousunit(bGD)butoccursin thenorthwherelesswaterisavailable,whichresultsinahigher valueinTC-Brightness.
Ingeneral,TC-Brightness,ameasureofoverallreflectanceinthe Landsatbands,showsanincreasefromsouthtonorth,andislowest inareaswithahighwatercontent,suchasintheactivefloodplain withshrub-dominatedvegetation(bGd).TC-Greennessshowsan oppositepatternanddecreasestowardsLakeBalkhash,whileitis highestintheIliRiverdelta.
AlltheeightlandscapeunitsarepresentintheSPOTsatellite scenes(Table2),althoughthestabilizedduneswithinactive veg-etationunit(bgD)onlycoversanareaofabout4km2.Thesteppe
unitoninactivefloodplainwithsaltflats(Bgd)ismostabundant andrepresents47.5%ofthesurfaceareainSPOTWestandEast. Interestingly,thefloodplainwithdevelopingvegetationunit(BGd) alsoappearsnorthofSPOTEastwhilethereisnotanactiveriver present;thisis presumablybecauseof subsurfaceflow towards LakeBalkhashthroughtheabandonedriverbranch,whichenables moregrowthofvegetation.
Infiveoutofthesevenunitslocatedintheareacoveredbythe SPOTscenes,fieldworkdataareavailable(Table2).Diametersof eachburrowweremeasuredinthefield(Fig.6).Burrowdiameters
Fig.4.LandscapeunitsidentifiedintheBalkhashbasinbasedonhighandlowvaluesofTC-Brightness(B/b),TC-Greenness(G/b)andlocalvariationintopography(D/d).The descriptionoftheunitsisgiveninTable2.
Fig.5.Photographsofthedifferentlandscapeunits.(a)Unitbgd,steppeoninactivefloodplain.Inthefrontaburrowismeasured.Theareaisflat,formedbyfluvialdeposits andhaslittlevegetation.(b)UnitBgd,steppeoninactivefloodplainwithsaltflats.Inthebackgroundalakeformedbythesnowmeltisdisplayed.(c)UnitbGd,active floodplainwithshrubdominatedvegetation.(d)UnitBgD,dynamicdunes(BgD),withanoccupiedburrowinthefront.(e)UnitbGD,stabilizedduneswithactivevegetation onmoistsoil.Herevegetationconsistsofgrassesratherthanshrubs.
Fig.6.Burrowdiametersperlandscapeunit(colourscorrespondwithcoloursin
Fig.4).Thewidthsoftheboxesareproportionaltothesamplesizeineachlandscape unit.Thecoloursoftheasterisks(*)indicatewithwhichlandscapeunitthereisa significantdifferenceinthemean(a=0.05).Thecodesofthelandscapeunitscanbe foundinTable2.
rangefromameanof21m(minimum4m)intheclay-richsoilsin theactivefloodplain(bGd)toameanof37m(maximum62m)in thestabilizeddunesinthesoutheast(bGD)(Fig.6).Burrow diam-eterssmallerthan10moftencorrespondtooldand abandoned burrows.Thelargestdiametersarefoundinthedunes,wherethe burrowsareelongatedandsituatedinlinewiththedunes.
ThevarianceofburrowdiametersislargestinunitbGdand dif-ferssignificantlyfromthevariancesintheotherunits(F-testofthe equalityofvariancesusingthenaturallogarithmofthediameters, at˛=0.05).Thehighdiameter-burrowsinthisunit(seeoutliers inunitbGd,Fig.6)arealmostallfoundintwosquares,whichare locatedontheborderwithunitbGD.Thisexplainstherelatively highvarianceinthisunit.Whenthesesquaresareremovedfrom theanalysis,thevarianceofunitbGdisonlysignificantly differ-entfromthevarianceinunitBgD,butequaltotheotherunits.The varianceinburrowdiametersislowestinthesteppeoninactive floodplainunit(bgd),whichreflectsthelandscapehomogeneityin thisunit.
Themeandiametersoftheburrowdiametersperlandscapeunit differsignificantlyfromeachother,exceptforbgd-bGd,Bgd-bGd andBgD-bGD(Fig.6),whichwastestedpair-wiseusingt-testswith Bonferroniadjustment,at˛=0.05,onthenaturallogarithmofthe diameters.
Burrowslocatedinfluvialdepositsareonaveragesmallerthan burrows in aeolian deposits.Thisresult is not surprising,as in
Fig.7.Mapsshowingexamplesofclassificationresultsindifferentlandscapeunits.Theresultsarelocatedin(a)unitbgd;(b)unitBgd;(c)unitbGd;(d)unitBgDand(e) bGD.ThecodescanbefoundinTable2;thelocationofthelandscapeunitsintheareacanbefoundinFig.4.Ofthesquaresdisplayed,bgd,Bgd,bGdandbGDarelocatedin SPOTEast;theBgDsquaredisplayedislocatedinSPOTWest.
clay-richfluvialsoilsburrowstendtobemorecompactanddeep, whereasinsandyaeoliansoilsburrowsarelarger,butlessdeep (NaumovandLobachev,1975).
5.2. Unstratifiedclassification
Inthissectionwedescribetheresultsoftheunstratified clas-sification ofburrows,which we evaluateper landscapeunit. In Fig.7examplesaregivenofclassificationresultsinthefive land-scapeunitswhereburrowreferencedataareavailable.Thesemaps showthatburrowclassificationissuccessfulacrossdifferent land-scapeunits,inbothSPOTimages,althoughwithvaryingaccuracies. For example, in unit bgd (Fig. 7a), 22 of 23 burrows are cor-rectlyidentified.In unit bGd(Fig.7c)it canbeseen thatsmall takirsareoftenmisclassifiedasburrow.Inthedisplayedsquares of the dunes (Fig.7d and e), 22 out of 27 burrows are recog-nized. Burrows locatedin theshadowside ofa dune areoften notrecognizedandespeciallyinbGDthereisanoverestimation ofburrows.
