• No results found

Mapping the distribution of the main host for plague in a complex landscape in Kazakhstan: An object-based approach using SPOT-5 XS, Landsat 7 ETM+, SRTM and multiple Random Forests

N/A
N/A
Protected

Academic year: 2021

Share "Mapping the distribution of the main host for plague in a complex landscape in Kazakhstan: An object-based approach using SPOT-5 XS, Landsat 7 ETM+, SRTM and multiple Random Forests"

Copied!
14
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatSciVerseScienceDirect

International

Journal

of

Applied

Earth

Observation

and

Geoinformation

j ourna l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j a g

Mapping

the

distribution

of

the

main

host

for

plague

in

a

complex

landscape

in

Kazakhstan:

An

object-based

approach

using

SPOT-5

XS,

Landsat

7

ETM+,

SRTM

and

multiple

Random

Forests

L.I.

Wilschut

a,b,∗

,

E.A.

Addink

a

,

J.A.P.

Heesterbeek

b

,

V.M.

Dubyanskiy

c,d

,

S.A.

Davis

e

,

A.

Laudisoit

f,g

,

M.

Begon

f

, L.A.

Burdelov

d

,

B.B.

Atshabar

d

,

S.M.

de

Jong

a

aUtrechtUniversity,DepartmentofPhysicalGeography,Heidelberglaan2,POBox80115,3508TCUtrecht,TheNetherlands bUtrechtUniversity,FacultyofVeterinaryMedicine,Yalelaan7,3584CLUtrecht,TheNetherlands

cStavropolPlagueControlResearchInstitute,Sovetskaya13-15,Stavropol355035,RussianFederation

dAnti-PlagueInstitute,M.Aikimbayev’sKazakhScienceCentreforQuarantineandZoonoticDiseases,14KapalskayaStreet,Almaty050074,Kazakhstan eRMITUniversity,SchoolofMathematicalandGeospatialSciences,Melbourne,Victoria3000,Australia

fUniversityofLiverpool,InstituteofIntegrativeBiology,CrownStreet,Liverpool,UK

gUniversityofAntwerp,DepartmentofBiology,Groenenborgerlaan171,B-2020Antwerpen,Belgium

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received17August2012 Accepted30November2012

Keywords:

Object-basedimageanalysis Stratification Landscapeepidemiology Vector-bornedisease Zoonosis Yersiniapestis Greatgerbil Desertenvironment

a

b

s

t

r

a

c

t

PlagueisazoonoticinfectiousdiseasepresentingreatgerbilpopulationsinKazakhstan.Infectious dis-easedynamicsareinfluencedbythespatialdistributionofthecarriers(hosts)ofthedisease.Thegreat gerbil,themainhostinourstudyarea,livesinburrows,whichcanberecognizedonhighresolution satelliteimagery.Inthisstudy,usingearthobservationdataatvariousspatialscales,wemapthespatial distributionofburrowsinasemi-desertlandscape.

Thestudyareaconsistsofvariouslandscapetypes.Toevaluatewhetheridentificationofburrowsby classificationispossibleintheselandscapetypes,thestudyareawassubdividedintoeightlandscape units,onthebasisofLandsat7ETM+derivedTasselledCapGreennessandBrightness,andSRTMderived standarddeviationinelevation.

Inthefield,904burrowsweremapped.Usingtwosegmented2.5mresolutionSPOT-5XSsatellite scenes,referenceobjectsetswerecreated.RandomForestswerebuiltforbothSPOTscenesandusedto classifytheimages.Additionally,astratifiedclassificationwascarriedout,bybuildingseparateRandom Forestsperlandscapeunit.

Burrowsweresuccessfullyclassifiedinalllandscapeunits.Inthe‘steppeonfloodplain’areas, classi-ficationworkedbest:producer’sanduser’saccuracyinthoseareasreached88%and100%,respectively. Inthe‘floodplain’areaswithamoreheterogeneousvegetationcover,classificationworkedleastwell; there,accuracieswere86and58%respectively.Stratifiedclassificationimprovedtheresultsinall land-scapeunitswherecomparisonwaspossible(four),increasingkappacoefficientsby13,10,9and1%, respectively.

Inthisstudy,aninnovativestratificationmethodusinghigh-andmediumresolutionimagerywas appliedinordertomaphostdistributiononalargespatialscale.Theburrowmapswedevelopedwill helptodetectchangesinthedistributionofgreatgerbilpopulationsand,moreover,serveasaunique empiricaldatasetwhichcanbeusedasinputforepidemiologicalplaguemodels.Thisisanimportant stepinunderstandingthedynamicsofplague.

©2012ElsevierB.V.

1. Introduction

Plague,adiseasemainlyspreadbyrodents,wasresponsiblefor thedeathsofnearlyone-thirdoftheEuropeanhumanpopulation

∗Correspondingauthorat:UtrechtUniversity,DepartmentofPhysicalGeography, Heidelberglaan2,POBox80115,3508TCUtrecht,TheNetherlands.

E-mailaddress:[email protected](L.I.Wilschut).

duringa pandemicin theMiddle Ages(Gage andKosoy, 2005; Haenschetal.,2010).PlagueiscausedbythebacteriumYersinia pestisandcaninfectover200mammalspecies(‘hosts’),suchas prairiedogsintheUnitedStates(Collingeetal.,2005),blackrats in Madagascar(Keelingand Gilligan,2000)andgreat gerbilsin Kazakhstan(Davisetal.,2004).Plagueisavector-bornedisease,i.e. thediseaseistransferredfromhosttohostbyavector,fleasinthe caseofplague.Inthelastdecades,plague,alongwithseveralother vectorborne-diseases,hasbeenresurging(Gubler,1998).Itcauses

0303-2434 ©2012ElsevierB.V.

http://dx.doi.org/10.1016/j.jag.2012.11.007

Open access underCC BY license.

(2)

about2000diagnosedhumancasesannually,ofwhichthe major-ityoccurinAfrica(WorldHealthOrganization,2005).Thedisease isstillconsidereddangerous;itisoneofthreediseasesforwhich notificationtotheWHOisobligatory(WorldHealthOrganization, 1983).

Muchofourknowledgeofdiseasedynamicsinnatural popula-tionsisgainedfrominvestigationsusingepidemiologicalmodels (Hudson et al., 2001). For example, populationsize or density oftenmustsurpassacertainthresholdin orderfora diseaseto invadeand/orpersist(Lloyd-Smithetal.,2005),andhigher pop-ulationdensitytypically increasesthetransmissionrate(Begon etal.,2002).Moreover,thespatialdistributionofhostsmay deter-mine local host connectivity, which when increased enhances thelikelihoodofsuccessfuldiseasespread(Keeling,1999).When hostdistributions arepatchy,increasing‘patchiness’mayeither increaseordecreasethechancethatanendemicinfectious dis-easewillpersist(Hagenaarsetal.,2004;KeelingandGilligan,2000; JesseandHeesterbeek,2011;Parketal.,2002).Thus,model stud-iessuggestthatthespatialdistributionofhostsinfluencesdisease dynamicsindifferentways,butempiricaldataonthespatial dis-tributionofinfectedandsusceptiblehostsonapopulationscaleis scarce.

Thedistribution ofanimals is increasingly mappedby earth observationandremotedevicesonseveralspatialscales.Onsmall scales,GPS-receiversarebeingusedtotracktheanimals.Onalarger scale,remotesensingisused:severalexamplesexistofhost-habitat mapping(Boghetal.,2007;Kallurietal.,2007;Estrada-Pe ˜na,2003). Suchremotesensingbasedmapsprovideusefulinformationon thecharacteristicsofafocus(i.e.anareawherethedisease caus-ingagentanditsassociatedvectorand/orhostarepresent).Asa consequenceofrapidtechnologicaladvancementsinrecentyears, highspatialresolutionimagerynowofferstheopportunitytomap actualanimaldistributions,providedthatafeatureassociatedwith theanimal,likeaburrow,canbeidentifiedonsatelliteimages.

Burrowsareconstructedandusedbycertainrodentsfor sleep-ing,nestingand foodstorage.Burrowingrodentsmaydiminish vegetationcoveronandaroundtheirburrowssuchthatitbecomes possibletoseethemonsatelliteimages,asisthecaseforwombats (Vombatusursinus)inAustralia(LöfflerandMargules,1980)and greatgerbils(Rhombomysopimus)in CentralAsia(Addinketal., 2010).

Greatgerbils,socialrodentsthatarenumerousin(semi-)deserts in Central Asia, are important hosts of zoonotic infectious dis-eases,such as tularemia, cutaneous leishmaniasisand bubonic plague (Gage and Kosoy, 2005;Yaghoobi-Ershadi and Javadian, 1996;Atshabaretal.,2010).Plagueinthegreatgerbilhasbeen monitoredextensivelyin Kazakhstansince the1940s, although budgetcutssincethe1990shaveledtoaseveredecreaseinplague surveillance (Gage and Kosoy, 2005; Ouagrham-Gormley et al., 2008).Fromthismonitoring,weknowthatplagueisendemicin 20fociinKazakhstan,themajoritybeingsteppeanddesertfoci (Atshabaretal.,2010).Ineach ofthesefoci,plaguemonitoring, i.e.testingofrodentsandfleas forplague,hasbeencarriedout underthesupervision ofAnti-PlagueStations.Thefinestspatial scaleonwhichmonitoringiscarriedoutistheso-calledsector, anarea, defined by a latitude-longitudegrid, of approximately 9.3km×9.8km.

Thefrequentplagueepizootics(epidemicsinanimal popula-tions)donotresultinmassivedie-offsofgreatgerbils,because thegreatgerbilsare–ingeneral–quiteresistanttothedisease (GageandKosoy,2005;BigginsandKosoy,2001).Theoccurrence oftheseepizooticsisrelatedtotheabundanceofbothhostand vec-tor.AhostabundancethresholdwasfirstdiscoveredbyDavisetal. (2004)whereabundancewasmeasuredasthepercentageof bur-rowsoccupiedbyfamilygroups.Theplaguethresholdmodelwas laterimprovedbyincludingtheabundanceoffleas(Reijniersetal.,

2012).Inbothmodelsburrow(density)mapsformanimportant startingpointforthepredictionofplague.

