ContentslistsavailableatScienceDirect
Field
Crops
Research
j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / f c r
Modelling
cereal
crops
to
assess
future
climate
risk
for
family
food
self-sufficiency
in
southern
Mali
Bouba
Traore
a,b,∗,1,
Katrien
Descheemaeker
c,
Mark
T.
van
Wijk
d,
Marc
Corbeels
e,f,
Iwan
Supit
g,
Ken
E.
Giller
caInstitutD’EconomieRurale(IER),ProgrammeCoton,SRAN’TarlaBp:28Koutiala,Mali
bInternationalCropsResearchInstitutefortheSemi-AridTropics(ICRISAT-Mali),BP320Bamako,Mali
cPlantProductionSystems,WageningenUniversity,P.O.Box430,6700AKWageningen,TheNetherlands
dLivestockSystemsandtheEnvironment,InternationalLivestockResearchInstitute(ILRI),P.O.Box30709,00100Nairobi,Kenya
eAgro-ecologyandSustainableIntensificationofAnnualCrops,CentredeCoopérationInternationaleenRechercheAgronomiquepourleDéveloppement
(CIRAD)-Av.Agropolis,34060Montpellier,France
fSustainableIntensificationProgram,InternationalMaizeandWheatImprovementCenter(CIMMYT),P.O.Box1041-00621,Gigiri,Nairobi,Kenya
gEarthSystemScienceandClimateAdaptiveLandManagement,WageningenUniversityandResearch,P.O.Box47,6700AKWageningen,TheNetherlands
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received29April2016
Receivedinrevisedform7November2016 Accepted11November2016
Keywords:
Cropsimulationmodelling Plantingdate Fertilizeruse APSIM Sub-SaharanAfrica Climatechange
a
b
s
t
r
a
c
t
Futureclimatechangewillhavefarreachingconsequencesforsmallholderfarmersinsub-SaharanAfrica, themajorityofwhomdependonagriculturefortheirlivelihoods.Hereweassessedthefarm-levelimpact ofclimatechangeonfamilyfoodself-sufficiencyandevaluatedpotentialadaptationoptionsofcrop management.UsingthreeyearsofexperimentaldataonmaizeandmilletfromanareainsouthernMali representingtheSudano-SahelianzoneofWestAfricawecalibratedandtestedtheAgricultural Produc-tionSystemssIMulator(APSIM)model.Changesinfuturerainfall,maximumandminimumtemperature andtheirsimulatedeffectsonmaizeandmilletyieldwereanalysedforclimatechangepredictionsof fiveGlobalCirculationModels(GCMs)forthe4.5Wm−2and8.5Wm−2radiativeforcingscenario(rcp4.5 andrcp8.5).
InsouthernMali,annualmaximumandminimumtemperatureswillincreaseby2.9◦Cand3.3◦Cby
themid-century(2040–2069)ascomparedwiththebaseline(1980–2009)underthercp4.5andrcp8.5 scenariorespectively.PredictedchangesinthetotalseasonalrainfalldifferedbetweentheGCMs,buton average,seasonalrainfallwaspredictednottochange.Bymid-centurymaizegrainyieldswerepredicted todecreaseby51%and57%undercurrentfarmer’sfertilizerpracticesinthercp4.5andrcp8.5scenarios respectively.APSIMmodelpredictionsindicatedthattheuseofmineralfertilizeratrecommendedrates cannotfullyoffsettheimpactofclimatechangebutcanbufferthelossesinmaizeyieldupto46%and51% ofthebaselineyield.Milletyieldlosseswerepredictedtobelesssevereundercurrentfarmer’sfertilizer practicesbymid-centuryi.e.7%and12%inthercp4.5andrcp8.5scenariorespectively.Useofmineral fertilizeronmilletcanoffsetthepredictedyieldlossesresultinginyieldincreasesunderbothemission scenarios.
Underfutureclimateandcurrentcroppingpractices,foodavailabilityisexpectedtoreduceforallfarm typesinsouthernMali.However,largeandmedium-sizedfarmscanstillachievefoodself–sufficiency ifearlyplantingandrecommendedratesoffertilizerareapplied.Smallfarms,whicharealreadyfood insecure,willexperienceafurtherdecreaseinfoodself-sufficiency,withadaptivemeasuresofearly plantingandfertilizeruseunabletohelpthemachievefoodself-sufficiency.Bytakingintoaccountthe diversityinfarmhouseholdsthatistypicalfortheregion,weillustratedthatcropmanagementstrategies mustbetailoredtothecapacityandresourceendowmentoflocalfarmers.Ourplace-basedfindingscan supportdecisionmakingbyextensionanddevelopmentagentsandpolicymakersintheSudano-Sahelian zoneofWestAfrica.
©2016ElsevierB.V.Allrightsreserved.
∗Correspondingauthorat:InstitutD’EconomieRurale(IER),ProgrammeCoton,SRAN’TarlaBp:28Koutiala,Mali.
E-mailaddresses:boubasiditraore@yahoo.fr,B.Traore@cgiar.org(B.Traore).
1 Currentaddress:InternationalCropsResearchInstitutefortheSemi-AridTropics(ICRISAT-Mali),BP320Bamako,Mali.
http://dx.doi.org/10.1016/j.fcr.2016.11.002 0378-4290/©2016ElsevierB.V.Allrightsreserved.
1. Introduction
Climatechangewilladverselyaffectfoodproductioninmany regionsoftheworld,especiallyinsub-SaharanAfricawherealarge partofthepopulationfaceschronichunger(Lobelletal.,2008). Theobservedchangesinrainfallandtemperaturesincethe1970s are believed to have resulted in a decline of overall crop pro-duction(Barriosetal.,2008).Climatechangeprojectionsforthe WestAfricanregionindicateafurtherincreaseintemperatureof between1.1and4.8◦Candlargerdifferencesinrainfallbetween wetanddryseasonsattheendofthiscentury(IPCC,2013).