Foreachlandscapeunittheproducer’s,user’sandoverall accu-racieswerecalculated,aswellaskappacoefficientsofagreement andtheaccuracyofthepredictedburrowdensity(Table3). Accu-raciesandkappacoefficientsareingeneralhighbutnonetheless varyconsiderablybetweenlandscapeunits.Classificationof bur-rowsworksextremely wellin thesteppeoninactivefloodplain (bgd),whereproducer’sanduser’saccuraciesreach88%and92% respectively.Classificationworksleastwellintheactivefloodplain withshrubdominatedvegetation(bGd),wheretheuser’saccuracy is only48%. In mostsquaresin this unit burrows are overesti-mated,butthereisaconsiderablevariationinaccuracybetweenthe
squares.Classificationinthedynamicdunes(BgD)works remark-ablywell:producer’sanduser’saccuraciesamount84%and77%. Inthestabilizedduneswithactivevegetationonmoistsoil(bGD) classificationaccuraciesarealsoquitehigh(producer’sanduser’s accuracyof100and60%respectively)andindicateclassification ofburrowsisalsopossibleinthismorecomplexlandscapeunit.It shouldhoweverbenotedthatonlyfewvalidationdatawere avail-ableinthisunit(Table1)andthereforetheproducer’saccuracyfor thisunitislikelytobeoverestimated.
Theratioofpredictedburrowdensitytoobservedburrow den-sityshowshowwellburrowdensitycanbepredicted:valuesrange from0.86to1.75.InareaswithhighTC-Greenness(G)burrowsare overestimated.In unitbGdtheoverestimationislargest.Thisis partlyduetotheoccurrenceofalargenumberoftakirsincertain fieldsquares,astakirsareeasilymisclassifiedasburrows.When threesquareswithalargenumberoftakirsareremovedfromthe densitycalculationforthisunit, theratiopredictedtoobserved decreasesto1.5. Forthetotalarea, i.e.includingthedataof all landscapeunits,theratiobetweenpredictedandobservedburrow densityis1.16.
TheunstratifiedRandomForestscreatedtoclassifytheSPOT scenesuseaselectionofthe67independentspectral,shapeand neighbourvariablesincludedintheinitialreferenceobjectsets. BoththeRandomForestalgorithmsusedfortheunstratified classi-fication,i.e.oneforthewesternandonefortheeasternscene,used mostlyneighbourvalues(78%Westand53%East)suchasMean differencetoneighboursandRelativebordertobrighterneighbours. Spectralandtexturalvariablesamounted22%intheWestern Ran-domForestand35%intheEastern.Leastselectedwerevariables indicatingtheshapeofobjects.
Table3
Classificationaccuraciesoftheunstratified(US)andstratified(S)classificationperlandscapeunit.LandscapeunitsBGd,bgDandBGDdonothavesquaresforvalidationand arethereforeexcludedfromthistable.
Landscapeunit Producer’saccuracy(%) User’saccuracy(%) Overallaccuracy(%) Kappacoefficient (*significantdifference betweenUSandSat ˛=0.05)
Ratiopredictedburrow density:observedburrow density US S US S US S US S US S bgd 88 88 92 100 91 95 0.81 0.89* 0.95(U) 0.99(U) Bgd 77 75 81 81 85 87 0.69 0.70* 1.06(O) 0.99(U) bGd 86 86 48 58 87 91 0.54 0.64* 1.75(O) 2.04(O) BgD 84 93 77 87 86 91 0.72 0.80* 0.94(U) 0.86U) bGD 100 – 60 – 86 – 0.66 – 1.58(O) –
Totalarea 82 – 73 – 86 – 0.67 – 1.16(O) –
5.3. Stratifiedclassification
Forfourlandscapeunits,i.e.unitsbgd,Bgd,bGdandBgD, strati-fiedRandomForestswerecreated,toevaluatewhetherthiswould improveclassificationaccuracies(bgDwasleftoutbecausetoofew fielddatawereavailable).Thekappacoefficientsand their vari-ances(Congaltonetal.,1983;Foody,2004)fortheunstratifiedand stratifiedclassificationwereusedtocomparetheperformanceof theunstratifiedandstratifiedapproach(two-sidedtestofkappa coefficients,at˛=0.05).
Stratified classification results in significantly higher kappa coefficientsinallfourlandscapesunits(Table3).Theimprovement duetostratificationisclearestinunitbgd,wherefouroutoffive metricsimproveandoneremainsthesamewhenstratified classifi-cationisused.ForunitBgDtheimprovementisvisibleinfouroutof fivemetrics;onlythedensityisslightlylesswellpredicted.InbGd however,onlythreemetricsimprovewhenusingstratified clas-sification;theproducer’saccuracyremainssimilar,whiletheratio predictedtoobserveddensityshowsthereisanincreased overesti-mationofburrows.Thisoverestimationoccurredinsquareswitha largenumberoftakirs.Whenthreesquareswithalargenumber oftakirs areremoved fromthecalculation,thepredicted accu-racyimprovesto1.35,i.e.thenstratificationdoesimprovealsothe predictedaccuracy.InBgdstratificationimprovedthekappa coeffi-cientslightly.Thepredicteddensityinthisunitusingthestratified RandomForestishoweveralmostcompletelyaccurate(0.99).
ThestratifiedRandomForestseachusedasubsetofvariables thatresultedinthelowestOOB-error. Between3 and27ofthe independent67variableswereselectedforthesixstratified Ran-domForests(Table5).Ofthe67variables,32variableswerenever selected.Thesevariablesconsistedofeighteen(56%)spectral vari-ables,thirteen(40%)shapeandone(3%)neighbourvariable.