InapilotstudybyAddinketal.(2010),greatgerbilburrowswere successfullyidentifiedinanareaof6km×10kmusingaQuickbird imagewithaspatialresolutionof2.4m.Althoughthisstudyoffered aconvincingproof-of-concept,burrowswereonlymappedinone landscapetype.Asthedistributionofgreatgerbilsisrelatedtothe landscapebyfoodavailability,localclimateandcompetitionwith otherspecies,thechallengeistomapthegreatgerbilabundance acrossdifferentlandscapes.Moreover,theareainvestigatedinthe pilotstudywassmallerthantheareaofsmallestscaleplague mon-itoringbytheAnti-Plaguestations.Therefore,therelationbetween plaguedynamicsontheonehandandhostabundanceandstructure ontheothercannotbestudiedusingthesedata.Mappingthegreat gerbilburrowsoverlargeareas,coveringseveralplaguemonitoring units,andacrossseverallandscapetypes,willoffertheopportunity tostudytherelationbetweenlandscape,greatgerbildistribution andplagueoccurrence.

Thispaperfocusesthereforeonclassifyingburrowsintwoareas, of60km×60kmand60km×85km,coveringlandscapetypesof fluvialandaeolianorigin.Theobjectivesare:

(1) Toidentifygreatgerbilburrowsbysemi-automated classifi-cation onhighresolutionSPOT-5XSimagesacrossdifferent landscapetypesandevaluatetheaccuracy.

(2)Toconstructamapoflandscapeunitsrepresentingthe variabil-ityandspatialstructureofthelandscapeinthisplaguefocus. (3)TostratifytheSPOT-5XSimagesonthebasisoftheselandscape

units,andsubsequentlyclassifyburrowsperlandscapeunit, usinglocaltrainingdata.

Themethodologyusedtomapthespatialdistributionof bur-rowswasasfollows:landscapeunitswerecreatedonthebasisof Landsat7ETM+andSRTMdata,usingobject-basedanalysis($4.1). Then,theSPOTimagesweresegmentedandtheburrowswere clas-sified,basedonunstratifiedandstratifiedRandomForests($4.2). Finally,theaccuracyforbothapproacheswascalculated($4.3). 2. Studyarea

ThestudyareaisaplaguefocuslocatedinEasternKazakhstan, southofLakeBalkhash(Fig.1),composedoffluvialand aeolian deposits.Theareameasuresapproximately250km×200kmand encompassesa delta systemdeveloped by the Ili River.Asthe courseoftheIliRiverhasshiftedovertime fromNNWtoNW, severalabandonedriver branchescanstillberecognizedinthe landscape(Fig.1).Largedunefieldshaveformedalongandontop oftheabandonedfloodplain.Theirrigatedagriculturalareanorth ofthetownBakanaswasmaskedout.

Soilsaresandy,withvariableclayandloworganicmatter con-tent:intheabandonedriverbedsgraveltosandymaterialisfound, whilefurtherfromtheriverbranches,soilsaremoreclay-richor havedunesformedontop.Insomeareassoilsarehighlysaline. Theclimateinthestudyareaisstronglycontinental.Mean tem-peraturesfluctuatedramatically,dailyandwithinseasons,ranging between−40◦Cinwinterto+40◦Cinsummer(Suslov,1961). Pre-cipitationislessthan200mmperyearandfallsprimarilyinwinter (assnow)andspring(Suslov,1961;Propastin,2008).Inspringsnow meltsquicklyandformssmalllakes(calledtakirs)intopographic depressions(Laity,2008).Oncedriedup,thesetakirsarerecognized easilybecauseoftheirhighalbedo.Vegetationcoverisvariable,but shows,aswellasarelationtosoilmoisturecontent,adeclining trendinthedirectionofLakeBalkhashandwithdistancefromthe IliRiver,withvegetationgraduallychangingfromlargershrubsand reedgrassthicketstolowershrubsandephemeralgrasses.Close

(3)

Fig.1.ThestudyareainKazakhstansouthofLakeBalkhash(left),showingtheIliriverdelta,thelocationoftheSPOTsatellitescenesandtheresearchsectors(right).Source: Bingmaps,2011.

tolargeabandonedriverbranches,vegetationcoverishigher,most likelyduetosubsurfaceflow.Inseveralareas,thesoiliscoveredby alayeroflichenandmoss.Overall,plantdiversityandcoverislow duetotheyearlywaterdeficitandextremetemperatures. 2.1. Greatgerbilsandtheirburrows

Inthissandy(semi-)desertintheBalkhashbasin,thegreat ger-bilistheprimaryreservoirhostforplague(Atshabaretal.,2010). Greatgerbilsarediurnal,mainlyfolivorousrodentsthatarewell adaptedtotheclimate. Theylivein familygroups usually con-sistingofonemale,oneormorefemalesandtheiroffspring,and occupyoneburrowperfamily(Randalletal.,2005).Therodents haveaterritorialnatureandspend90%oftheiractivitywithinthe boundariesoftheirownburrow(Rogovinetal.,2003),although visitstootherburrows dooccur(Rothshild,1978).Becausethe numbersofgerbilsfluctuategreatly,bothinter-andintra-annually, burrowsarenotalwaysoccupiedcontinuously:thepercentageof occupiedburrowsisreferredtoas‘occupancy’.Duringwinter, occu-pancyusuallydropsbecausegreatgerbilmortalityincreasesdue totheharshmeteorologicalconditions.Also,becausegreatgerbil movementsarerestricted,nonewburrowsarecreatedduringthis period.

Theburrowsofthegreatgerbil(Fig.2)areomnipresentinthe landscapeandcanbeconsideredasrelativelypermanent,static features (Naumov and Lobachev, 1975).Burrows havemultiple entrances that lead to a network of subterranean tunnels and chambers. Theyvary in size and shape in different landscapes

(NaumovandLobachev,1975).Alongdunes,burrowstendtobe moreelongated;onflatsandysubstrates,burrowsarecircular,and inclay-richsoiltheyaremorecompactanddeeper.Deeper bur-rowswillleadtoamorestabletemperatureinsidetheburrowand henceincreasesurvivalofthegerbils.Dependingonthestabilityof thesoil,aburrowcanextendto3mdeep(NaumovandLobachev,

Fig.2.Burrowinalluvialmaterialwithacrustedsoil.Multipleentrances,belonging tothesameburrow,arevisible.Blacksaxaultrees(Haloxylonammodendron),visible inthebackground,formanimportantfoodsourceforthegreatgerbil.

(4)

Fig.3.Flowchartofthesequentialprocessingstepsoftheconstructionofthelandscapeunits(top)andtheburrowclassification(bottom).

1975).Allburrowshavean‘ecologicalcentre’,i.e.thelocationof mostintenseactivitywhichcanberecognizedbyahighdensityof entrances.Onthesurfaceofaburrow,noorrelativelylittle veg-etationispresent.Thisleadstoanincreaseinalbedoandhence enablestherecognitionofburrowsonsatelliteimages.

3. Datapreparation 3.1. Fielddata

Dataonburrowandnon-burrowarealocationswerecollected duringfieldcampaignsinSeptember2010andApril2011,inseven sectors(Fig.1).Inthesesectors54squaresof200mwerelaidoutas referenceareas.Persector,twoorthreelocationswererandomly selected(asfarasaccessibilityallowed,becauseroadsarescarce), sothatvariability withinthesector wouldbe covered.Ateach location,twoorthreesquareswerelaidout,alwaysaminimum distanceof200mapartfromeachother.

Thesquareswerethensystematicallycheckedforburrowsof thegreatgerbil.Burrows,904intotal,werenumberedandmarked. WithaGPSnavigationdevice,theburrowsweremappedby recor-dingthecoordinatesattheecologicalcentre.Inaddition,burrow diametersweremeasured.

3.2. Satelliteimages

Three pan-sharpened 2.5m resolution orthorectified SPOT-5 images containing green, red and NIR spectral bands were acquiredforOctober2010(Astrium,2012).Theycovertwoareas of60km×85kmintheeast(SPOTEast)and60km×60kminthe west(SPOTWest)andoverlapthesevenresearchsectors(Fig.1). SPOTWestwasacquiredon14Octoberandthetwoimages com-posingSPOTEastwereacquiredonthe9October.

Landsat7ETM+images(28.5mresolution)from2000and2001 wereusedforthelandscapestratification togetherwitha 90m resolutionDigitalElevationModel(DEM)acquiredbytheShuttle RadarTopographyMission(SRTM).BothLandsatandSPOTimages wereconvertedtotop-of-atmospherereflectance(Chanderetal., 2009).

4. Methods

AnoverviewoftheprocessingstepsisgiveninFig.3. 4.1. Defininglandscapeunits

In order toconstructlandscape unitsin the Balkhashbasin, firstthemostimportantvariablesthatdeterminethevariability oflandscapesinthisareawerelisted.Thesevariablesaresoiltype, vegetationcoverandlocaltopography.Theselandscapevariables alsodeterminetoalargeextentthephysicalhabitatsuitabilityfor thegreatgerbil.Soiltypeinfluencesthepossibilitiesofquality bur-rowconstruction,asthecohesionofthesoildetermineswhetherit ispossibletoconstructadeepandstableburrow.Vegetationcover reflectsthepresenceoffoodresources.Localtopographyinfluences soildepth,asdepositionalanderosionalprocessesareinfluenced bytopography.Also,alongwithvegetationcover,ithasinfluence ontheabilitytohidefrompredators,likebirdsofprey.A combi-nationofthesethreevariableswillrepresentdifferentlocalgreat gerbilhabitatsandinadditionwilllikelyinfluencetheabilityto detecttheburrowsinsatelliteimages.

Thelandscapeunitsweredefinedinthreesteps(seealsoFig.3): (1)LandscaperepresentativelayerswerecalculatedusingLandsat 7 ETM+ scenesand theSRTM-DEM. Torepresentthe varia-tion in soil types, a soil Brightness layer wasderived from theLandsat imagesusing theTasselled Cap Brightness (TC-Brightness)(CristandCicone,1984).TC-Brightnessisameasure of overall reflectance and makes it possible todifferentiate lightsoilsfromdarkssoils.Thevariationinvegetationcover intheareawasextractedfromtheTasselledCap Greenness (TC-Greenness)(CristandCicone,1984).TC-Greennessdisplays thecontrastbetweenthenear-infraredreflectanceandthe vis-iblereflectanceandisameasureofthepresenceanddensityof greenvegetation.Thelocalvariationintopographywas com-putedusingtheSRTM-DEM,specificallythestandarddeviation oftheSRTM-DEM,calculatedusingawindowsizeof3by3 pixels.ThepixelsofthelocalSRTM-DEMstandarddeviation (DEM-SD)werethenmatchedto28.5mpixelsusingnearest neighbourresampling.