AreviewofclimatechangeimpactstudiesoncropyieldsinWest Africaillustratesalargedispersionofcropyieldchangesranging from−50%to+90%,withamedianyieldlossofabout11%(Roudier etal.,2011).PredictedimpactislargerinSudano-Sahelian coun-tries,withanaverageyieldlossof18%,comparedwiththecountries intheSouthernGuineaSavannahzonewherethepredictedyield lossis 13%(Sultanet al.,2013).Thisdifferenceis likelydue to thealreadydrierandwarmerclimateinthemorenortherly coun-triesofWestAfrica. Intheshortterm,(2010–2040),cropyields attheMaliannationallevelarepredictedtovarybetween−17% and+6%ofthecurrentyields(Buttetal.,2005a).Itisbelievedthat thenegativeimpactofclimatechangemainlyresultsfromeffects ofrisingtemperature,whichispredictedwithastrongersignal andlessuncertaintycomparedtoprecipitationchanges(Roudier etal.,2011).SchlenkerandLobell(2010)showedthatevenif rain-fallremainedconstantinsub-SaharanAfricabymid-century,crop yieldswoulddecreasebyabout15%duetothehighertemperatures reducingthelengthofthecropgrowthcycleandincreasingwater stressasaresultofgreatersoilwaterevaporationlosses.
Newevidenceofclimatechange(IPCC,2013)highlightstheneed toadaptcropping systems.For Mali,Butt etal. (2005b)argued thatbyimplementingadaptiveresponsessuchastheuseof high-temperature-resistantcropvarietiestogetherwithaddressingsoil fertilitydecline,economicgainscouldexceedlossesduetoclimate change.VariousadaptationoptionsthatMalianfarmerscurrently practicetocopewithclimatevariabilitycouldbeconsidered.In general,thesearetacticaladaptationsoffarmmanagement(such asshiftingtocroplandraces,alteringfertilization),butalsoinclude morestrategicadaptationsofalteredincome/assetmanagement (Chukuand Okoye,2009).A commonoperationaladaptationto addressclimateriskinsemi-aridandsub-humidregionsistoshift theplantingdatetocoincidewiththealteredstartof therainy season(Mulleretal.,2010).
Linkingclimatechangescenarioswithcropsimulation mod-ellingtoassesstheresponseofcropproductiontoclimatechange incombinationwithadaptivefarmmanagement,provides infor-mation that can enhance strategic decision-making by farmers andpolicymakerstoadapttothenovelchallengesofachanged climate(Rosenzweigetal.,2013).Thefewregionalimpact stud-iesthathave takeninto accountadaptationoptionsby farmers (Fraseretal.,2011)aredifficulttotranslateintoknowledgethat candrivelocalsolutions.Localstudieswithcropmodelsare gener-allybettersuitedtosupportlocallyappropriatedecision-making thanregionalapproaches (Fischeret al.,2005).Yetfew ofsuch locally-relevantstudiesexistinsub-SaharanAfrica(Tingemetal., 2009;Sultanetal.,2013).OnecropsimulationstudyinCameroon showedthatalteringplantingdateandcultivartypecanreducethe negativeimpactsofclimatechangeandevenincreasecropyields (TingemandRivington,2009).Asfarmsinsub-SaharanAfricaare verydiverse(Gilleretal.,2011),theimpactofclimatechangeand thefeasibilityofadaptationoptionsarelikelytodifferamong farm-ers.However,withclimatechangeimpactstudiesusuallyfocussing solelyatthefieldscale,farm-levelinformationthatisdisaggregated byfarmtypeisscarce.Thus,morelocallygroundedresearchon likelycropresponsestoclimatechangeandeffectsonfarm-level
indicatorsareneededtosupportdecision-makingonadaptation strategiestomitigatenegativeimpactsofchangingclimate.
Thisstudyaimedtobetterunderstandfutureclimatechange, itsimpactoncerealcropproduction,and thepotentialof adap-tationoptionsinsouthernMali.Ourspecificobjectiveswere:(i) tocalibrateandtestthecropmodelAPSIM(Agricultural Produc-tionSystemssIMulator)formaizeandmilletinSudano-Sahelian conditions;(ii)toanalysechangesinfuturerainfall,maximumand minimumtemperatureundertwoemissionscenarios leadingto a radiativeforcing of4.5Wm−2 and 8.5Wm−2 bymid-century
(2040–69);(iii)toassesstheimpactofclimatechangeonyields ofmaizeandmillet;(iv)toevaluatepotentialadaptationoptionsof cropmanagementand(v)toquantifythefarm-levelconsequences forfoodself-sufficiencyofdifferenttypesofsmallholderfarmersin southernMali.
2. Materialsandmethods
2.1. Site
We examined the effects of future climate on cereal crop production at N’Tarla(12◦35N, 5◦42W,302ma.s.l.). N’Tarlais representativeofthecereal cropproduction regioninMaliand occupies14%oftheterritory.Thisregionholdsabout40%ofthe totalpopulationand 50%ofthecultivablelandofMali(Deveze, 2006). The climate in southern Mali is typical of the Sudano-Sahelianzone ofWestAfrica.Averagelong-termannualrainfall atN’Tarlais846±163mm.TherainyseasonextendsfromMayto Octoberwithanaveragetemperatureof29◦C.Farmingsystemsin theregionaremixedagro-pastoralsystems,withcotton( Gossyp-iumhirsutumL.)asthemaincashcrop, inrotationwithcereals –maize(ZeamaysL.),pearlmillet(Pennisetumglaucum(L.)R.Br.), sorghum(Sorghumbicolor(L.)Moench),–andlegumes–groundnut (ArachishypogaeaL.)andcowpea(Vignaunguiculata(L.)Walp.).