ThemajorityofthevariablesselectedintheRandomForests, likeintheunstratifiedRandomForests,areneighbourvariables; variablesleastselectedareshapeandsizevariables.Mostselected variablesare MeandifferencetoneighbourRed and Relative bor-dertobrighterobjectsNIR(Trimble,2011);theywereselectedby fiveoutofsixstratifiedRandomForests.Intotal25variableswere selectedbytwoormoreRandomForests;in otherwords,there wasaconsiderableoverlapinselectedvariables.Noremarkable dif-ferencesinselectedvariables,orindistributionbetweenspectral, neighbourandshapevariables,werefoundthatcouldberelated directlytocharacteristicsofthespecificlandscapeunit.
Thevariables selectedbythestratifiedRandomForestswere comparedwiththeselectedvariablesintheunstratifiedRandom Forests.ForfiveoutofsixstratifiedRandomForests,fewer vari-ableswereselectedcomparedtotheunstratifiedRandomForests, only Bgd(West) selected two variables more compared tothe unstratifiedWesternRandomForest.Thevariablesselectedbythe unstratifiedandstratifiedRandomForestresembledconsiderably,
forexample,26outof27variablesselectedbythestratified Ran-domForestbgd(East)werealsoselectedbytheunstratifiedEastern RandomForestandall14variablesselectedbystratifiedRandom ForestbGd(East)werealsoselectedbytheunstratifiedEastern RandomForest.InBgD(East)therewasadifference;here,the rel-ativecontributionofshape variablesincreasedcomparedtothe unstratifiedEasternRandomForest.
5.4. Burrowdensitiesinthelandscapeunits
UsingtheresultsfromunstratifiedclassificationforunitsBGd, bgD,bGDandBGDandthestratifiedclassificationforunitsbgd,Bgd, bGdandBgDthefinalburrowmaps(WestandEast)werecreated. Meanburrowdensitieswerecalculatedperlandscapeunit(Fig.8), basedontheentireunitsforthesmallerunits(bgd,BGd,bgDand BGD)andonaminimumareaof96km2forthelargerunits(Bgd,
bGd,BgDandbGD).Themeanburrowdensitiesperlandscapeunit rangefrom2.9burrows/haintheactivefloodplainwithshrub dom-inatedvegetation(bGd)to3.9burrows/hainthesteppeoninactive floodplainunit(bgd).Theseburrowdensityresultscorrespondto therangeofburrowdensityestimatescollectedbytheAnti-Plague stationswhichvaryfrom0.89to4.8burrows/ha(Davisetal.,2008). Onaverage,burrowdensitiesarelowerinthefouraeolianunits thaninthefloodplainunits.Onthefloodplain,areaswithhigh TC-Greenness(G)havelowerburrowdensitiescomparedtoareaswith lowTC-Greenness,whereasinthedunes,theoppositeistrue.
Fig.8.Burrowdensityperlandscapeunit(coloursmatchwiththeunitsonthemap inFig.4),calculatedbasedontheburrowmaps.
Fig.9. (a)Thelocationofsector10521.(b)Sector10521withitsburrowdensitiescalculatedfor25cells.(c)Zoomofsector10521.Individualmappedburrowsareshown.
Atasmallerscale,burrowdensityismorevariable,as demon-stratedbythevariablenumbersoffieldobservationsofburrows detectedintheresearchsquares:thelowestdensityofburrows wasfoundinthevegetatedfloodplainanddelta(bGd);the mini-mumwas0burrows/ha.Amaximumdensityof6.25burrows/ha wasfoundinaresearchsquarelocatedinthesparselyvegetated floodplain(Bgd).
5.5. Burrowmapsforepidemiologicalmodelling
Anexampleof adensity mapof asectoris shown inFig.9. Thedensitiesareshowninsquaresof∼1.8km×2km(Fig.9b).The meandensityinthissectoris3.7burrows/haandvariesbetween 3.1and4.4burrows/ha.TheAnti-Plaguestationestimatedthe den-sityinthissectorat3.0burrows/ha.Individualmappedburrowsare showninFig.9c.
Theproducer’saccuracywasevaluatedforoccupiedandempty burrowsseparately.Producer’saccuracywasfoundtobe85%for occupiedburrowsand 74% for emptyburrows.In otherwords, occupiedburrowsaremoreeasilyrecognizedthanemptyones. 6. Discussion
6.1. Accuracyoftheburrowmaps
Remotesensingisincreasinglyusedinepidemiologicalresearch oninfectiousandvector-bornediseases(Hay,1997;Atkinsonand Graham,2006;Becketal.,2000;Neerinckxetal.,2008).Commonly, remotelysensedderivedvariablesareusedtomaphabitatsuitable forvectors(Tranetal.,2008;Kallurietal.,2007;HayandLennon, 1999).Inthisstudy,remotesensingwasusednotonlytomap habi-tatsuitableforhosts,buttomaptheexactdistributionofthehost’s residencesovervariouslandscapetypes.
Thegreat gerbilburrowmapswerecreatedbyusing a Ran-domForest classificationalgorithm onburrowandnon-burrow areaobjectswithassociatedvariablescreatedfromhigh-resolution satelliteimagery.Thisresultedinburrowmapswithmedian pro-ducer’sanduser’saccuraciesof86%(77–100%)and81%(58–100%). Theclassificationaccuraciesfoundinthisstudyare,comparedto thepilotstudy carried out byAddink et al. (2010), higher and
morebalanced. Producer’sanduser’s accuraciesforthepresent study,calculatedforthestudyareaofAddinketal.,are90%and 95%respectively.Producer’sanduser’saccuraciesfoundbyAddink etal.are 85%and62%,whiletheirtrainingsethad more train-ingdataavailable.Thehigherclassificationaccuracyfoundinthis studyislikelycausedbytwo factors.Firstly,theRandomForest classifierisamoreadvancedandrobustclassificationalgorithm (Rodriguez-Galianoetal.,2012b;Duroetal.,2012)thanthe deci-siontreeclassifierwhichwasusedbyAddinketal.(2010).Secondly, inthisstudy,thenon-burrowareaselectionwasunbiased,which was possiblebecause of the burrowfield samplingin squares, whereasAddinketal.selectednon-burrowareasinthefieldwhich ismorepronetobias.Theclassificationaccuraciesfoundinthe cur-rentstudyarecomparabletootherobject-basedhigh-resolution studiesthatmaprelativelysmalllandscapefeaturesinnatural envi-ronments,suchasthemappingofdownedlogs(Blanchardetal., 2011).