(5)

(2)Multi-resolutionsegmentationwasappliedtothesethree lay-ers (giving each layer an equal weight), using eCognition®

Developer Software (Trimble, 2011). Segmentation is the processofgroupingneighbouringpixelsonthebasisofa homo-geneitycriterion(BlaschkeandStrobl,2001).Thishomogeneity criterion(i.e.thescaleparameter) waschosensuchthatthe objectswerelargeenoughtomeaningfullyrepresenta land-scapetype, butsmallenough toavoid groupingofdifferent landscapetypesintooneobject.Thisresultedinamedianobject sizeof6.9km2.

(3)These objects were then classified into different landscape units.Classificationoftheobjectswasessential,becauseobjects withasimilarlandscapetypedonotnecessarilybordereach other,whichmeanstheywouldnothavebeengroupedtogether during segmentation.To classifyeach object inside thetwo SPOT areas,itsmeanvaluesofTC-Greenness,TC-Brightness, andDEM-SDwereobtained,toformthreeobjectattribute lay-ers.Themedianvalueofeachlayerwasthenusedtoseparateit intohighandlowclasses(aboveandbelowthemedian).These highandlowclassesforthethreevariableswerethencombined (2×2×2)toformeightlandscapeunitswitheitherahighora lowvalueforTC-Brightness,TC-Greenness,andDEM-SD,which wedenotebyacapitalandlowercaselettersforahighand lowvalues,respectively(B,b,G,gandD,d).Finally,landscape unitsweregivenageomorphologicalandlandscape-ecological interpretationanddescription,usingfieldobservationsand lit-eratureonthearea(Suslov,1961;Laity,2008).

4.2. Burrowclassification

4.2.1. Creatingareferenceobjectdataset:combiningfieldand satellitedata

First, SPOT images were subjected to an edge-preserving smoothingfilter(NagaoandMatsuyama,1979)inordertoimprove objectstability(Addink,2012).Theywerethensegmentedusing tilingandstitching,tokeepthesegmentationprocessfastand effi-cient.Thethreebands weregiven equalweights andtheshape parameterwassetto0,whichmeansthatpixelsaregroupedbased ontheirreflectancevaluesonly(andnotontheshapeofthe result-ingobject)(BaatzandSchäpe,2000).Segmentationwascarriedout onsuchascalethatobjectsizecoincidedwiththesizeofburrows, resultinginameanobjectsizeof23.8m2.Intotal,inthe

west-ernand eastern9,659,972 and12,868,017 objectswerecreated respectively.

Theobjectsresultingfromthesegmentation haveassociated attributesthatwerecalculatedusingeCognition®.Theseattributes

– also called independent variables – give information onthe spectral-,texture-,shape-,size-andneighbour-propertiesofthe objects.Forexample,thevariableMeanNIRgivesthemean reflec-tionintheNIRbandforanobjectandthevariableNumberofdarker objectsgivesthenumberofdarkerobjectssurroundingthespecific object.Intotal,67independentvariableswerecalculated,ofwhich 42%consistedofspectral-andtexture-,31%ofneighbour-and27% ofshape-andsizevariables.

Theobjectsandassociatedindependentvariableswereusedto createreferenceobjectsets (onefor eachSPOT scene), contain-ingburrowandnon-burrowareaobjects.Usingthemethodfrom Addinketal.(2010),objectsrepresentingburrowswereselectedin twosteps.First,allobjectswithintheestimatedpositionerrorofa burrowfieldlocation,asgivenbytheGPS,weremarkedas poten-tialburrowobjects.Second,fromthosepotentialburrowobjects, foreachfieldobservation,thebrightestobjectwasselected.This iscalculatedbytakingtheaverageofallpixelvaluesinanobject (so-calledBrightness-nottobeconfusedwiththeTC-Brightness mentionedin$4.1).Non-burrowareaobjectsweredefinedasthe

objectsthatwere notmarkedasa potentialburrowobjectand werelocatedcompletelywithinthe200mresearchsquares.The non-burrowareaobjectsincludethereforearangeoflocal land-scapefeatures,suchasapatchofshrubsorgrass,a(partofa)dune, atakiroraroad.

ThereferenceobjectdatasetforSPOTWestthenconsistedof 315burrowobjectsand787non-burrowareaobjects,andforSPOT Eastthesenumberswere589and2311,respectively.

4.2.2. BuildingRandomForests

RandomForestisarobuststatisticalclassifierthatmakesa pre-dictionofatestsetbasedonobservationsfromatrainingset,using multipledecisiontrees(Breiman,2001).Usingthevalues ofthe independentvariables,eachtreeconsistsofnodeswherethe train-ingsetissplitintohomogenoussubsetsofburrowandnon-burrow areas untilthetree is fullygrown,i.e. until thewholetraining setissubdividedintothoseclasses.TheRandomForestsusedin thisstudywerecreatedwiththerandomForestpackage(Liawand Wiener,2002)implementedintheRstatisticalprogramming envi-ronment(RDevelopmentCoreTeam,2011).

Everytreewasconstructedusinga2/3bootstrap(defaultvalue) of thetraining set.The 1/3bootstrap not usedtocalibrate the tree,theso-called“Out-Of-Bag”(OOB)data,are,byrunningthese samplesthroughtheRandomForest,usedtoderiveanerror esti-mate(“OOB-error”).TheaveragevalueoftheOOB-errorsforallthe treesgivesagoodindicationofhowwellclassescanbeseparated (Rodriguez-Galianoetal.,2012b).

ARandomForestchoosesforeachnodeonatreethebest pre-dictivevariablefromarandomsubset(withthesizeofthesquare rootofthetotalnumberofindependentvariables)ofthe predic-torvariables. Thismeans thatif thereare many variables with littlepredictivepower,theRandomForestmightbesub-optimal. Therefore, it isusefulto selectthemostpredictivevariables in advanceofbuildingthefinalRandomForest(Rodriguez-Galiano etal.,2012a).TheRandomForestclassifieritselfcontainsanovel methodtoestimatevariableimportance(Verikasetal.,2011;Cutler etal.,2007),whichcanbeusedtoexcludetheleastpredictive vari-ables inadvance.ByrunningtheRandomForestiterativelyand excludingtheleastpredictivevariablesateveryrun,themost parsi-monioussolutioncanbefoundthathastheleastvariablesamongst thosewithinthesamplingerrorfromthesolutionwiththeabsolute smallestOOB-error(Diaz-Uriarte,2007).

TheRandomForestsbuiltinthisstudyused10,000trees,which isasufficientamountoftreestoensuretheOOB-errorisstable; forotherRandomForestsettingsthedefaultvalueswereused.All RandomForestswereoptimizedbyremovingtheleastpredictive variablesusingtheVarSelRFRpackage(Diaz-Uriarte,2007). 4.2.3. Unstratifiedclassification

ClassificationusingRandomForestisdonebyrunningall obser-vations,inthiscaseobjectswithassociatedvariables,alongeach tree,sothateachobjectgetsmultiple,votes(inthiscase10,000). Themajorityofallthevotesdecidewhetherburrowornon-burrow areaisassignedtoaspecificobject(LiawandWiener,2002).This isthenrepeatedforalltheobjects.

OneRandomForest wasconstructedperSPOTsceneto clas-sifytheburrows.ConstructingoneRandomForestforbothSPOT WestandEastwasnotdesirable,becausetheSPOTimageswere acquiredondifferentdateswithslightlydifferentatmospheric con-ditions.TheRandomForestsweretrainedwithtrainingsetsthat containedequalnumbersofburrowandnon-burrowareaobjects, sinceimbalancedtrainingsetsconsiderablyinfluencetheoutcome oftheRandomForestclassification(StumpfandKerle,2011).80% oftheburrowswereusedfortraining,20%wasusedforvalidation. Forexample,intheeasternImage470burrows(=80%of587)were selectedbydrawingarandomsample.Then,inthesamemanner,

(6)

Table1

LandscapeunitsintheBalkhashbasinandtheassociatedfielddata.Thenamesoftheunitsarebuiltupoutofthreeletters,representingahigh(capitalletter)orlowvalue (lowercaseletter)ofTC-Brightness(B/b),TC-Greenness(G/g)orDEM-SD(D/d).RFdenotesRandomForest.

Landscapeunit Locationfielddata Numberofsquares availableforRFanalysis

Numberofburrows availableforRFanalysis

StratifiedRF

bgd East 6 124 RFbgd-East

Bgd EastandWest 24 452 RFBgd-WestandRFBgdEast

bGd East 16 172 RFbGdEast

BGd – 0* 0* (OnlyunstratifiedRF)

BgD EastandWest 6 141 RFBgDWestandRFBgDEast

bgD – 0* 0* (OnlyunstratifiedRF)

bGD East 2 15* (OnlyunstratifiedRF)

BGD – 0* 0* (OnlyunstratifiedRF)

Total EastandWest 54 904

* Noresearchsquares,ortoofewburrowsarelocatedinthislandscapeunit,sotheRFbuilttoclassifythisareaisunstratified,i.e.basedonallthesquaresintherespective

SPOTscene.

470non-burrowareaobjectswereselected.Togethertheyformed theunstratifiedtrainingsetfortheeasternSPOTimage.

4.2.4. Stratifiedclassification:classificationperlandscapeunit Stratificationis theprocessofusing ancillary informationto dividetheinvestigated areaspatiallyinto units(strata),sothat theycanbeanalyzedseparately (Vintrouetal., 2012;Hornstra etal.,2000).Stratificationpriortoclassificationallowsanoptimal classificationprocedureforspecificconditionsindifferentareas. Inourresearch,stratificationwasusedbecauseofthehypothesis thattheabilitytoidentifyburrowswouldbedifferentiallyaffected byrelationshipbetweenaburrowanditssurroundingsindifferent landscapes.Forexample,inthesparselyvegetated,inactive flood-plainsinthestudyarea,burrowsarebetterrecognizablebecause the“background”,i.e.non-burrowarea,isrelativelyhomogenous. Intheareascloserto(abandoned)riverbeds,wherewater avail-abilityleadstomorevariationinvegetationcoverandtype,the burrowsarelessdistinctagainsttheirbackground.

TostratifytheSPOTscenes,theobtainedlandscapeunitsdefine thebordersofthestrata,i.e.insteadofbuildingoneRandom For-estperSPOTscene,RandomForestsarebuiltperlandscapeunit. StratifiedRandomForestscanonlybebuiltwhensufficientfield observationsareavailable,which is thecasefor fourlandscape units(Table1),namelybgd(East),Bgd(WestandEast),bGd(East) andBgD(WestandEast).Foreachofthesesixunitsstratified Ran-domForestswerebuilt(Table1).ThestratifiedRandomForests were–liketheunstratifiedRandomForests–trainedwithbalanced trainingsets,usingburrowsandnon-burrowareaslocatedinthe correspondinglandscapeunit.