2.2. Experimentaldataformodelcalibrationandtesting
We used dataon maize and millet froma field experiment conductedoverthreeconsecutivegrowingseasonsfrom2009to 2011atN’Tarla.Theexperimentwasasplit-split-plotdesignwith threefactors(crop,variety,plantingdate)andfourreplicates.The mainplot treatmentwasthecrop(maize, pearlmillet). Onthe sub-plotsthree varietieswere tested,referred toas V1 and V2 forlongdurationvarietyandV3forshortdurationvariety(Table A1)andthreeplantingdatescoveredthepossiblerangeof plant-ingdatesinsouthernMali,referredtoasD1(earlyplantingdate), D2(mediumplantingdate)andD3(lateplantingdate).Eachyear, allplotsreceivedthreetonnesdrymatterperhectareofmanure (withanorganicmattercontentof44%andC/Nratioof12and organiccarboncontentof22%)andcrop-specificrecommended fer-tilizerdoses(IER/CMDT/OHVN,1998).Maizereceived85kgNha−1,
26kgPha−1 and16kgKha−1,whilstmilletreceived39kgNha−1
andthesameamountsofPandKasmaize.Thesoilofthe experi-mentalsiteisaFerricLixisol(FAOsoilclassification)with4%clay, 16%siltand80%sandcontentinthe0–40cmsoillayer.Thesoilis slightlyacidwithapHof5.6.Organiccarboncontentis2gkg−1soil
(0–40cm).
For each variety of maize and millet,phenological develop-mentwasmonitoredandthedatesofemergence,endofjuvenile phase,floralinitiation,flagleafstage,flowering,startofgrainfilling andphysiologicalmaturitywererecorded.Leafareaindex(LAI)of maizeandmilletplantswasmeasuredat15,30,45,60and75days afterplanting.Cropswereharvestedafterphysiologicalmaturity andstoverandgraindrymatteryieldsweredetermined.The exper-imentwasdescribedindetailbyTraoreetal.(2014).
Dailyrainfall,minimumandmaximumtemperatureand radi-ationwererecordedattheN’Tarlameteorologicalstationsituated atabout1kmfromtheexperimentalfield.
2.3. Modelsimulations
TheAPSIM(AgriculturalProductionSystemssIMulator)model (Keatingetal.,2003)incombinationwithclimatemodeloutput oftheCoupled ModelIntercomparison ProjectPhase5 (CMIP5) (Tayloretal.,2012)wasusedtoassessclimatechangeimpactson maizeandmilletyields,andtoevaluatealteredplantingdatesand fertilisationasadaptationoptionstoclimatechange(seebelow, Section2.5).TheAPSIMMaize(7.4)andtheAPSIMMillet(7.4) mod-ulestogetherwiththesoilwater module(SoilWat)and thesoil nitrogenmodule(SoilN)ofAPSIMwereparameterizedandtested usingtheresultsoftheabovedescribedexperiment.Inthisway,we simulatedthegrowthofmaizeandmilletaslimitedbysoilwater andnitrogen.
2.3.1. Modelparameterization
ThevaluesforcropandsoilparametersinAPSIMweremeasured attheexperimentalsite,derivedfromliteratureorobtainedby cal-ibratingthemodelusingcropdevelopmentandgrowthdataofone year(2010)oftheexperiment(Tables1and2).Valuesfor pheno-logicalparametersforthedifferentmaizeandmilletvarietieswere basedoncalculatedthermaltimebetweenobservedphenological developmentstagesofthecrops(Table1).Basetemperature, maxi-mumgrainnumberperheadandgraingrowthratewerecalibrated basedonobservedbiomassandgrainproductiondataof2010.For thecoefficientsoftheregressionfunctiondescribingtherelation betweentheareaofthelargestleafofmilletandthetotalnumber leaves,publishedvalueswereused(Akponikpèetal.,2010).
Soilwatercontentatthedrainedupperlimit(DUL),atthelower limit(LL),andatsaturation(SAT)werebasedonmeasurements per-formedattheexperimentalsite(Table2).Thebaresoilrunoffcurve numberwassetat40toaccountforlowrunoffduetotheflat topog-raphyoftheexperimentalsiteandthesoilwatercharacteristicsof asandysoil.Soilorganiccarbon,soilpHandsoilbulkdensitywere measuredattheexperimentalsite.Initialsoilconditionsforwater andsoilmineralNcontentweresetusingobserveddatafromthe experimentin2010,bothforthecalibrationandvalidationruns. Observedsoilwatercontentsmeasuredwithaneutronprobeat aweekbeforeplantingdatewere16mm,19mm,21mm,21mm, 43mm,and42mminthe0–0.1m,0.1–0.2m,0.2–0.3m,0.3–0.4m, 0.4–0.6mand0.6–0.8msoillayers,respectively.Initialvaluesfor mineralN(0–0.8m)were31kgha−1forNO−3and14kgha−1for
NH+ 4.
2.3.2. Modelevaluation
Themodelwastested againstdataofthetotal aboveground biomass,grainyieldandLAImeasuredin2009and2011.Model per-formancewasevaluatedgraphicallyandquantifiedbycalculating therootmeansquarederror(RMSE),withlowervaluesindicating bettermodelagreementwithobservedvalues,theR2ofthe
regres-sionbetweenobservedandsimulatedvalues,rangingfrom0to1, withhighervaluesexpressingabetterlinearrelationship,andthe modelefficiency(EF)(Willmottetal.,1985),rangingfrom−∞to1 withhighervaluesindicatingabetteragreementbetweenobserved andsimulatedvalues:
RMSE=
n i=1(Oi−Pi) 2 n EF= n i=1 Oi−O¯2−n i=1 Pi−O¯2 n i=1 Oi−O¯2whereOiandPiaretheobservedandsimulatedvalues, ¯Oisthe
meanoftheobservedvaluesandnisthenumberofobservations.