6.2. Validityoftheburrowmaps
The burrow maps are based onSPOT-5 images acquired in October 2010. The temporal validity of the maps is currently unknown, because detailed information on the lifetime and renewalrateofburrowsislacking.Thelifetimeofaburrowdepends onvariousfactors(NaumovandLobachev,1975).Itislikely influ-encedbytheoccupancytimeandonthetimeittakestobecome re-occupiedincasetheburrowisabandoned.AccordingtoNaumov andLobachev(1975),thelifetimeofburrowscanreachhundredsof years,butthismaywelldependonthetypeofsoilinwhichtheyare constructed.Asmentionedpreviously,burrowsinmoreclay-rich materialtendtobemoresolidanddeep,whereastheburrowsin sandysoilsuchasinthedunesaremoreshallowandelongated.As observedinthefield,thetimeofdisappearanceofburrows,i.e.the timethatelapsesfromthemomentaburrowisabandoneduntil theburrowcanbeneitherrecognizednorre-colonized,seemsto beaffectedbylandscapetype,althoughnodetailedfielddataare yetavailable.Asaresultofthelowercohesionofthesoil,thetime ofdisappearanceislikelytobeshorter inthesandysoilsinthe dunes comparedtotheclay-richsoilsinthefloodplain.For the burrowsmapscreated,itmeansthattheperiodofvalidityfora
mapwillbelongerforthefloodplainareas(landscapeunitbgd, BgdandbGd)thanforareaswithmostlysandymaterial(BgD,bGD andBGD).Thequestionofthelifetimeofburrowscouldbe investi-gatedbymappingtheburrowsusingthemethodpresentedinthis paperinsubsequentyears,andapplychange-detectiontoanalyse thedifferencesanddynamics.
6.3. Classificationperlandscapeunitversusunstratified classification
Inadvanceofclassificationperlandscapeunit,landscapeunits werecreatedbasedonTC-BrightnessandTC-GreennessofLandsat scenesincombination withthe SRTM-DEMderived local topo-graphicvariability(DEM-SD).Thisresultedinamapwithaclearand realisticspatialpattern,correspondingwithfieldobservations.The useofLandsatimagerywithitsspatialresolutionof28.5moffered theopportunitytomapthelandscapeoverlargeareas.Although thespatialresolutionoftheSRTM-DEMislowerthanthe resolu-tionofLandsat,theSRTM-DEMstilladdsusefulinformationforthe landscapemapping.Usinghighresolutionspatial imagery,such asSPOT-5XS,forlandscapemappingwouldnotbeassuccessful becausethesmallpixelsizewouldresultinatoohighvariance tobeabletomaplandscapeunitsaccurately.Thecombinationof highandmediumresolutionimageryforburrowmappingacross landscapesthusoffersaneffectivemethod.
Theclassificationperlandscapeunitresultedinconsiderably higher classification accuracies in three landscape unitsand in slightlyhigheraccuraciesinonelandscapeunit.Generally, strat-ificationin combination witha Random Forest classifier might improveclassificationresultsbecause(1)thevariableselectionis fittedtothespecificarea,(2)theobjecttrainingsetusedtotrain theRandomForestisselectedfromthespecificareaandhencethe thresholdvaluesusedinthetreetoseparateburrowsfrom non-burrowareasaremorelikelytofittheobjectsinthespecificarea.
InthecaseoftheBalkhasharea,burrowdiametersshowedthat significantdifferencesperlandscapeunitexistinburrowsize. Non-burrowareasalsoobviouslydifferperlandscapeunit,whichwas shownbythedifferencesinvaluesinTC-Brightness,TC-Greenness andSRTMDEM-SD.
In the three landscape units where stratification improved resultsconsiderably,fewervariables wereselectedcomparedto theunstratifiedclassification.Also,therangeforanoftenselected variable such as Mean difference to neighbours NIR is smaller forstratifiedtrainingsets thanfortheunstratifiedtraining sets (Fig.10), whichmightbeanadditionalexplanationforthe suc-cessofthestratification.InunitBgdstratificationdidnotimprove resultsmuch,butitdidnotdecreaseclassificationaccuracieseither. Apossibleexplanationforthisisthatthevariablesassociatedwith theburrowandnon-burrowareasintheBgdtrainingsetcovera (nearly)similarlylargerangeastheunstratifiedtrainingset(seefor exampleFig.10),whichmeansthatstratificationhaslessinfluence. Theunderlyingreasonforclassificationresultsonlyimproving slightlyinBgdisthusthattheBgdunititselfismore heteroge-neousthantheotherunits.Thiscouldbeimprovedbysplitting thisareaintotwosub-units,forexamplebasedonTC-Brightness. However,stratifiedclassificationmightperformlesswellifthere isalackoffielddataperlandscapeunit.Ontheotherhand,when stratificationcreatesonlyfewlandscapeunits,theunitsmaybetoo heterogeneous,andconsequentlythetrainingsetwillbeless rep-resentative.Generally,forstratificationitisthereforeimportantto findabalancebetweenthehomogeneityofalandscapeunitand theamountoffielddataforclassificationperunit.Toachievethis, landscapestratificationcanbecarriedoutinadvanceofthe cre-ationofasamplingscheme.Afterthis,athoroughlookattheranges ofvariablesmightgiveanindicationofwhetherstratificationwill improveresults.