4.2.5. RefiningtheRandomForestclassification

Duetotheterritorialnatureofgreatgerbilfamilies,burrows arealwaysatacertainminimumdistancefromeachother,i.e.they haveaninhibitedpattern.Thisinformationwasusedtoimprove theclassificationfollowingtheprocedureofAddinketal.(2010):if aburrowwasadjacenttootherclassifiedburrowobjectsitwould remainclassifiedasaburrowwhentheBrightnessofadjacent bur-rowobjectswaslower,otherwiseitwouldbereclassifiedintoa non-burrowarea.Thisensuredthatlargeburrowsconsistingoftwo objectswouldonlybecountedasoneburrow.

4.3. Validation

RandomForestswerecreatedusing80%oftheburrowfielddata andtheremaining20%wasusedforvalidation.Forvalidationitis importanttohavearepresentativevalidationdataset(Congalton, 1991).The20%validationsetwasconstructedinsuchawaythat theratioofburrowstonon-burrowareasequalledtheratiofound inthefield.

Validationwasdonebycalculatingtheproducer’s,user’sand overallaccuracy(Lillesandetal.,2004)basedoncountsforevery

landscape unit, using the burrowlocations bufferedwith their diameter.AlthoughlandscapeunitsBgdandBgD arepresentin bothSPOTscenes,validationoflandscapeunitsBgdandBgDwas donein thesame manner.The kappacoefficient,a measure of overallaccuracybasedontheclassificationerrormatrix,wasalso calculatedforeachunit(Congalton,1991).Tocomparethe clas-sification accuracies fordifferent landscapeunits, thevalues of theproducer’s,user’sandoverallaccuracy,aswellasthekappa coefficientwerecompared.Toevaluatethedifferencebetweenthe unstratifiedandstratifiedmethod,additionally,significance was testedatthe95%confidencelevelusingtheKappaAnalysisTestof Significance(Congaltonetal.,1983;Congalton,1991).

Moreover,based onthe field data, thedensities of burrows intheresearchsquareswerecalculated,bydividingthenumber ofburrowsinsidetherespectivesquaresbytheareacoveredby thesquares.Then,theratiobetweenthedensitypredictedbythe classificationandthedensityobservedinthefieldwascalculated, togetanestimateoftheaccuracyofthedensityofthecreated burrowmaps.

5. Results

5.1. Landscapeunits

Eight landscape units were distinguished in the Balkhash basinresultingfromthelandscapestratificationusingthelayers TC-Brightness,TC-GreennessandDEM-SD(Table2andFig.4).Four unitsdescribethefloodplaindeposits:steppeoninactive flood-plain(bgd),steppeoninactivefloodplainwithsaltflats(Bgd),active floodplainwithshrubdominatedvegetation(bGd)andfloodplain withdevelopingvegetation(BGd).Theotherfourunitsdescribethe dunes:dynamicdunes(BgD),stabilizedduneswithinactive vege-tation(bgD),stabilizeddunes,withactivevegetationonmoistsoil (bGD)andstabilizedduneswithactivevegetation(BGD).

The steppe on inactive floodplain (bgd) is a unit where a homogenouslow vegetationcoverformedonaveryfine sandy-siltysoil(Fig.5a).Thesteppeoninactivefloodplainwithsaltflats (Bgd)alsohasalowvegetationcoveronmostlysilttoclay-rich soils.Abundant takirs have formedin small depressions inthe landscape(Fig.5b).UnitbGd,theactivefloodplainwithshrub dom-inatedvegetation,coversmostofthecurrentIlideltaandpartof theabandonedIliriverbranch.Inthisunitvegetationcoverismore abundantandconsistsmostlyof2–3mhighshrubs(Fig.5c).The floodplainwithdevelopingvegetation(BGd)isnot prominently presentinthestudyarea.Itconsistsofchlorophyllrichandactive vegetationsuchasreedgrassesformedinsmalldepressionscloseto theIliRiver.Thedynamicdunes(BgD)arelowdunes(<10m)with alowcoverofgrasses(Fig.5d).Thestabilizedduneswithinactive vegetation(bgD)coversonlyasmallareaofthestudyareaandis typifiedbyalowandinactivevegetationcover.Thestabilizeddunes

(7)

Table2

Landscapeunitsintheresearcharea.

Landscapeunit[TC-Brightness(B/b) TC-Greenness(G/g)DEM-SD(D/d)]

Description Areacover(%)on

theSPOTscenes

Fielddata Picture

bgd Steppeoninactivefloodplain 3.4 Yes Fig.5a

Bgd Steppeoninactivefloodplainwithsaltflats 47.5 Yes Fig.5b bGd Activefloodplainwithshrubdominatedvegetation 22.5 Yes Fig.5c BGd Floodplainwithdevelopingvegetation 1.5 No –

BgD Dynamicdunes 11.8 Yes Fig.5d

bgD Stabilizeddunes,withinactivevegetation 0.0 No – bGD Stabilizeddunes,withactivevegetationonmoistsoil 12.7 Yes Fig.5e BGD Stabilizeddunes,withactivevegetation 0.6 No –

withactivevegetationonmoistsoil(bGD)ispresentinthesouth andclosetotheIliRiver.Thesedunesarehighercomparedtothe dynamicdunesandhavevegetationthatconsistsofbothgrasses andlowshrubs(Fig.5e).Thestabilizedduneswithactive vegeta-tion(BGD)iscomparabletothepreviousunit(bGD)butoccursin thenorthwherelesswaterisavailable,whichresultsinahigher valueinTC-Brightness.

Ingeneral,TC-Brightness,ameasureofoverallreflectanceinthe Landsatbands,showsanincreasefromsouthtonorth,andislowest inareaswithahighwatercontent,suchasintheactivefloodplain withshrub-dominatedvegetation(bGd).TC-Greennessshowsan oppositepatternanddecreasestowardsLakeBalkhash,whileitis highestintheIliRiverdelta.

AlltheeightlandscapeunitsarepresentintheSPOTsatellite scenes(Table2),althoughthestabilizedduneswithinactive veg-etationunit(bgD)onlycoversanareaofabout4km2.Thesteppe

unitoninactivefloodplainwithsaltflats(Bgd)ismostabundant andrepresents47.5%ofthesurfaceareainSPOTWestandEast. Interestingly,thefloodplainwithdevelopingvegetationunit(BGd) alsoappearsnorthofSPOTEastwhilethereisnotanactiveriver present;thisis presumablybecauseof subsurfaceflow towards LakeBalkhashthroughtheabandonedriverbranch,whichenables moregrowthofvegetation.

Infiveoutofthesevenunitslocatedintheareacoveredbythe SPOTscenes,fieldworkdataareavailable(Table2).Diametersof eachburrowweremeasuredinthefield(Fig.6).Burrowdiameters

Fig.4.LandscapeunitsidentifiedintheBalkhashbasinbasedonhighandlowvaluesofTC-Brightness(B/b),TC-Greenness(G/b)andlocalvariationintopography(D/d).The descriptionoftheunitsisgiveninTable2.

(8)

Fig.5.Photographsofthedifferentlandscapeunits.(a)Unitbgd,steppeoninactivefloodplain.Inthefrontaburrowismeasured.Theareaisflat,formedbyfluvialdeposits andhaslittlevegetation.(b)UnitBgd,steppeoninactivefloodplainwithsaltflats.Inthebackgroundalakeformedbythesnowmeltisdisplayed.(c)UnitbGd,active floodplainwithshrubdominatedvegetation.(d)UnitBgD,dynamicdunes(BgD),withanoccupiedburrowinthefront.(e)UnitbGD,stabilizedduneswithactivevegetation onmoistsoil.Herevegetationconsistsofgrassesratherthanshrubs.

Fig.6.Burrowdiametersperlandscapeunit(colourscorrespondwithcoloursin

Fig.4).Thewidthsoftheboxesareproportionaltothesamplesizeineachlandscape unit.Thecoloursoftheasterisks(*)indicatewithwhichlandscapeunitthereisa significantdifferenceinthemean(a=0.05).Thecodesofthelandscapeunitscanbe foundinTable2.

rangefromameanof21m(minimum4m)intheclay-richsoilsin theactivefloodplain(bGd)toameanof37m(maximum62m)in thestabilizeddunesinthesoutheast(bGD)(Fig.6).Burrow diam-eterssmallerthan10moftencorrespondtooldand abandoned burrows.Thelargestdiametersarefoundinthedunes,wherethe burrowsareelongatedandsituatedinlinewiththedunes.

ThevarianceofburrowdiametersislargestinunitbGdand dif-ferssignificantlyfromthevariancesintheotherunits(F-testofthe equalityofvariancesusingthenaturallogarithmofthediameters, at˛=0.05).Thehighdiameter-burrowsinthisunit(seeoutliers inunitbGd,Fig.6)arealmostallfoundintwosquares,whichare locatedontheborderwithunitbGD.Thisexplainstherelatively highvarianceinthisunit.Whenthesesquaresareremovedfrom theanalysis,thevarianceofunitbGdisonlysignificantly differ-entfromthevarianceinunitBgD,butequaltotheotherunits.The varianceinburrowdiametersislowestinthesteppeoninactive floodplainunit(bgd),whichreflectsthelandscapehomogeneityin thisunit.

Themeandiametersoftheburrowdiametersperlandscapeunit differsignificantlyfromeachother,exceptforbgd-bGd,Bgd-bGd andBgD-bGD(Fig.6),whichwastestedpair-wiseusingt-testswith Bonferroniadjustment,at˛=0.05,onthenaturallogarithmofthe diameters.

Burrowslocatedinfluvialdepositsareonaveragesmallerthan burrows in aeolian deposits.Thisresult is not surprising,as in

(9)

Fig.7.Mapsshowingexamplesofclassificationresultsindifferentlandscapeunits.Theresultsarelocatedin(a)unitbgd;(b)unitBgd;(c)unitbGd;(d)unitBgDand(e) bGD.ThecodescanbefoundinTable2;thelocationofthelandscapeunitsintheareacanbefoundinFig.4.Ofthesquaresdisplayed,bgd,Bgd,bGdandbGDarelocatedin SPOTEast;theBgDsquaredisplayedislocatedinSPOTWest.

clay-richfluvialsoilsburrowstendtobemorecompactanddeep, whereasinsandyaeoliansoilsburrowsarelarger,butlessdeep (NaumovandLobachev,1975).