2.4. Climatescenarios
WeusedthelatestCMIP5climatemodellingresultsforthe his-torical(1976–2005)andfutureclimatescenarios.Twogreenhouse gasemissionscenarioswereconsideredasdescribedinthe spe-cialreportonemissionscenarios(Nakicenovicetal.,2000).Under ahighRepresentativeConcentrationPathway(RCP8.5),the atmo-sphericCO2 concentrationwillriseto850ppmbytheendofthe
centuryandannualmeantemperatureinAfricawillincreaseby 3to6◦C(IPCC,2014).Inthercp4.5scenariotheatmosphericCO2
concentrationwillstabilizeat550ppmandtemperatureinAfrica willincreaseby2to5◦C(IPCC,2014).WedidnotaccountforCO2
fertilizationeffectsinthesimulationsandassumedthatmaizeand milletasC4plantsbenefitrelativelylittlefromincreasedCO2
con-centrations(Tayloretal.,2014).Ithasbeenshownthatimpacts ofincreasedtemperaturescoupledwithsoilmoisturechangeswill largelyoverridethecompensatingeffectsofincreasedCO2oncrop
yields(RosenzweigandParry,1994).
2.5. Analysisofclimatechange,itsimpactsoncropyieldand effectsofadaptationoptions
Inordertospansomeoftheuncertaintyinclimateprojections, climatedataoffiveGlobalCirculationModels(GCMs)(cnrm-cm5, ecearth, hadgem2-es, ipsl-cm5a-lr, mpi-esm-lr) were used.The particularGCMswereselectedfirstlybecausetheybelongtothelist ofCMIP5(CoupledModelIntercomparisonProject)models(Taylor et al.,2012)and secondlybecausedailybias-corrected datafor maximumand minimumtemperature andrainfall werereadily availableona0.5×0.5◦gridforthestudysiteovertheperiod1976 to2005forthepastclimateandoverthe2006to2099periodfor futureclimate.Radiationdatawasbias-correctedaccordingtothe methodofHaddelandetal.(2012).ThemethodofPianietal.(2010)
wasusedtobias-correcttemperatureandrainfall.Forboth meth-odstheWATCHforcingdatawasusedasabaseline(Weedonetal., 2011).
Futureminimumandmaximumtemperatureandrainfallwere comparedwiththebaselineconditionsbymeansofgraphical anal-ysesshowingmonthlyaveragesandrangesoftheselectedclimate indicatorsforthegrowingseason(fromthebeginningofMaytothe endofOctober).WecomparedeachGCMinordertounderstand theuncertaintyintheclimatedataandusedanalysisofvariance (ANOVA)totestforsignificantdifferencesbetweenGCMs.Forthe analysisoftheimpactsofclimatechangeoncropproductionwe usedsimulatedclimatedatafromtheindividualGCMsand subdi-videdtheentiresimulationperiodsoastohavecontinuousseries of30yearsforbaseline(1980to2009),andnear(2010to2039), mid(2040to2069)andend(2070to2099)ofthecentury peri-ods.Becauseofincreaseofuncertaintyinpredictedclimatedata towardstheendofcentury,wefocusedourcropmodelanalysis onthemid-centuryperiod.Thecropyieldspredictedwithclimate datafromthefiveGCMswerecomparedinordertounderstand theuncertaintyintheyieldpredictionsrelatedtotheuncertainty inthepredictedclimatedata.
Wefirstanalysedtheeffectsofclimatechangeunderthetwo emissionscenarios(rcp4.5andrcp8.5)oncropyieldforthelong (V1)andtheshortduration(V3)varietiesofmaizeandmilletwith earlyplantingdate(D1)andundercurrentfarmer’sfertilization
Table1
Cropparametersforthelong(V1,V2)andshort(V3)durationvarietiesofmaizeandmilletusedintheAPSIMsimulations.
V1 V2 V3 Units Ref.
Maize Emergence-endjuvenile 307 290 263 ◦Cdays Observed
Endjuvenile-floralinitiation 31 31 33 ◦Cdays Observed
Flagleaf-flowering 15 15 18 ◦Cdays Observed
Flowering-startgrainfilling 191 191 185 ◦Cdays Observed
Flowering–maturity 620 620 589 ◦Cdays Observed
Daylengthphotoperiodtoflowering 12.5 12.5 12.5 hours Default
Daylengthphotoperiodforinsensitivity 24 24 24 hours Default
Basetemperature 10 10 10 ◦C Estimated
Grainmaximumnumberperhead 530 530 530 number Estimated
Graingrowthrate 8 8 9 mg/day Estimated
Radiationuseefficiency 1.6 1.6 1.6 g/MJ Default
Transpirationuseefficiency 0.009 0.009 0.009 kPa Default
Millet Emergence-endjuvenile 430 400 315 ◦Cdays Observed
Endjuvenile-floralinitiation 112 112 112 ◦Cdays/h Default
Flagleaf-flowering 60 60 60 ◦Cdays Observed
Flowering-startgrainfilling 100 100 100 ◦Cdays Observed
Flowering–maturity 548 457 508 ◦Cdays Observed
Regressionoflargestleafarea–intercept −807 −807 −807 mm2 Akponikpèetal.(2010)
Regressionoflargestleafarea–slope 1137 1137 1137 mm2/leaf Akponikpèetal.(2010)
Grainnumberperhead 3500 2000 3200 grain/head Estimated
Graingrowthrate 0.42 0.42 0.42 mg/grain/day Akponikpèetal.(2010)
Radiationuseefficiency 1.3 1.3 1.3 g/MJ Akponikpèetal.(2010)
Transpirationuseefficiency 0.009 0.009 0.009 kPa Default
Table2
SoilparametersusedintheAPSIMsimulations.
Soildepth(cm)
Acronym 0–10 10–20 20–30 30–40 40–60 60–80 units Ref.