Fig.10.BoxplotsofMeandifferencetoneighboursNIRineachlandscapeunitfor burrowobjects.Therangediffersperlandscapeunit.
Becauseburrowsvary inappearanceand heterogeneityover differentlandscapes,theuseofmultiplescaleparametersmight furtherimproveclassificationaccuracy,becauseacrosslandscape units,slightly differentheterogeneitythresholdsmightbe opti-mal(Andersetal.,2011).ThiscouldbeofuseforunitbGd,where bothunstratifiedandstratifiedclassificationresultedinrelatively low classification accuracy. In this unit, objects are often large comparedtotheburrowsize,whichmeansthattrainingofthe Ran-domForest,butalsotheclassificationitselfperformslesswell.To improvetheaccuraciesinthisunit,theunitcouldbesplitintofour subunitsbasedonTC-BrightnessandTC-Greenness,thenseparate scaleparameterscouldbeusedincombinationwithmoreintensive groundtruthcollection.
6.4. Burrowdensityinthelandscapeunits
The ratio of predicted and observed densities for the land-scapeunitshasshownthatdensitycanbepredictedmoderately toveryaccurately.In unitswitha highTC-Greenness (bGdand bGD)burrowsaresystematicallyoverestimated,whichcanlikely beattributedtotworeasons.Firstly,thevegetationcoverinunits withahighTC-Greennessisoftenrelativelyheterogeneous,which meansthatareaswithalowervegetationcoverareoftenincorrectly classifiedasburrow,becausetheirdifferencetotheirneighbours resemblesthedifferencebetweenburrowsandtheirneighbours. Secondly,intheareaswithhigherTC-Greennessvegetationoften consistsofshrubs, which arenot alwaysremovedby thegreat gerbilsfromthesurfaceofburrows.Theseburrowsthereforedo nothavesuchadistinctsignal.InareaswithlowTC-Greenness (bgd, Bgd and BgD) vegetation cover is much more homoge-neous(compareforexampleFig.7bwithc).Additionally,insome areas,especiallyinunitsbgdandBgd,vegetationalsoconsistsof lichen,butisremovedfromthesurfaceofburrowsandtherefore enhancesthecontrastbetweenburrowsandtheirsurroundings. ThedifferenceinaccuracybetweenunitsbgdandBgdisrelated tothenumberoftakirs,whichleadstoaloweraccuracy.Inunit BgD,thevegetationonthedunes isnotyetwelldevelopedand easilyremovedbythegerbils,whichleadstoverywellrecognizable burrows.
Meanburrowdensitiesvarybetweenlandscapeunits.The dif-ferencesareprobablyevenhigherinreality,becausethereisvery likely anoverestimation ofburrows in theunitswith high TC-Greennessvalues.Highestburrowdensityisfoundinthesteppe oninactivefloodplainunit(bgd).Apossibleexplanationforthis couldbethesuitablestructureofthesoil.Thelowerburrow den-sityintheBgdfloodplainunitislikelyduetothehigheramount of saltflats, where burrows canhardly beconstructedbecause ofthecrustedsoil.LowerburrowdensitiesinunitsbGdandBGd mightbeexplainedbycompetitionwithotherrodentsifthehigher TC-Greennessimpliesa greatervarietyoffoodtypesandhence opportunitiesforotherspecies.Interestingly,inthedunes,burrow densitiesincreasewithhigherTC-Greenness.Itmightbethatinthe dunes,thelimitingfactorisfoodavailability.
The varying burrow densities may imply that also plague dynamicsaredifferentacrossdifferentlandscapetypes,although itisnotclearyethowburrowdensityexactlyinfluencesplague dynamics. This is not clear yet, because the question remains whetherandhowgreatgerbilmovementsarerelatedtoburrow density,i.e.whethergreatgerbilsmove“set”distancesorwillmove totheclosestneighbouringburrow, which isof importancefor thespreadandpersistenceofplague.Also,burrowdensityisnot necessarilylinearlyrelatedwithgreatgerbilabundance,sincealso greatgerbilabundancevariesperburrowandmayalsodifferper landscapeunit.
Atthescaleofthe200mresearchsquares,burrowdensityvaries morethanbetweenthelandscapeunits.Thisraisesthequestionat whatscaleburrowdensitywillvarymostandwhetherthiscanbe relatedtospecificlandscape-ecologicalfactors.Thistopicispartof ongoingresearch.
6.5. Usingthecreatedburrowmapsformonitoringandthestudy ofplague
Thenewclassificationmethodproposedhereisasuitableand helpfultool for the monitoringof themain plague host inthe Balkhash area, for example by detecting whether burrows are presentinacertainareaandwheretherehasbeenanexpansion orreductionofthegreatgerbils’territory.Also,theburrow den-sitymapscouldbecombinedwithfielddataonburrowoccupancy andfleaburden,which havebeenshowntobekey elementsin predictingoutbreaks(Reijniersetal.,2012).Thiswouldallow bet-terpredictionofwhereandwhenoutbreaksofplaguewilloccur ingreatgerbilsthancurrentlyispossible,certainlyifmoreinsight hasbeenobtainedinspatialvariabilityofoccupancy.
Determiningtheburrowoccupancyfromspaceisanambitious nextobjective. Thepresent studyfoundthat occupiedburrows areeasierrecognizedinimagesthanemptyones.Thismatches intuitiveexpectation,sinceemptyburrowswillusuallyhavemore vegetationgrowingonthesurfaceoftheburrows.Futurestudies usingthecurrentburrowmapstomapoccupancy,shouldaccount forthiseffect.
Theburrowmapscanalsobeusedtoindicatetheriskof trans-missionofplaguetohumans,sincethisriskincreaseswhenthe animals’territoryencroachestownsandvillages.Ourmapsshow forexample,thattheburrowsofthegreatgerbilarelocatedwithin 2km ofthemain town(Bakanas).In 2010,plaguewasisolated fromgreatgerbilsinanareaconnectedtoandlessthan5kmaway fromtheBakanasarea,whichconfirmsthenecessityformonitoring plagueinthisarea.