5.2. Unstratifiedclassification

Inthissectionwedescribetheresultsoftheunstratified clas-sification ofburrows,which we evaluateper landscapeunit. In Fig.7examplesaregivenofclassificationresultsinthefive land-scapeunitswhereburrowreferencedataareavailable.Thesemaps showthatburrowclassificationissuccessfulacrossdifferent land-scapeunits,inbothSPOTimages,althoughwithvaryingaccuracies. For example, in unit bgd (Fig. 7a), 22 of 23 burrows are cor-rectlyidentified.In unit bGd(Fig.7c)it canbeseen thatsmall takirsareoftenmisclassifiedasburrow.Inthedisplayedsquares of the dunes (Fig.7d and e), 22 out of 27 burrows are recog-nized. Burrows locatedin theshadowside ofa dune areoften notrecognizedandespeciallyinbGDthereisanoverestimation ofburrows.

Foreachlandscapeunittheproducer’s,user’sandoverall accu-racieswerecalculated,aswellaskappacoefficientsofagreement andtheaccuracyofthepredictedburrowdensity(Table3). Accu-raciesandkappacoefficientsareingeneralhighbutnonetheless varyconsiderablybetweenlandscapeunits.Classificationof bur-rowsworksextremely wellin thesteppeoninactivefloodplain (bgd),whereproducer’sanduser’saccuraciesreach88%and92% respectively.Classificationworksleastwellintheactivefloodplain withshrubdominatedvegetation(bGd),wheretheuser’saccuracy is only48%. In mostsquaresin this unit burrows are overesti-mated,butthereisaconsiderablevariationinaccuracybetweenthe

squares.Classificationinthedynamicdunes(BgD)works remark-ablywell:producer’sanduser’saccuraciesamount84%and77%. Inthestabilizedduneswithactivevegetationonmoistsoil(bGD) classificationaccuraciesarealsoquitehigh(producer’sanduser’s accuracyof100and60%respectively)andindicateclassification ofburrowsisalsopossibleinthismorecomplexlandscapeunit.It shouldhoweverbenotedthatonlyfewvalidationdatawere avail-ableinthisunit(Table1)andthereforetheproducer’saccuracyfor thisunitislikelytobeoverestimated.

Theratioofpredictedburrowdensitytoobservedburrow den-sityshowshowwellburrowdensitycanbepredicted:valuesrange from0.86to1.75.InareaswithhighTC-Greenness(G)burrowsare overestimated.In unitbGdtheoverestimationislargest.Thisis partlyduetotheoccurrenceofalargenumberoftakirsincertain fieldsquares,astakirsareeasilymisclassifiedasburrows.When threesquareswithalargenumberoftakirsareremovedfromthe densitycalculationforthisunit, theratiopredictedtoobserved decreasesto1.5. Forthetotalarea, i.e.includingthedataof all landscapeunits,theratiobetweenpredictedandobservedburrow densityis1.16.

TheunstratifiedRandomForestscreatedtoclassifytheSPOT scenesuseaselectionofthe67independentspectral,shapeand neighbourvariablesincludedintheinitialreferenceobjectsets. BoththeRandomForestalgorithmsusedfortheunstratified classi-fication,i.e.oneforthewesternandonefortheeasternscene,used mostlyneighbourvalues(78%Westand53%East)suchasMean differencetoneighboursandRelativebordertobrighterneighbours. Spectralandtexturalvariablesamounted22%intheWestern Ran-domForestand35%intheEastern.Leastselectedwerevariables indicatingtheshapeofobjects.

(10)

Table3

Classificationaccuraciesoftheunstratified(US)andstratified(S)classificationperlandscapeunit.LandscapeunitsBGd,bgDandBGDdonothavesquaresforvalidationand arethereforeexcludedfromthistable.

Landscapeunit Producer’saccuracy(%) User’saccuracy(%) Overallaccuracy(%) Kappacoefficient (*significantdifference betweenUSandSat ˛=0.05)

Ratiopredictedburrow density:observedburrow density US S US S US S US S US S bgd 88 88 92 100 91 95 0.81 0.89* 0.95(U) 0.99(U) Bgd 77 75 81 81 85 87 0.69 0.70* 1.06(O) 0.99(U) bGd 86 86 48 58 87 91 0.54 0.64* 1.75(O) 2.04(O) BgD 84 93 77 87 86 91 0.72 0.80* 0.94(U) 0.86U) bGD 100 – 60 – 86 – 0.66 – 1.58(O) –

Totalarea 82 – 73 – 86 – 0.67 – 1.16(O) –

5.3. Stratifiedclassification

Forfourlandscapeunits,i.e.unitsbgd,Bgd,bGdandBgD, strati-fiedRandomForestswerecreated,toevaluatewhetherthiswould improveclassificationaccuracies(bgDwasleftoutbecausetoofew fielddatawereavailable).Thekappacoefficientsand their vari-ances(Congaltonetal.,1983;Foody,2004)fortheunstratifiedand stratifiedclassificationwereusedtocomparetheperformanceof theunstratifiedandstratifiedapproach(two-sidedtestofkappa coefficients,at˛=0.05).

Stratified classification results in significantly higher kappa coefficientsinallfourlandscapesunits(Table3).Theimprovement duetostratificationisclearestinunitbgd,wherefouroutoffive metricsimproveandoneremainsthesamewhenstratified classifi-cationisused.ForunitBgDtheimprovementisvisibleinfouroutof fivemetrics;onlythedensityisslightlylesswellpredicted.InbGd however,onlythreemetricsimprovewhenusingstratified clas-sification;theproducer’saccuracyremainssimilar,whiletheratio predictedtoobserveddensityshowsthereisanincreased overesti-mationofburrows.Thisoverestimationoccurredinsquareswitha largenumberoftakirs.Whenthreesquareswithalargenumber oftakirs areremoved fromthecalculation,thepredicted accu-racyimprovesto1.35,i.e.thenstratificationdoesimprovealsothe predictedaccuracy.InBgdstratificationimprovedthekappa coeffi-cientslightly.Thepredicteddensityinthisunitusingthestratified RandomForestishoweveralmostcompletelyaccurate(0.99).

ThestratifiedRandomForestseachusedasubsetofvariables thatresultedinthelowestOOB-error. Between3 and27ofthe independent67variableswereselectedforthesixstratified Ran-domForests(Table5).Ofthe67variables,32variableswerenever selected.Thesevariablesconsistedofeighteen(56%)spectral vari-ables,thirteen(40%)shapeandone(3%)neighbourvariable.

ThemajorityofthevariablesselectedintheRandomForests, likeintheunstratifiedRandomForests,areneighbourvariables; variablesleastselectedareshapeandsizevariables.Mostselected variablesare MeandifferencetoneighbourRed and Relative bor-dertobrighterobjectsNIR(Trimble,2011);theywereselectedby fiveoutofsixstratifiedRandomForests.Intotal25variableswere selectedbytwoormoreRandomForests;in otherwords,there wasaconsiderableoverlapinselectedvariables.Noremarkable dif-ferencesinselectedvariables,orindistributionbetweenspectral, neighbourandshapevariables,werefoundthatcouldberelated directlytocharacteristicsofthespecificlandscapeunit.

Thevariables selectedbythestratifiedRandomForestswere comparedwiththeselectedvariablesintheunstratifiedRandom Forests.ForfiveoutofsixstratifiedRandomForests,fewer vari-ableswereselectedcomparedtotheunstratifiedRandomForests, only Bgd(West) selected two variables more compared tothe unstratifiedWesternRandomForest.Thevariablesselectedbythe unstratifiedandstratifiedRandomForestresembledconsiderably,

forexample,26outof27variablesselectedbythestratified Ran-domForestbgd(East)werealsoselectedbytheunstratifiedEastern RandomForestandall14variablesselectedbystratifiedRandom ForestbGd(East)werealsoselectedbytheunstratifiedEastern RandomForest.InBgD(East)therewasadifference;here,the rel-ativecontributionofshape variablesincreasedcomparedtothe unstratifiedEasternRandomForest.

5.4. Burrowdensitiesinthelandscapeunits

UsingtheresultsfromunstratifiedclassificationforunitsBGd, bgD,bGDandBGDandthestratifiedclassificationforunitsbgd,Bgd, bGdandBgDthefinalburrowmaps(WestandEast)werecreated. Meanburrowdensitieswerecalculatedperlandscapeunit(Fig.8), basedontheentireunitsforthesmallerunits(bgd,BGd,bgDand BGD)andonaminimumareaof96km2forthelargerunits(Bgd,

bGd,BgDandbGD).Themeanburrowdensitiesperlandscapeunit rangefrom2.9burrows/haintheactivefloodplainwithshrub dom-inatedvegetation(bGd)to3.9burrows/hainthesteppeoninactive floodplainunit(bgd).Theseburrowdensityresultscorrespondto therangeofburrowdensityestimatescollectedbytheAnti-Plague stationswhichvaryfrom0.89to4.8burrows/ha(Davisetal.,2008). Onaverage,burrowdensitiesarelowerinthefouraeolianunits thaninthefloodplainunits.Onthefloodplain,areaswithhigh TC-Greenness(G)havelowerburrowdensitiescomparedtoareaswith lowTC-Greenness,whereasinthedunes,theoppositeistrue.

Fig.8.Burrowdensityperlandscapeunit(coloursmatchwiththeunitsonthemap inFig.4),calculatedbasedontheburrowmaps.

(11)

Fig.9. (a)Thelocationofsector10521.(b)Sector10521withitsburrowdensitiescalculatedfor25cells.(c)Zoomofsector10521.Individualmappedburrowsareshown.

Atasmallerscale,burrowdensityismorevariable,as demon-stratedbythevariablenumbersoffieldobservationsofburrows detectedintheresearchsquares:thelowestdensityofburrows wasfoundinthevegetatedfloodplainanddelta(bGd);the mini-mumwas0burrows/ha.Amaximumdensityof6.25burrows/ha wasfoundinaresearchsquarelocatedinthesparselyvegetated floodplain(Bgd).

5.5. Burrowmapsforepidemiologicalmodelling

Anexampleof adensity mapof asectoris shown inFig.9. Thedensitiesareshowninsquaresof∼1.8km×2km(Fig.9b).The meandensityinthissectoris3.7burrows/haandvariesbetween 3.1and4.4burrows/ha.TheAnti-Plaguestationestimatedthe den-sityinthissectorat3.0burrows/ha.Individualmappedburrowsare showninFig.9c.