BulkDensity BD 1.57 1.57 1.72 1.67 1.74 1.65 g/cm3 Measured
Volumetricsoilwatercontentatthelowerlimita LL 0.148 0.14 0.171 0.114 0.086 0.107 mm/mm Measured
Volumetricsoilwatercontentatthedrainedupperlimit DUL 0.283 0.272 0.304 0.283 0.206 0.25 mm/mm Measured
Volumetricsoilwatercontentatthesaturation SAT 0.317 0.305 0.337 0.331 0.226 0.273 mm/mm Measured
Soilwaterextractioncoefficient KL 0.05 0.05 0.05 0.05 0.05 0.05 /days Estimated
Layerdrainageratecoefficient SWCON 0.4 0.4 0.4 0.4 0.4 0.4 – Estimated
Inertfractionoforganiccarbon FINERT 0.2 0.2 0.35 0.35 0.899 0.89 – Sissoko(2009)
Non-inertfractionofcarboninmicrobialproducts FBIOM 0.04 0.02 0.02 0.01 0.01 0.01 – Sissoko(2009)
Soilalbedo SALB 0.13 – Sissoko(2009)
Stage1soilevaporationcoefficient U 8.65 mm Sissoko(2009)
Stage2soilevaporationcoefficient CONA 0.01 – Sissoko(2009)
Baresoilrunoffcurvenumber CN2BARE 40 – Sissoko(2009)
ReductioninCN2BAREduetocover CNRED 28 – Sissoko(2009)b
aThevolumetricsoilwatercontentatthelowerlimitwasalsousedforthecroplowerlimit.
b Sissoko(2009)Analysedesfluxd’eaudanslessystèmesdeculturesouscouverturevégétaleenzoneSoudanoSahelienne:Casducotonseméaprèsuneculturede
sorgho/brachiariaausudduMali.ThèsedeDoctorat,MontpellierSupAgro,169pp.
practice(F1,being60kgNha−1formaizeandnoNformillet).
Sub-sequently,theeffectsofdifferentcroppingpracticesundercurrent andfutureclimatewereexploredbyinvestigatingeffectsof recom-mendedfertilizerrates(F2,85kgNha−1formaizeand40kgNha−1
formillet),threeplantingdates(early(D1),medium(D2)andlate (D3)planting)andtwovarieties,i.e.ashort(V3)andalong(V1) durationvariety.
The impact of future climatechange on smallholder family foodself-sufficiencywasevaluatedbasedonthebalanceoftotal energyproducedandrequiredatthehouseholdlevel.Totalenergy produced (kcal) was calculated based on the total cereal pro-duction on the farm and a crop-specific grain energy content (FAO,1990).Energyrequirementswerecalculatedbasedonthe number of household members and the average daily energy requirementperperson(2450kcalperson−1day−1 foradultsand
1775kcalperson−1day−1 for childrenundertheageof11)(FAO andINPhO,1993).
BasedonfindingsofSultanetal.(2013)indicatingthatmillet andsorghumyieldswillbesimilarlyaffectedbyclimatechange,we assumedthattheimpactofclimatechangeonmillet,estimatedin thisstudycanalsobeappliedtosorghum.Observedaverageyields
ofeachfarmtype(TableA2)andtotallandareaswereusedto deter-minethecurrent totalfarm production.Therelative impactsof futureclimatechangetogetherwiththeseobservedaverageyields wereusedtocalculatetheexpectedabsolutechangesinyieldand foodproductionunderthedifferentscenariosofclimatechange andadaptation.
Farmswerecategorisedintothreefarmtypes(TableA2)based onlandholding,ownershipoffarmingassets(plough,seeder,and cultivator),numberofcattleandtypeofcroppingsystem:alarge farmtype(6%ofthepopulation),amediumfarmtype(81%ofthe population)andasmallfarmtype(12%ofthepopulation) cultivat-ingrespectively18,10and4haofcropland(Djouaraetal.,2006). Forthefarmtype-specificadaptationoptionsweassumedthatthe largefarmtypewouldapplytherecommendedfertilizerrateand keepthecurrentearlyplantingpractice.Themediumfarmtypes wouldalsoapplyrecommendedfertilizerratesandplantearlyin thegrowingseason.Assmallfarmsusuallystruggletoplantontime becauseoflackofequipmentsuchasplough,seederanddraught animals,weassumedthatthistypeoffarmwouldplantatmedium plantingdate,butwouldapplyrecommendedfertilizerrates.
Bothsinglefactor(climate,variety,fertilizer,plantingdate)and interactioneffectsonsimulatedmaizeandmilletyieldswere
esti-matedusingANOVAprocedures(Tukey’stest,atP≤0.05)(GenStat Edition14LibraryReleasePL18.2,VSNInternationalLtd.).
3. Results
3.1. Modelperformance
Modelperformanceformaizewasgood(Table3andFig.1). Sim-ulatedgrainyieldswererelativelyclosetoobservedvaluesforthe differentplantingdatesandvarietieswithR2valuesof0.89for2010
(modelcalibration)and0.69for2009and2011(modeltests).For totalabovegroundbiomasstheR2valueswerelower:0.55for2010
and0.56for2009and2011(Fig.1).Modelefficiencyforgrainyield andtotalabovegroundbiomasswassatisfactoryforthethreemaize varieties(Table3).AlsoLAIwasadequatelysimulated(Fig.A1)with RMSEvaluesformaximumLAIof0.36,0.30and0.34forV1,V2and V3respectivelyandwithmodelefficiencyvaluesthatwerehigher than0.95forthethreevarieties(Table3).Plantextractablesoil watercontentsduringthegrowingseasonwerereasonablywell simulatedasindicatedbytheR2 valuesbetweensimulatedand
measuredvalues(0.69,0.72and0.58forrespectivelyV1,V2and V3in2010and0.52,0.29and0.43in2010,Fig.A1).
ModelperformanceformilletwassatisfactorywithR2valuesof
0.60and0.45forgrainyieldsimulations,respectivelyforthe cali-brationyear2010andthetwotestyears2009and2011(Fig.2).For totalabovegroundbiomass,R2valueswere0.53and0.71for
cali-brationandtestdatasetsrespectively.Asindicatedbythevaluesof RMSEandmodelefficiency,themodeladequatelysimulatedtotal abovegroundbiomass,grainyield,maximumLAIandLAIdynamics forthethreemilletvarieties(Table3)(Fig.A2).