7. Conclusions
Thisstudypresentsa newmethodusingobject-basedimage analysis and Random Forests to map burrows across varying
landscapetypes.Classificationaccuraciesarehighwithproducer’s anduser’saccuraciesrangingfrom88%and100%inthesteppeon inactivefloodplainto86%and 58%intheactivefloodplainwith shrub dominated vegetation. The predictedburrow density for thetwoimagesalsoshowsourmethodperformswell:theratio betweenpredictedandobservedburrowdensityforthewholearea is1.16.Ourresultsareunique:asfarasweknow,amapof popula-tionsofhostshasneverbeenmadeonsuchadetailedandextensive spatialscale.Theburrowmapsarevaluableforthemonitoringof plague,becausetheyprovideacompleteoverviewofthespatial dis-tributionofburrowsandallowforthedetectionofburrowscloseto humansettlements.Moreover,themapscancontributeto epidemi-ologicalmodelsandlandscape-ecologicalanalysis.Epidemiological modellingcouldprovidemoreinformationonwhetherhigh den-sityareasprovideahigherrisk,forexampleforplaguepersistence ortransmissiontohumans;theburrowmapsarethenveryusefulto identifythesehighdensityareas.Ourclassificationmethodisalso suitableformappingburrowsofotherrodents,suchasmarmots andprairiedogs,whicharebothhostsofplagueinotherfoci.
Theobject-based stratification methodusingboth high-and medium resolution imagery resulted in improvedclassification accuracies,especiallyinthemorehomogeneousareas.Sucha strat-ifiedmethodcouldwellbeextrapolatedtootherstudiesincomplex landscapes.
Acknowledgements
ThisprojectwaspartoftheWellcomeTrustproject(WT046498) ‘Advancesin thepredictionof plagueoutbreaksinCentral Asia’ andoftheVICIproject918.56.620‘Populationdynamicsand con-trolofinfectiousdiseases:modellinginteractionatdifferentscales’ funded by the Netherlands Research Organisation. The SPOT-5 XSimageswereobtainedthrough theISISprogramme ofCNES and SPOTIMAGE in ISIS projects 395 and 476 ‘Plague Surveil-lance’,CopyrightCNES.Wewouldliketothankallpeopleatthe Anti-PlaguefieldstationinBakanas,aswellasthepeoplethat con-tributeddirectlytothefieldworkinSeptember2010andApril 2011:V.S.Ageyev,V.G.Meka-MechenkoandM.Jesse.Wewould liketothankN.WandersforhishelpusingR.Finally,wethankthe reviewersfortheirvaluablefeedback.
AppendixA. Supplementarydata
Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.jag.2012.11.007. ThesedataincludeaGooglemapofthestudyareaandresearch squaresdescribedinthisarticle.
References
Addink,E.A.,2012.Reducingtherandomseedeffectonsegmentationbyapplying anedge-preservingfilter.Proceedingsofthe4thGEOBIA,May7–9,2012-Rio deJaneiro-Brazil,p.474.
Addink,E.A.,DeJong,S.M.,Davis,S.A.,Dubyanskiy,V.,Burdelov,L.A.,Leirs,H.,2010. Theuseofhigh-resolutionremotesensingforplaguesurveillanceinKazakhstan. RemoteSensingofEnvironment114,674–681.
Anders,N.S.,Seijmonsbergen, A.C.,Bouten,W., 2011. Segmentation optimiza-tionandstratifiedobject-basedanalysisforsemi-automatedgeomorphological mapping.RemoteSensingofEnvironment115,2976–2985.
Astrium,2012.SPOTImagery.http://www.astrium-geo.com/files/pmedia/public/ r2339geo0013spoten201203.pdf,Accessed28June2012.
Atkinson,P.M.,Graham,A.J.,2006.Issuesofscaleanduncertaintyintheglobal remotesensingofdisease.AdvancesinParasitology62,79–118.
Atshabar, B.B., Burdelov,L.A.,Ageyev,V.S., Aukabirov, S.A., Dubyanskiy, V.M., Grazhdanov,A.K.,etal.,2010.AtlasofBacterialandVirusZoonoticInfections DistributioninKazakhstan.(pp.122).Almaty,Kazakhstan:M.Aikimbayev’s KSC-QZD.
Baatz,M.,Schäpe,A.,2000.MultiresolutionSegmentation:anoptimizationapproach forhighqualitymulti-scaleimagesegmentation.AngewandteGeographische
InformationsverarbeitungXII.BeiträgezumAGIT-SymposiumSalzburg2000. Karlsruhe,HerbertWichmannVerlag,pp.12–23.
Beck,L.R.,Lobitz,B.M.,Wood,B.L.,2000.Remotesensingandhumanhealth:new sensorsandnewopportunities.EmergingInfectiousDiseases6,217–227. Begon,M.,Bennett,M.,Bowers,R.G.,French,N.P.,Hazel,S.M.,Turner,J.,2002.A
clari-ficationoftransmissiontermsinhost-microparasitemodels:numbers,densities andareas.EpidemiologyandInfection129,147–153.
Biggins,D.E.,Kosoy,M.Y.,2001.InfluencesofintroducedplagueonNorthAmerican mammals:implicationsfromecologyofplagueinAsia.JournalofMammalogy 82,906–916.
Blanchard,S.D.,Jakubowski,M.K.,Kelly,M.,2011.Object-basedimageanalysisof downedlogsindisturbedforestedlandscapesusinglidar.RemoteSensing3, 2420–2439.
Blaschke,T.,Strobl,J.,2001.What’swrongwithpixels?Somerecentdevelopments interfacingremotesensingandGIS.ProceedingsofGIS-Zeitschriftfur Geoin-formationsysteme,pp.12–17.