Theproducer’saccuracywasevaluatedforoccupiedandempty burrowsseparately.Producer’saccuracywasfoundtobe85%for occupiedburrowsand 74% for emptyburrows.In otherwords, occupiedburrowsaremoreeasilyrecognizedthanemptyones. 6. Discussion

6.1. Accuracyoftheburrowmaps

Remotesensingisincreasinglyusedinepidemiologicalresearch oninfectiousandvector-bornediseases(Hay,1997;Atkinsonand Graham,2006;Becketal.,2000;Neerinckxetal.,2008).Commonly, remotelysensedderivedvariablesareusedtomaphabitatsuitable forvectors(Tranetal.,2008;Kallurietal.,2007;HayandLennon, 1999).Inthisstudy,remotesensingwasusednotonlytomap habi-tatsuitableforhosts,buttomaptheexactdistributionofthehost’s residencesovervariouslandscapetypes.

Thegreat gerbilburrowmapswerecreatedbyusing a Ran-domForest classificationalgorithm onburrowandnon-burrow areaobjectswithassociatedvariablescreatedfromhigh-resolution satelliteimagery.Thisresultedinburrowmapswithmedian pro-ducer’sanduser’saccuraciesof86%(77–100%)and81%(58–100%). Theclassificationaccuraciesfoundinthisstudyare,comparedto thepilotstudy carried out byAddink et al. (2010), higher and

morebalanced. Producer’sanduser’s accuraciesforthepresent study,calculatedforthestudyareaofAddinketal.,are90%and 95%respectively.Producer’sanduser’saccuraciesfoundbyAddink etal.are 85%and62%,whiletheirtrainingsethad more train-ingdataavailable.Thehigherclassificationaccuracyfoundinthis studyislikelycausedbytwo factors.Firstly,theRandomForest classifierisamoreadvancedandrobustclassificationalgorithm (Rodriguez-Galianoetal.,2012b;Duroetal.,2012)thanthe deci-siontreeclassifierwhichwasusedbyAddinketal.(2010).Secondly, inthisstudy,thenon-burrowareaselectionwasunbiased,which was possiblebecause of the burrowfield samplingin squares, whereasAddinketal.selectednon-burrowareasinthefieldwhich ismorepronetobias.Theclassificationaccuraciesfoundinthe cur-rentstudyarecomparabletootherobject-basedhigh-resolution studiesthatmaprelativelysmalllandscapefeaturesinnatural envi-ronments,suchasthemappingofdownedlogs(Blanchardetal., 2011).

6.2. Validityoftheburrowmaps

The burrow maps are based onSPOT-5 images acquired in October 2010. The temporal validity of the maps is currently unknown, because detailed information on the lifetime and renewalrateofburrowsislacking.Thelifetimeofaburrowdepends onvariousfactors(NaumovandLobachev,1975).Itislikely influ-encedbytheoccupancytimeandonthetimeittakestobecome re-occupiedincasetheburrowisabandoned.AccordingtoNaumov andLobachev(1975),thelifetimeofburrowscanreachhundredsof years,butthismaywelldependonthetypeofsoilinwhichtheyare constructed.Asmentionedpreviously,burrowsinmoreclay-rich materialtendtobemoresolidanddeep,whereastheburrowsin sandysoilsuchasinthedunesaremoreshallowandelongated.As observedinthefield,thetimeofdisappearanceofburrows,i.e.the timethatelapsesfromthemomentaburrowisabandoneduntil theburrowcanbeneitherrecognizednorre-colonized,seemsto beaffectedbylandscapetype,althoughnodetailedfielddataare yetavailable.Asaresultofthelowercohesionofthesoil,thetime ofdisappearanceislikelytobeshorter inthesandysoilsinthe dunes comparedtotheclay-richsoilsinthefloodplain.For the burrowsmapscreated,itmeansthattheperiodofvalidityfora

(12)

mapwillbelongerforthefloodplainareas(landscapeunitbgd, BgdandbGd)thanforareaswithmostlysandymaterial(BgD,bGD andBGD).Thequestionofthelifetimeofburrowscouldbe investi-gatedbymappingtheburrowsusingthemethodpresentedinthis paperinsubsequentyears,andapplychange-detectiontoanalyse thedifferencesanddynamics.

6.3. Classificationperlandscapeunitversusunstratified classification

Inadvanceofclassificationperlandscapeunit,landscapeunits werecreatedbasedonTC-BrightnessandTC-GreennessofLandsat scenesincombination withthe SRTM-DEMderived local topo-graphicvariability(DEM-SD).Thisresultedinamapwithaclearand realisticspatialpattern,correspondingwithfieldobservations.The useofLandsatimagerywithitsspatialresolutionof28.5moffered theopportunitytomapthelandscapeoverlargeareas.Although thespatialresolutionoftheSRTM-DEMislowerthanthe resolu-tionofLandsat,theSRTM-DEMstilladdsusefulinformationforthe landscapemapping.Usinghighresolutionspatial imagery,such asSPOT-5XS,forlandscapemappingwouldnotbeassuccessful becausethesmallpixelsizewouldresultinatoohighvariance tobeabletomaplandscapeunitsaccurately.Thecombinationof highandmediumresolutionimageryforburrowmappingacross landscapesthusoffersaneffectivemethod.

Theclassificationperlandscapeunitresultedinconsiderably higher classification accuracies in three landscape unitsand in slightlyhigheraccuraciesinonelandscapeunit.Generally, strat-ificationin combination witha Random Forest classifier might improveclassificationresultsbecause(1)thevariableselectionis fittedtothespecificarea,(2)theobjecttrainingsetusedtotrain theRandomForestisselectedfromthespecificareaandhencethe thresholdvaluesusedinthetreetoseparateburrowsfrom non-burrowareasaremorelikelytofittheobjectsinthespecificarea.

InthecaseoftheBalkhasharea,burrowdiametersshowedthat significantdifferencesperlandscapeunitexistinburrowsize. Non-burrowareasalsoobviouslydifferperlandscapeunit,whichwas shownbythedifferencesinvaluesinTC-Brightness,TC-Greenness andSRTMDEM-SD.

In the three landscape units where stratification improved resultsconsiderably,fewervariables wereselectedcomparedto theunstratifiedclassification.Also,therangeforanoftenselected variable such as Mean difference to neighbours NIR is smaller forstratifiedtrainingsets thanfortheunstratifiedtraining sets (Fig.10), whichmightbeanadditionalexplanationforthe suc-cessofthestratification.InunitBgdstratificationdidnotimprove resultsmuch,butitdidnotdecreaseclassificationaccuracieseither. Apossibleexplanationforthisisthatthevariablesassociatedwith theburrowandnon-burrowareasintheBgdtrainingsetcovera (nearly)similarlylargerangeastheunstratifiedtrainingset(seefor exampleFig.10),whichmeansthatstratificationhaslessinfluence. Theunderlyingreasonforclassificationresultsonlyimproving slightlyinBgdisthusthattheBgdunititselfismore heteroge-neousthantheotherunits.Thiscouldbeimprovedbysplitting thisareaintotwosub-units,forexamplebasedonTC-Brightness. However,stratifiedclassificationmightperformlesswellifthere isalackoffielddataperlandscapeunit.Ontheotherhand,when stratificationcreatesonlyfewlandscapeunits,theunitsmaybetoo heterogeneous,andconsequentlythetrainingsetwillbeless rep-resentative.Generally,forstratificationitisthereforeimportantto findabalancebetweenthehomogeneityofalandscapeunitand theamountoffielddataforclassificationperunit.Toachievethis, landscapestratificationcanbecarriedoutinadvanceofthe cre-ationofasamplingscheme.Afterthis,athoroughlookattheranges ofvariablesmightgiveanindicationofwhetherstratificationwill improveresults.

Fig.10.BoxplotsofMeandifferencetoneighboursNIRineachlandscapeunitfor burrowobjects.Therangediffersperlandscapeunit.

Becauseburrowsvary inappearanceand heterogeneityover differentlandscapes,theuseofmultiplescaleparametersmight furtherimproveclassificationaccuracy,becauseacrosslandscape units,slightly differentheterogeneitythresholdsmightbe opti-mal(Andersetal.,2011).ThiscouldbeofuseforunitbGd,where bothunstratifiedandstratifiedclassificationresultedinrelatively low classification accuracy. In this unit, objects are often large comparedtotheburrowsize,whichmeansthattrainingofthe Ran-domForest,butalsotheclassificationitselfperformslesswell.To improvetheaccuraciesinthisunit,theunitcouldbesplitintofour subunitsbasedonTC-BrightnessandTC-Greenness,thenseparate scaleparameterscouldbeusedincombinationwithmoreintensive groundtruthcollection.

6.4. Burrowdensityinthelandscapeunits

The ratio of predicted and observed densities for the land-scapeunitshasshownthatdensitycanbepredictedmoderately toveryaccurately.In unitswitha highTC-Greenness (bGdand bGD)burrowsaresystematicallyoverestimated,whichcanlikely beattributedtotworeasons.Firstly,thevegetationcoverinunits withahighTC-Greennessisoftenrelativelyheterogeneous,which meansthatareaswithalowervegetationcoverareoftenincorrectly classifiedasburrow,becausetheirdifferencetotheirneighbours resemblesthedifferencebetweenburrowsandtheirneighbours. Secondly,intheareaswithhigherTC-Greennessvegetationoften consistsofshrubs, which arenot alwaysremovedby thegreat gerbilsfromthesurfaceofburrows.Theseburrowsthereforedo nothavesuchadistinctsignal.InareaswithlowTC-Greenness (bgd, Bgd and BgD) vegetation cover is much more homoge-neous(compareforexampleFig.7bwithc).Additionally,insome areas,especiallyinunitsbgdandBgd,vegetationalsoconsistsof lichen,butisremovedfromthesurfaceofburrowsandtherefore enhancesthecontrastbetweenburrowsandtheirsurroundings. ThedifferenceinaccuracybetweenunitsbgdandBgdisrelated tothenumberoftakirs,whichleadstoaloweraccuracy.Inunit BgD,thevegetationonthedunes isnotyetwelldevelopedand easilyremovedbythegerbils,whichleadstoverywellrecognizable burrows.

(13)

Meanburrowdensitiesvarybetweenlandscapeunits.The dif-ferencesareprobablyevenhigherinreality,becausethereisvery likely anoverestimation ofburrows in theunitswith high TC-Greennessvalues.Highestburrowdensityisfoundinthesteppe oninactivefloodplainunit(bgd).Apossibleexplanationforthis couldbethesuitablestructureofthesoil.Thelowerburrow den-sityintheBgdfloodplainunitislikelyduetothehigheramount of saltflats, where burrows canhardly beconstructedbecause ofthecrustedsoil.LowerburrowdensitiesinunitsbGdandBGd mightbeexplainedbycompetitionwithotherrodentsifthehigher TC-Greennessimpliesa greatervarietyoffoodtypesandhence opportunitiesforotherspecies.Interestingly,inthedunes,burrow densitiesincreasewithhigherTC-Greenness.Itmightbethatinthe dunes,thelimitingfactorisfoodavailability.