3.2. Climatechangepredictions
Climatepredictionsfortheperiod2040–2069showedincreased minimum and maximum temperatures (Fig. A3). In the simu-latedbaselineclimateofthepast30years(1980–2009),average annual maximum and minimum temperatureswere 34◦C and 23◦C, respectively.Inthercp8.5scenarioaverageannual maxi-mumandminimumtemperaturesincreasedby2.9◦Cand3.3◦C bymid-century(2040–2069)ascomparedwiththebaseline.The strongest warming occurred in May withan increase of 3.1◦C and3.7◦Cinmaximumandminimumtemperature,respectively (Fig. A3).The increase inAugust and September(the period of floweringandmaturityofcerealcrops)was2.5◦Cand2.6◦Cfor maximum and minimumtemperatures, respectively. Compared withthercp8.5scenario,theexpectedwarmingbymid-century waslesspronouncedunderthercp4.5scenario(Fig.A3).
Predictedaverageannualrainfallfor2040–69didnotchange significantlyfromthebaselinewitheitheremissionscenario,nor didaveragemonthlyrainfall(Fig.A3).Bymid-century,predicted averageseasonalrainfallamountwas890mmand945mm respec-tivelyforthercp4.5andrcp8.5scenarios.
Despitetheconsistenttrendsofincreasedpredictedminimum and maximum temperature compared withthe baseline, there werelargeandsignificantdifferences(P=0.001)betweenthefive GCMs (Fig.A4).Under thercp8.5scenario,thehighest growing seasontemperature wasobtainedwith theipsl model withan averageof28.6◦Cand38.5◦Crespectivelyforminimumand max-imumtemperature,whilethelowestgrowingseasontemperature wasobtainedwiththecnrmmodelwithanaverageof25.2◦Cand 35.2◦Crespectivelyforminimumandmaximumtemperature(Fig. A4).ThesamedifferencesbetweenGCMswereobservedunderthe rcp4.5scenario(Fig.A4).
3.3. Variabilityanduncertaintyingrainyieldpredictions
Under thebaselinescenariotheaveragecoefficientof varia-tionin simulated grainyieldwas21% and 15%respectively for maizeandmillet.Predictionsofmaizeandmilletgrainyields dif-feredbetweentheGCMs(Fig.3).Underthercp4.5scenario,average yieldsofthelongdurationvarietyofmaize(V1)simulatedwith cli-matedatafromthecnrmmodelweresignificantly(P<0.05)larger thanthosesimulatedwithclimatedatafromtheipslmodel,while yieldsobtainedwithhadgem2,mpiandecearthdatawere simi-lar(Table4).Thecoefficientofvariationinyieldoverthe30years simulationperiod(2040–69)variedbetween39%(cnrm)and68% (ipsl).Underrcp8.5ANOVAresultsindicatedthataveragemaize grainyieldssimulatedwithcnrmclimatedataweresignificantly (P<0.001)largerthanyieldssimulatedwithclimatedatafromthe othermodelsexcepthadgem2.Thecoefficientsofvariationinyields variedfrom39%(cnrm)to88%(ipsl).
Formillet,ANOVAresultsindicatedsignificant(P<0.01) differ-encesinyieldsobtainedwithclimatedatafromdifferentGCMs bothforthercp4.5andrcp8.5scenarios.Under rcp4.5the aver-ageyieldssimulatedwithdatafromtheecearthweresignificantly (P<0.01)largerthanyieldssimulatedwithclimatedatafromthe cnrmandhadgem2modelswhileaverageyieldsobtainedwithipsl andmpidataweresimilar.Thecoefficientofvariationin simu-latedyieldsvariedfrom11%(hadgem2)to16%(cnrm).Underthe rcp8.5scenario,averageyieldssimulatedwithclimatedatafrom ecearthweresignificantly(P<0.001)largerthanyieldssimulated withclimatedatafromallotherGCMs.
WithresultsfromallGCMspooled,theaveragecoefficientof variationofpredictedmaizegrainyieldoverthe30years simula-tionperiodwas53%and60%forrcp4.5andrcp8.5,whileformillet itwas14%forrcp4.5and12%forrcp8.5respectively.
For maize therangein simulatedyieldsbetweenGCMs was 395kgha−1and781kgha−1respectivelyunderrcp4.5andrcp8.5
whileformilletitwas134kgha−1 and213kgha−1 respectively.
Therefore,itseemsthattheuncertaintyinmaizeandmilletyield predictionsresultedfrombothGCMandRCPdifferences.
3.4. Yieldpredictionsunderclimatechangewithcurrentfertilizer practices
Forthelongduration variety(V1)ofmaize atearlyplanting date (D1) themedian predictedgrain yield in thebaseline cli-matescenarioandwithcurrentfertilizerapplicationrate(F1)was 2213kgha−1 (Fig.3).Forfutureclimateduringthemid-century
period(2040–69),themedianpredictedgrainyielddeclinedby59% and67%underthercp4.5andrcp8.5scenariosrespectively.A sim-ilarimpactofclimatechangewaspredictedfortheshortduration maizevariety(V3)atearlyplanting(D1),showingadecreaseof50% and58%underthercp4.5andrcp8.5scenariorespectively,relative tothemedianpredictedbaselineyieldof1733kgha−1(Fig.3).
Com-paringthetwomaizevarietiesatearlyplanting(D1),themedian grainyieldofthelongdurationvariety(V1)was22%largerthanthat oftheshortdurationvariety(V3)underthebaselineclimate.The differencesbetweenvarietiesweresmallerthan5%underfuture climateforboththercp4.5andrcp8.5scenarios.