Bogh,C.,Lindsay,S.,Clarke,W.,Dean,S.E.,Jawara,A.,Pinder,M.M.,etal.,2007. HighspatialresolutionmappingofmalariatransmissionriskintheGambia, WestAfrica,usingLandsatTMsatelliteimagery.AmericanJournalofTropical MedicineandHygiene76,875–881.
Breiman,L.,2001.Randomforests.MachineLearning45,5–32.
Chander,G.,Markham,B.L.,Helder,D.L.,2009.Summaryofcurrentradiometric cal-ibrationcoefficientsforLandsatMSS,TM,ETM+,andEO-1ALIsensors.Remote SensingofEnvironment113,893–903.
Collinge,S.,Johnson,W.,Ray,C.,Matchett,R.,Grensten,J.,CullyJr.,J.,etal.,2005. Landscapestructureandplagueoccurrenceinblack-tailedprairiedogson grass-landsoftheWesternUSA.LandscapeEcology20,941–955.
Congalton,R.G.,1991. Areview ofassessingtheaccuracyofclassificationsof remotelysenseddata.RemoteSensingofEnvironment37,35–46.
Congalton,R.G.,Oderwald,R.G.,Mead,R.A.,1983.AssessingLandsatclassification accuracyusingdiscretemultivariateanalysisstatisticaltechniques. Photogram-metricEngineeringandRemoteSensing49,1671–1678.
Crist,E.P.,Cicone,R.C.,1984.Aphysically-basedtransformationofthematic map-perdata---TheTMtasseledcap.IEEETransactionsonGeoscienceandRemote Sensing,GE-22,256-263.
Cutler,D.R.,Edwards,T.C.,Beard,K.H.,Cutler,A.,Hess,K.T.,Gibson,J.,etal.,2007. Randomforestsforclassificationinecology.Ecology88,2783–2792. Davis,S.,Trapman,P.,Leirs,H.,Begon,M.,Heesterbeek,J.A.P.,2008.Theabundance
thresholdforplagueasacriticalpercolationphenomenon.Nature454,634–637. Davis,S.,Begon,M.,DeBruyn,L.,Ageyev,V.S.,Klassovskiy,N.L.,Pole,S.B.,etal.,2004.
PredictivethresholdsforplagueinKazakhstan.Science304,736–738. Diaz-Uriarte,R.,2007.GeneSrFandvarSelRF:aweb-basedtoolandRpackagefor
geneselectionandclassificationusingrandomforest.BMCBioinformatics8, 328.
Duro,D.C., Franklin,S.E.,Dubé, M.G., 2012. Acomparisonofpixel-based and object-basedimageanalysiswithselectedmachinelearningalgorithmsforthe classificationofagriculturallandscapesusingSPOT-5HRGimagery.Remote SensingofEnvironment118,259–272.
Estrada-Pe ˜na,A.,2003.Therelationshipsbetweenhabitattopology,criticalscales ofconnectivityandtickabundanceIxodesricinusinaheterogeneouslandscape innorthernSpain.Ecography26,661–671.
Foody,G.M.,2004.Thematicmapcomparison:evaluatingthestatistical signifi-canceofdifferencesinclassificationaccuracy.PhotogrammetricEngineering andRemoteSensing70,627–633.
Gage,K.L.,Kosoy,M.Y.,2005.Naturalhistoryofplague:perspectivesfrommorethan acenturyofresearch.AnnualReviewofEntomology50,505–528.
Gubler,D.J.,1998.Resurgentvector-bornediseasesasaglobalhealthproblem. EmergingInfectiousDiseases4,442.
Haensch,S.,Bianucci,R.,Signoli,M.,Rajerison,M.,Schultz,M.,Kacki,S.,etal.,2010. DistinctclonesofYersiniapestisCausedtheBlackDeath.PLoSpathogens6, e1001134.
Hagenaars,T.J.,Donnelly,C.A.,Ferguson,N.M.,2004.Spatialheterogeneityandthe persistenceofinfectiousdiseases.JournalofTheoreticalBiology229,349–435. Hay,S.I.,Lennon,J.J.,1999.DerivingmeteorologicalvariablesacrossAfricaforthe studyandcontrolofvector-bornedisease:acomparisonofremotesensingand spatialinterpolationofclimate.TropicalMedicine&InternationalHealth4,58. Hay,S.I.,1997.Remotesensinganddiseasecontrol:past,presentandfuture.
Trans-actionsoftheRoyalSocietyofTropicalMedicineandHygiene91,105–106. Hornstra,T.,Maas,H.,deJong,S.,2000.Classificationofspectroscopicalimageryby
combiningspatialandspectralinformation:theSSCmethod.Proceedingsofthe 19thISPRSCongress,pp.550–558.
Hudson,P.J.,Rizzoli,A.,Grenfell,B.T.,Heesterbeek,J.A.P.,2001.Theecologyof WildlifeDiseases.
Jesse,M.,Heesterbeek,H.,2011.Divideandconquer?Persistenceofinfectiousagents inspatialmetapopulationsofhosts.JournalofTheoreticalBiology275,12–20. Kalluri,S., Gilruth,P., Rogers, D.,Szczur, M., 2007. Surveillanceof arthropod
vector-borneinfectiousdiseasesusingremotesensingtechniques:areview. PLoSpathogens3,e116.
Keeling,M.J.,1999.Theeffectsoflocalspatialstructureonepidemiologicalinvasions. ProceedingsoftheRoyalSocietyofLondon.SeriesB:BiologicalSciences266, 859–867.
Keeling,M.J.,Gilligan,C.A.,2000.Metapopulationdynamicsofbubonicplague. Nature407,903–906.
Laity,J.,2008.DesertsandDesertEnvironments.Wiley-Blackwell,UK,pp.342. Liaw,A.,Wiener,M.,2002.ClassificationandregressionbyrandomForest.RNews
2,18–22.