The varying burrow densities may imply that also plague dynamicsaredifferentacrossdifferentlandscapetypes,although itisnotclearyethowburrowdensityexactlyinfluencesplague dynamics. This is not clear yet, because the question remains whetherandhowgreatgerbilmovementsarerelatedtoburrow density,i.e.whethergreatgerbilsmove“set”distancesorwillmove totheclosestneighbouringburrow, which isof importancefor thespreadandpersistenceofplague.Also,burrowdensityisnot necessarilylinearlyrelatedwithgreatgerbilabundance,sincealso greatgerbilabundancevariesperburrowandmayalsodifferper landscapeunit.

Atthescaleofthe200mresearchsquares,burrowdensityvaries morethanbetweenthelandscapeunits.Thisraisesthequestionat whatscaleburrowdensitywillvarymostandwhetherthiscanbe relatedtospecificlandscape-ecologicalfactors.Thistopicispartof ongoingresearch.

6.5. Usingthecreatedburrowmapsformonitoringandthestudy ofplague

Thenewclassificationmethodproposedhereisasuitableand helpfultool for the monitoringof themain plague host inthe Balkhash area, for example by detecting whether burrows are presentinacertainareaandwheretherehasbeenanexpansion orreductionofthegreatgerbils’territory.Also,theburrow den-sitymapscouldbecombinedwithfielddataonburrowoccupancy andfleaburden,which havebeenshowntobekey elementsin predictingoutbreaks(Reijniersetal.,2012).Thiswouldallow bet-terpredictionofwhereandwhenoutbreaksofplaguewilloccur ingreatgerbilsthancurrentlyispossible,certainlyifmoreinsight hasbeenobtainedinspatialvariabilityofoccupancy.

Determiningtheburrowoccupancyfromspaceisanambitious nextobjective. Thepresent studyfoundthat occupiedburrows areeasierrecognizedinimagesthanemptyones.Thismatches intuitiveexpectation,sinceemptyburrowswillusuallyhavemore vegetationgrowingonthesurfaceoftheburrows.Futurestudies usingthecurrentburrowmapstomapoccupancy,shouldaccount forthiseffect.

Theburrowmapscanalsobeusedtoindicatetheriskof trans-missionofplaguetohumans,sincethisriskincreaseswhenthe animals’territoryencroachestownsandvillages.Ourmapsshow forexample,thattheburrowsofthegreatgerbilarelocatedwithin 2km ofthemain town(Bakanas).In 2010,plaguewasisolated fromgreatgerbilsinanareaconnectedtoandlessthan5kmaway fromtheBakanasarea,whichconfirmsthenecessityformonitoring plagueinthisarea.

7. Conclusions

Thisstudypresentsa newmethodusingobject-basedimage analysis and Random Forests to map burrows across varying

landscapetypes.Classificationaccuraciesarehighwithproducer’s anduser’saccuraciesrangingfrom88%and100%inthesteppeon inactivefloodplainto86%and 58%intheactivefloodplainwith shrub dominated vegetation. The predictedburrow density for thetwoimagesalsoshowsourmethodperformswell:theratio betweenpredictedandobservedburrowdensityforthewholearea is1.16.Ourresultsareunique:asfarasweknow,amapof popula-tionsofhostshasneverbeenmadeonsuchadetailedandextensive spatialscale.Theburrowmapsarevaluableforthemonitoringof plague,becausetheyprovideacompleteoverviewofthespatial dis-tributionofburrowsandallowforthedetectionofburrowscloseto humansettlements.Moreover,themapscancontributeto epidemi-ologicalmodelsandlandscape-ecologicalanalysis.Epidemiological modellingcouldprovidemoreinformationonwhetherhigh den-sityareasprovideahigherrisk,forexampleforplaguepersistence ortransmissiontohumans;theburrowmapsarethenveryusefulto identifythesehighdensityareas.Ourclassificationmethodisalso suitableformappingburrowsofotherrodents,suchasmarmots andprairiedogs,whicharebothhostsofplagueinotherfoci.

Theobject-based stratification methodusingboth high-and medium resolution imagery resulted in improvedclassification accuracies,especiallyinthemorehomogeneousareas.Sucha strat-ifiedmethodcouldwellbeextrapolatedtootherstudiesincomplex landscapes.

Acknowledgements

ThisprojectwaspartoftheWellcomeTrustproject(WT046498) ‘Advancesin thepredictionof plagueoutbreaksinCentral Asia’ andoftheVICIproject918.56.620‘Populationdynamicsand con-trolofinfectiousdiseases:modellinginteractionatdifferentscales’ funded by the Netherlands Research Organisation. The SPOT-5 XSimageswereobtainedthrough theISISprogramme ofCNES and SPOTIMAGE in ISIS projects 395 and 476 ‘Plague Surveil-lance’,CopyrightCNES.Wewouldliketothankallpeopleatthe Anti-PlaguefieldstationinBakanas,aswellasthepeoplethat con-tributeddirectlytothefieldworkinSeptember2010andApril 2011:V.S.Ageyev,V.G.Meka-MechenkoandM.Jesse.Wewould liketothankN.WandersforhishelpusingR.Finally,wethankthe reviewersfortheirvaluablefeedback.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.jag.2012.11.007. ThesedataincludeaGooglemapofthestudyareaandresearch squaresdescribedinthisarticle.

References

Addink,E.A.,2012.Reducingtherandomseedeffectonsegmentationbyapplying anedge-preservingfilter.Proceedingsofthe4thGEOBIA,May7–9,2012-Rio deJaneiro-Brazil,p.474.

Addink,E.A.,DeJong,S.M.,Davis,S.A.,Dubyanskiy,V.,Burdelov,L.A.,Leirs,H.,2010. Theuseofhigh-resolutionremotesensingforplaguesurveillanceinKazakhstan. RemoteSensingofEnvironment114,674–681.

Anders,N.S.,Seijmonsbergen, A.C.,Bouten,W., 2011. Segmentation optimiza-tionandstratifiedobject-basedanalysisforsemi-automatedgeomorphological mapping.RemoteSensingofEnvironment115,2976–2985.

Astrium,2012.SPOTImagery.http://www.astrium-geo.com/files/pmedia/public/ r2339geo0013spoten201203.pdf,Accessed28June2012.

Atkinson,P.M.,Graham,A.J.,2006.Issuesofscaleanduncertaintyintheglobal remotesensingofdisease.AdvancesinParasitology62,79–118.

Atshabar, B.B., Burdelov,L.A.,Ageyev,V.S., Aukabirov, S.A., Dubyanskiy, V.M., Grazhdanov,A.K.,etal.,2010.AtlasofBacterialandVirusZoonoticInfections DistributioninKazakhstan.(pp.122).Almaty,Kazakhstan:M.Aikimbayev’s KSC-QZD.

Baatz,M.,Schäpe,A.,2000.MultiresolutionSegmentation:anoptimizationapproach forhighqualitymulti-scaleimagesegmentation.AngewandteGeographische

(14)

InformationsverarbeitungXII.BeiträgezumAGIT-SymposiumSalzburg2000. Karlsruhe,HerbertWichmannVerlag,pp.12–23.

Beck,L.R.,Lobitz,B.M.,Wood,B.L.,2000.Remotesensingandhumanhealth:new sensorsandnewopportunities.EmergingInfectiousDiseases6,217–227. Begon,M.,Bennett,M.,Bowers,R.G.,French,N.P.,Hazel,S.M.,Turner,J.,2002.A

clari-ficationoftransmissiontermsinhost-microparasitemodels:numbers,densities andareas.EpidemiologyandInfection129,147–153.

Biggins,D.E.,Kosoy,M.Y.,2001.InfluencesofintroducedplagueonNorthAmerican mammals:implicationsfromecologyofplagueinAsia.JournalofMammalogy 82,906–916.

Blanchard,S.D.,Jakubowski,M.K.,Kelly,M.,2011.Object-basedimageanalysisof downedlogsindisturbedforestedlandscapesusinglidar.RemoteSensing3, 2420–2439.

Blaschke,T.,Strobl,J.,2001.What’swrongwithpixels?Somerecentdevelopments interfacingremotesensingandGIS.ProceedingsofGIS-Zeitschriftfur Geoin-formationsysteme,pp.12–17.

Bogh,C.,Lindsay,S.,Clarke,W.,Dean,S.E.,Jawara,A.,Pinder,M.M.,etal.,2007. HighspatialresolutionmappingofmalariatransmissionriskintheGambia, WestAfrica,usingLandsatTMsatelliteimagery.AmericanJournalofTropical MedicineandHygiene76,875–881.

Breiman,L.,2001.Randomforests.MachineLearning45,5–32.

Chander,G.,Markham,B.L.,Helder,D.L.,2009.Summaryofcurrentradiometric cal-ibrationcoefficientsforLandsatMSS,TM,ETM+,andEO-1ALIsensors.Remote SensingofEnvironment113,893–903.

Collinge,S.,Johnson,W.,Ray,C.,Matchett,R.,Grensten,J.,CullyJr.,J.,etal.,2005. Landscapestructureandplagueoccurrenceinblack-tailedprairiedogson grass-landsoftheWesternUSA.LandscapeEcology20,941–955.

Congalton,R.G.,1991. Areview ofassessingtheaccuracyofclassificationsof remotelysenseddata.RemoteSensingofEnvironment37,35–46.

Congalton,R.G.,Oderwald,R.G.,Mead,R.A.,1983.AssessingLandsatclassification accuracyusingdiscretemultivariateanalysisstatisticaltechniques. Photogram-metricEngineeringandRemoteSensing49,1671–1678.

Crist,E.P.,Cicone,R.C.,1984.Aphysically-basedtransformationofthematic map-perdata---TheTMtasseledcap.IEEETransactionsonGeoscienceandRemote Sensing,GE-22,256-263.

Cutler,D.R.,Edwards,T.C.,Beard,K.H.,Cutler,A.,Hess,K.T.,Gibson,J.,etal.,2007. Randomforestsforclassificationinecology.Ecology88,2783–2792. Davis,S.,Trapman,P.,Leirs,H.,Begon,M.,Heesterbeek,J.A.P.,2008.Theabundance

thresholdforplagueasacriticalpercolationphenomenon.Nature454,634–637. Davis,S.,Begon,M.,DeBruyn,L.,Ageyev,V.S.,Klassovskiy,N.L.,Pole,S.B.,etal.,2004.