Themedianpredictedgrainyieldunderthebaselineclimate was1199kgha−1 for thelongdurationvariety(V1)ofmilletat
earlyplanting(D1)andwithcurrentfertilizerapplicationrate(F1) (Fig.3).Therewasnopredictedyieldlossunderrcp4.5whilefor thercp8.5scenario,thepredictedyieldlosswas4%(Fig.3).Forthe shortdurationvariety(V3)ofmilletatearlyplanting(D1),median predictedgrainyieldunderthebaselinescenariowas1101kgha−1
(Fig.3).Underfutureclimate,medianpredictedyieldlosswas0% forthescenariorcp4.5and6%for thescenariorcp8.5. Compar-ingbothmilletvarietiesatearlyplanting(D1)revealedthatthe
2010
Observed total biomass (kg ha-1)
2000 4000 6000 8000 10000 S im ula te d t o ta l b io m as s ( k g ha -1 ) 2000 4000 6000 8000 10000 V1 V2 V3 2009 and 2011
Observed total biomass (kg ha-1)
2000 4000 6000 8000 10000
2010
Observed grain yield (kg ha-1)
0 1000 2000 3000 S im ul at ed gr ai n yi el d ( k g ha -1 ) 0 1000 2000 3000 V1 V2 V3 2009 and 2011
Observed grain yield (kg ha-1)
0 1000 2000 3000 V1D1 V1D2 V1D3 V2D1 V2D2 V2D3 V3D1 V3D2 V3D3
c)
d)
a)
b)
rRMSE = 0.15 R2 = 0.89 rRMSE = 0.24 R2 = 0.69 rRMSE = 0.26 R2 = 0.55 rRMSE = 0.22 R2 = 0.56Fig.1.Comparisonofobservedandsimulatedgrainyieldandtotalabovegroundbiomassofmaizein2010forAPSIMmodelcalibration(a,c)andin2009and2011formodel testing(b,d).V1andV2:Longdurationvariety;V3:Shortdurationvariety;D1,D2andD3correspondrespectivelytoearly(June),medium(July)andlate(August)planting date.The1:1lineisindicatedineachgraph.
2010
Observed total biomass (kg ha-1)
3000 6000 9000 12000 15000 Si m ul at ed t ot al bi on ass (kg h a -1) 3000 6000 9000 12000 15000 V1 V2 V3 2010 Observed yield (kg ha-1) 0 500 1000 1500 2000 S im ul at ed gr ai n yi el d ( k g ha -1 ) 0 500 1000 1500 2000 V1 V2 V3 2009 and 2011 Observed yield (kg ha-1) 0 500 1000 1500 2000 V1D1 V1D2 V1D3 V2D1 V2D2 V2D3 V3D1 V3D2 V3D3
c)
a)
b)
Observed total biomass (kg ha-1)
3000 6000 9000 12000 15000 2009 and 2011
d)
rRMSE = 0.30 R2= 0.60 rRMSE = 0.24 R2 = 0.45 rRMSE= 0.13 R2= 0.53 rRMSE = 0.22 R² = 0.71Fig.2.Comparisonofobservedandsimulatedgrainyieldandtotalabovegroundbiomassofmilletin2010forAPSIMmodelcalibration(a,c)andin2009and2011formodel testing(b,d).V1andV2:Longdurationvariety;V3:Shortdurationvariety;D1,D2andD3correspondrespectivelytoearly(June),medium(July)andlate(August)planting date.The1:1lineisindicatedineachgraph.
Table3
Modelperformancestatisticsformaizeandmilletgrainyield(kgha−1),totalabovegroundbiomass(kgha−1)andmaximumleafareaindex(LAIm2m−2).
V1 V2 V3
RMSE EFF RMSE EFF RMSE EFF
Maize grainyield 397 0.54 497 0.15 463 0.38
totalabovegroundgroundbiomass 1333 0.65 1549 0.30 933 0.42
LAI 0.36 0.95 0.30 0.98 0.34 0.95
Millet grainyield 249 0.39 380 0.32 295 0.54
totalabovegroundgroundbiomass 1226 0.77 1316 0.64 2040 0.31
LAI 0.68 0.79 0.75 0.74 0.43 0.85
RMSE:Rootmeansquareerror,EFF:efficiencyofthemodel;V1andV2:Longdurationvariety;V3:Shortdurationvariety.
2D Graph 12 cnrmecearth hadg em2 ipsl mpi M ill et y ie ld ( k g h a -1 ) 0 400 800 1200 1600 2D Graph 13 cnrmecearth hadg em2 ipsl mpi M ai ze y ie ld ( k g ha -1) 0 500 1000 1500 2000 2500 3000 V1D1_rcp4.5 V1D1_rcp8.5 V1D1_rcp4.5 V1D1_rcp8.5 GCM cnrmecearth hadg em2 ipsl mpi V3D1_rcp4.5 V3D1_rcp4.5 Plot 1 GCM vs Col 35 Col 31 vs av ma bl v3d1 V3D1_rcp8.5
SED SED SED SED
SED SED SED SED
cnrmecearth hadg
em2 ipsl mpi
V3D1_rcp8.5 SED
Fig.3. Boxplotsofpredictedgrainyieldofmaizeandmilletundercurrentfarmer’spractice(F1;60kgNha−1formaizeandnoNformillet)forfiveselectedGCMsoverthe
period2040–2069underclimatescenariosrcp4.5andrcp8.5.V1D1:Longdurationvarietyatearlyplantingdate;V3D1:Shortdurationvarietyatearlyplantingdate;SED:
Standarderrorofthedifferencebetweenmeans.Thestarsrepresentaveragesimulatedgrainyieldvalueunderthebaselineclimate(1980–2009).
Table4
Averagesimulatedgrainyield(kgha−1)underfarmer’smanagementpracticeforthelongdurationvariety(V1)ofmaize(earlyplantingandapplicationof60kgNha−1)and
millet(earlyplantingandnoNapplied)forthefiveselectedGCMsduringtheperiod2040–2069underclimatescenariosrcp4.5andrcp8.5,withtherespectivecoefficients
ofvariation(%)betweenbrackets.