Lillesand,T.M.,Kiefer,R.W.,Chipman,J.W.,2004.RemoteSensingandImage Inter-pretation.JohnWiley&Sons,U.S.A.,pp.763.
Lloyd-Smith,J.O.,Cross,P.C.,Briggs,C.J.,Daugherty,M.,Getz,W.M.,Latto,J.,etal., 2005.Shouldweexpectpopulationthresholdsforwildlifedisease?Trendsin Ecology&Evolution(Personaledition)20,511–519.
Löffler,E.,Margules,C.,1980.Wombatsdetectedfromspace.RemoteSensingof Environment9,47–56.
Nagao,M.,Matsuyama,T.,1979.Edgepreservingsmoothing.ComputerGraphics andImageProcessing9,394–407.
Naumov,N.P.,Lobachev,V.S.,1975.EcologyofdesertrodentsoftheU.S.S.R.(Jerboas andGerbils).InI.Prakash,P.K.Ghosh(Eds.),RodentsinDesertEnvironments (pp.549–598).TheHague,TheNetherlands:Dr.W.JunkPublishers.
Neerinckx,S.,Peterson,A.,Gulinck,H.,Deckers,J.,Leirs,H.,2008.Geographic dis-tributionandecologicalnicheofplagueinsub-SaharanAfrica.International JournalofHealthGeographics7,54.
Ouagrham-Gormley,S.B.,Melikishvili,A.,Zilinskas, R.A.,2008.TheAnti-plague SystemintheNewlyIndependentStates,1992andOnwards:Assessing Pro-liferationRisksandPotentialforEnhancedPublicHealthinCentralAsiaandthe Caucasus.
Park,A.W.,Gubbins,S.,Gilligan,C.A.,2002.Extinctiontimesforclosedepidemics: theeffectsofhostspatialstructure.EcologyLetters5,747–755.
Propastin,P.A.,2008.SimplemodelformonitoringBalkhashLakewaterlevelsand IliRiverdischarges:applicationofremotesensing.Lakes&Reservoirs:Research andManagement13,77–81.
RDevelopmentCoreTeam,2011.R:ALanguageandEnvironmentforStatistical Computing.Vienna,Austria:RFoundationforStatisticalComputing. Randall,J.A.,Rogovin,K.,Parker,P.G.,Eimes,J.A.,2005.Flexiblesocialstructureof
adesertrodent,Rhombomysopimus:philopatry,kinship,andecological con-straints.BehavioralEcology16,961–973.
Reijniers,J.,Davis,S.,Begon,M.,Heesterbeek,J.A.,Ageyev,V.S.,Leirs,H.,2012.A curveofthresholdsgovernsplagueepizooticsinCentralAsia.EcologyLetters, 554–560.
Rodriguez-Galiano, V., Chica-Olmo, M., Abarca-Hernandez, F., Atkinson, P.M., Jeganathan,C.,2012a.RandomForestclassificationofMediterraneanlandcover usingmulti-seasonalimageryandmulti-seasonaltexture.RemoteSensingof Environment121,93–107.
Rodriguez-Galiano,V.F.,Ghimire,B.,Rogan,J.,Chica-Olmo,M.,Rigol-Sanchez,J.P., 2012b.Anassessmentoftheeffectivenessofarandomforestclassifierfor land-coverclassification.ISPRSJournalofPhotogrammetryandRemoteSensing 67,93–104.
Rogovin,K.,Randall,J.A.,Kolosova,I.,Moshkin,M.,2003.Socialcorrelatesofstress inadultmalesofthegreatgerbil,Rhombomysopimus,inyearsofhighandlow populationdensities.HormonesandBehavior43,132–139.
Rothshild,V.E.,1978.SpatialStructureofPlagueNaturalFocusandMethodsofits Study.PublishingHouseofMoscowUniversity,Moscow.
Stumpf,A.,Kerle,N.,2011.Object-orientedmappingoflandslidesusingRandom Forests.RemoteSensingofEnvironment115,2564–2577.
Suslov,S.P.,1961.DesertRegionofCentralAsia.In:Williams,J.E.(Ed.),Physical GeographyofAsiaticRussia.W.H.FreemanandCompany,SanFranciscoand London,pp.436–520.
Tran,A.,Poncon,N.,Toty,C.,Linard,C.,Guis,H.,Ferre,J.,etal.,2008.Usingremote sensingtomaplarvalandadultpopulationsofAnopheleshyrcanus(Diptera: Culicidae)apotentialmalariavectorinSouthernFrance.InternationalJournal ofHealthGeographics7,9.
Trimble,2011.eCognition®Developer8.64.1ReferenceBook.TrimbleGermany
Documentation,München,Germany,pp.390.
Verikas,A.,Gelzinis,A.,Bacauskiene,M.,2011.Miningdatawithrandomforests:a surveyandresultsofnewtests.PatternRecognition44,330–349.
Vintrou,E.,Desbrosse,A.,Bégué,A.,Traoré,S.,Baron,C.,LoSeen,D.,2012.Croparea mappinginWestAfricausinglandscapestratificationofMODIStimeseriesand comparisonwithexistinggloballandproducts.InternationalJournalofApplied EarthObservationandGeoinformation14,83–93.
World Health Organization, 2005. Plague fact sheet. Fact sheet N◦267.
http://www.who.int/mediacentre/factsheets/fs267/en/index.html, Accessed 27June2012.
WorldHealthOrganization(Ed.),1983.InternationalHealthRegulations(1969). ThirdAnnotatedEdition.(pp.82).Geneva:WorldHealthOrganization. Yaghoobi-Ershadi,M.R.,Javadian,E.,1996.Epidemiologicalstudyofreservoirhosts
inanendemicareaofzoonoticcutaneousleishmaniasisinIran.Bulletinofthe WorldHealthOrganization74,587–590.