PredictivethresholdsforplagueinKazakhstan.Science304,736–738. Diaz-Uriarte,R.,2007.GeneSrFandvarSelRF:aweb-basedtoolandRpackagefor

geneselectionandclassificationusingrandomforest.BMCBioinformatics8, 328.

Duro,D.C., Franklin,S.E.,Dubé, M.G., 2012. Acomparisonofpixel-based and object-basedimageanalysiswithselectedmachinelearningalgorithmsforthe classificationofagriculturallandscapesusingSPOT-5HRGimagery.Remote SensingofEnvironment118,259–272.

Estrada-Pe ˜na,A.,2003.Therelationshipsbetweenhabitattopology,criticalscales ofconnectivityandtickabundanceIxodesricinusinaheterogeneouslandscape innorthernSpain.Ecography26,661–671.

Foody,G.M.,2004.Thematicmapcomparison:evaluatingthestatistical signifi-canceofdifferencesinclassificationaccuracy.PhotogrammetricEngineering andRemoteSensing70,627–633.

Gage,K.L.,Kosoy,M.Y.,2005.Naturalhistoryofplague:perspectivesfrommorethan acenturyofresearch.AnnualReviewofEntomology50,505–528.

Gubler,D.J.,1998.Resurgentvector-bornediseasesasaglobalhealthproblem. EmergingInfectiousDiseases4,442.

Haensch,S.,Bianucci,R.,Signoli,M.,Rajerison,M.,Schultz,M.,Kacki,S.,etal.,2010. DistinctclonesofYersiniapestisCausedtheBlackDeath.PLoSpathogens6, e1001134.

Hagenaars,T.J.,Donnelly,C.A.,Ferguson,N.M.,2004.Spatialheterogeneityandthe persistenceofinfectiousdiseases.JournalofTheoreticalBiology229,349–435. Hay,S.I.,Lennon,J.J.,1999.DerivingmeteorologicalvariablesacrossAfricaforthe studyandcontrolofvector-bornedisease:acomparisonofremotesensingand spatialinterpolationofclimate.TropicalMedicine&InternationalHealth4,58. Hay,S.I.,1997.Remotesensinganddiseasecontrol:past,presentandfuture.

Trans-actionsoftheRoyalSocietyofTropicalMedicineandHygiene91,105–106. Hornstra,T.,Maas,H.,deJong,S.,2000.Classificationofspectroscopicalimageryby

combiningspatialandspectralinformation:theSSCmethod.Proceedingsofthe 19thISPRSCongress,pp.550–558.

Hudson,P.J.,Rizzoli,A.,Grenfell,B.T.,Heesterbeek,J.A.P.,2001.Theecologyof WildlifeDiseases.

Jesse,M.,Heesterbeek,H.,2011.Divideandconquer?Persistenceofinfectiousagents inspatialmetapopulationsofhosts.JournalofTheoreticalBiology275,12–20. Kalluri,S., Gilruth,P., Rogers, D.,Szczur, M., 2007. Surveillanceof arthropod

vector-borneinfectiousdiseasesusingremotesensingtechniques:areview. PLoSpathogens3,e116.

Keeling,M.J.,1999.Theeffectsoflocalspatialstructureonepidemiologicalinvasions. ProceedingsoftheRoyalSocietyofLondon.SeriesB:BiologicalSciences266, 859–867.

Keeling,M.J.,Gilligan,C.A.,2000.Metapopulationdynamicsofbubonicplague. Nature407,903–906.

Laity,J.,2008.DesertsandDesertEnvironments.Wiley-Blackwell,UK,pp.342. Liaw,A.,Wiener,M.,2002.ClassificationandregressionbyrandomForest.RNews

2,18–22.

Lillesand,T.M.,Kiefer,R.W.,Chipman,J.W.,2004.RemoteSensingandImage Inter-pretation.JohnWiley&Sons,U.S.A.,pp.763.

Lloyd-Smith,J.O.,Cross,P.C.,Briggs,C.J.,Daugherty,M.,Getz,W.M.,Latto,J.,etal., 2005.Shouldweexpectpopulationthresholdsforwildlifedisease?Trendsin Ecology&Evolution(Personaledition)20,511–519.

Löffler,E.,Margules,C.,1980.Wombatsdetectedfromspace.RemoteSensingof Environment9,47–56.

Nagao,M.,Matsuyama,T.,1979.Edgepreservingsmoothing.ComputerGraphics andImageProcessing9,394–407.

Naumov,N.P.,Lobachev,V.S.,1975.EcologyofdesertrodentsoftheU.S.S.R.(Jerboas andGerbils).InI.Prakash,P.K.Ghosh(Eds.),RodentsinDesertEnvironments (pp.549–598).TheHague,TheNetherlands:Dr.W.JunkPublishers.

Neerinckx,S.,Peterson,A.,Gulinck,H.,Deckers,J.,Leirs,H.,2008.Geographic dis-tributionandecologicalnicheofplagueinsub-SaharanAfrica.International JournalofHealthGeographics7,54.

Ouagrham-Gormley,S.B.,Melikishvili,A.,Zilinskas, R.A.,2008.TheAnti-plague SystemintheNewlyIndependentStates,1992andOnwards:Assessing Pro-liferationRisksandPotentialforEnhancedPublicHealthinCentralAsiaandthe Caucasus.

Park,A.W.,Gubbins,S.,Gilligan,C.A.,2002.Extinctiontimesforclosedepidemics: theeffectsofhostspatialstructure.EcologyLetters5,747–755.

Propastin,P.A.,2008.SimplemodelformonitoringBalkhashLakewaterlevelsand IliRiverdischarges:applicationofremotesensing.Lakes&Reservoirs:Research andManagement13,77–81.

RDevelopmentCoreTeam,2011.R:ALanguageandEnvironmentforStatistical Computing.Vienna,Austria:RFoundationforStatisticalComputing. Randall,J.A.,Rogovin,K.,Parker,P.G.,Eimes,J.A.,2005.Flexiblesocialstructureof

adesertrodent,Rhombomysopimus:philopatry,kinship,andecological con-straints.BehavioralEcology16,961–973.

Reijniers,J.,Davis,S.,Begon,M.,Heesterbeek,J.A.,Ageyev,V.S.,Leirs,H.,2012.A curveofthresholdsgovernsplagueepizooticsinCentralAsia.EcologyLetters, 554–560.

Rodriguez-Galiano, V., Chica-Olmo, M., Abarca-Hernandez, F., Atkinson, P.M., Jeganathan,C.,2012a.RandomForestclassificationofMediterraneanlandcover usingmulti-seasonalimageryandmulti-seasonaltexture.RemoteSensingof Environment121,93–107.

Rodriguez-Galiano,V.F.,Ghimire,B.,Rogan,J.,Chica-Olmo,M.,Rigol-Sanchez,J.P., 2012b.Anassessmentoftheeffectivenessofarandomforestclassifierfor land-coverclassification.ISPRSJournalofPhotogrammetryandRemoteSensing 67,93–104.

Rogovin,K.,Randall,J.A.,Kolosova,I.,Moshkin,M.,2003.Socialcorrelatesofstress inadultmalesofthegreatgerbil,Rhombomysopimus,inyearsofhighandlow populationdensities.HormonesandBehavior43,132–139.

Rothshild,V.E.,1978.SpatialStructureofPlagueNaturalFocusandMethodsofits Study.PublishingHouseofMoscowUniversity,Moscow.

Stumpf,A.,Kerle,N.,2011.Object-orientedmappingoflandslidesusingRandom Forests.RemoteSensingofEnvironment115,2564–2577.

Suslov,S.P.,1961.DesertRegionofCentralAsia.In:Williams,J.E.(Ed.),Physical GeographyofAsiaticRussia.W.H.FreemanandCompany,SanFranciscoand London,pp.436–520.

Tran,A.,Poncon,N.,Toty,C.,Linard,C.,Guis,H.,Ferre,J.,etal.,2008.Usingremote sensingtomaplarvalandadultpopulationsofAnopheleshyrcanus(Diptera: Culicidae)apotentialmalariavectorinSouthernFrance.InternationalJournal ofHealthGeographics7,9.

Trimble,2011.eCognition®Developer8.64.1ReferenceBook.TrimbleGermany

Documentation,München,Germany,pp.390.

Verikas,A.,Gelzinis,A.,Bacauskiene,M.,2011.Miningdatawithrandomforests:a surveyandresultsofnewtests.PatternRecognition44,330–349.

Vintrou,E.,Desbrosse,A.,Bégué,A.,Traoré,S.,Baron,C.,LoSeen,D.,2012.Croparea mappinginWestAfricausinglandscapestratificationofMODIStimeseriesand comparisonwithexistinggloballandproducts.InternationalJournalofApplied EarthObservationandGeoinformation14,83–93.

World Health Organization, 2005. Plague fact sheet. Fact sheet N◦267.

http://www.who.int/mediacentre/factsheets/fs267/en/index.html, Accessed 27June2012.

WorldHealthOrganization(Ed.),1983.InternationalHealthRegulations(1969). ThirdAnnotatedEdition.(pp.82).Geneva:WorldHealthOrganization. Yaghoobi-Ershadi,M.R.,Javadian,E.,1996.Epidemiologicalstudyofreservoirhosts

inanendemicareaofzoonoticcutaneousleishmaniasisinIran.Bulletinofthe WorldHealthOrganization74,587–590.

References

Related documents

Starting from a brief description of the recent knowledge on the AA phenomenon, this work focuses on the relationship between GA and memory, the pharmacodynamic mechanisms of

Probably one of the first problems the federal courts will have to face will be where (1) an indigent defendant waives appointment of counsel, (2) and then demands an

Friday Night Live builds partnerships for positive and healthy youth development which Fresno County (cont.)..

List of Key Abbreviations ... Research aim and rationale ... My role as a researcher and as a teaching professional in the university ... The aim of this thesis ... English

The person nominated as chair by the charity trustees under clause [19.2] (Chairing of meetings), shall, if present at the general meeting and willing to act,

In order to undertake this study, water samples were collected from streams, boreholes, wells and rain water sources at the sampling location of Tse-Agberagba, Akpagher

mesenchymal transition activating transcription factor silencing (EMT-ATF silencing) on migration, invasion, drug resistance and tumor-forming abilities of various pancreatic