GCM Maize Millet rcp4.5 rcp8.5 rcp4.5 rcp8.5 ipsl 1014a(68) 708a(88) 1269abc(12) 1241b(5) hadgem2 1273ab(52) 1258cd(45) 1198ab(11) 1161ab(9) mpi 1306ab(50) 864ab(63) 1282bc(12) 1128a(15) ecearth 1377ab(57) 1093bc(64) 1309c(17) 1341c(19) cnrm 1409b(39) 1489d(39) 1175a(16) 1172ab(14)
Differentsuperscriptletter(a,b)percolumnindicatesignificantdifferences(Tukey’stest,P<0.05)inthemeanvalue.
medianpredictedyieldofthelongdurationvariety(V1)was8% largerthanthatoftheshortdurationvariety(V3)underthe base-lineclimate.Thisdifferenceremainedsimilarunderfutureclimate ofthemid-centuryperiodforbothemissionscenarios.
Theyielddeclinewasmainlycausedbytheimpactofthe pre-dictedtemperatureincrease,whilepredictedchangesinrainfall onlyhad a minoror noeffectunder both scenarios rcp4.5and rcp8.5.ThisisillustratedinFig.4forrcp8.5,showingthata
fic-titiousclimatescenario,inwhichhistoricalrainfalliscoupledwith futuretemperatureaspredictedbyGCMs,hadthesameeffecton simulatedmaizeandmilletgrainyieldsasthefuturescenariowith bothfuturetemperatureandrainfallaspredictedbyGCMs.
Linear regression analysis indicated a significant (P<0.001) shorteningofthepredictedtimetofloweringbymid-centuryfor bothvarietiesofmaizeandmillet(Fig.5).Forthelongduration variety(V1)ofmaize,thesimulatedtimetofloweringwas
short-Maize yield (kg/ha) 0 700 1400 2100 2800 Cu mm ul ati ve pr ob ab ili ty of y ie ld ( % ) 0 20 40 60 80 100 Baseline rcp8.5 rcp8.5 with historical rain
Millet yield (kg/ha)
0 400 800 1200 1600 2000 Baseline rcp8.5 rcp8.5 with historical rain a) b)
Fig.4. Cumulativeprobabilityfunctionsofsimulatedgrainyieldofthelongdurationvariety(V1)atearlyplanting(D1)formaize(a)andmillet(b)undercurrentfarmer’s practice(F1;60kgNha−1formaizeandnoNformillet)andunderthehistorical(1980–2009)climate(baseline),thecombinedfuture(2040to2069)rainfallwithfuture
temperature(rcp8.5),andthecombinedhistoricalrainfallwithfuturetemperature(rcp8.5withhistoricalrain).SimulatedyielddataincluderesultsfromfiveselectedGCMs over30years.
enedby2.5daysand4daysunderrcp4.5andrcp8.5respectively, whilefortheshortdurationvariety(V3)theshorteningwas2and 3daysovertheperiod2010–2069.Formilletthesimulatedtime tofloweringwasshortenedby2daysforboththelong(V1)and short(V3)durationvarietiesunderscenariorcp4.5.Underrcp8.5, theshorteningwas4and3daysforthelong(V1)andshort(V3) durationvarietyrespectivelyovertheperiod2010–2069.
3.5. Evaluatingadaptationoptionstofutureclimatechange 3.5.1. Maize
Therewasasignificantinteractioneffectofclimateonthe fertil-izer−maizegrainyieldrelationship(Table5).Predictedgrainyield lossesunderfuturemid-centuryclimatewere51%and57%with currentfarmerpracticeoffertilization(F1,60kgNha−1)underthe
rcp4.5andrcp8.5scenariosrespectively.Withrecommended fer-tilizerapplication(F2,85kgNha−1)simulatedyieldlossesunder
rcp4.5andrcp8.5werereducedtorespectively46%and51%. Atearly(D1)andmedium(D2)plantingthesimulatedclimate changeimpactswereayieldlossof,respectively,47%and53%for rcp4.5andof53%and60%forrcp8.5.Atlateplanting(D3),which resultedinverylowgrainyields,therelativeyieldlosseswereabout 70%underbothemissionscenarios(Table5).
Whereas recommended fertilizer rate application improved grainyieldsunderboththecurrentandfutureclimate,the pre-dictedeffectwasnegligibleifplantingwaslate(D3)(Fig.6).Also, thepredictedfertilizer effectwasstrongerforthelongduration variety(V1)ascomparedwiththeshortdurationvariety(V3)both forthebaselineandthefutureclimatescenarios.Ifplantingwas delayedstrongly(D3),theshortdurationvariety(V3)wasagood alternative,whereaswithaslightdelayofplanting(D2),thelong durationvariety(V1)stillyieldedmore.Whenplantingwasdelayed underthefutureclimate,thedifferencesbetweenthemaize vari-etiesdissipated(Fig.6).
3.5.2. Millet
Simulatedgrainyield obtained withrecommended fertilizer practiceF2(39kgNha−1)waslargerthanwithfarmerpractice(F1,
0kgNha−1)byabout29%underbaselineclimate,by22%underthe
rcp4.5scenarioandby20%underthercp8.5scenario(Table5).If therecommendedfertilizerrateswereapplied,thepredictedyield
lossesunderfarmerpracticeduetoclimatechangewereoffsetfor bothemissionscenarios(Table5).Withrecommendedfertilizer,a yieldlossof8%and15%waspredictedatearly(D1)andmedium (D2) plantingunderboth emission scenarios. Delayingplanting fromD1toD3causedastrongyieldlossacrossthebaselineand futureclimates.Asimilarsignificanteffectofclimatechangeon grainyieldwaspredictedforthelongduration(V1)andshort dura-tion(V3)varieties,withsimulatedyieldlossesof10%and14%,and 11%and17%underthercp4.5andrcp8.5scenariosrespectively (Table5).
Astrongyieldincreasewaspredictedwithrecommended fertil-izerrates(F2)forthelongdurationvariety(V1),especiallyatearly planting(D1)underthecurrentclimate(Fig.6).Underboth emis-sionscenariosfertilizerwaspredictedtolargelyoffsetthenegative effectofclimatechangeonthelongdurationmilletvariety(V1). Fortheshortdurationvariety(V3)ontheotherhand,applying rec-ommendedfertilizerratesreversedtheclimatechangeeffectfor D1andD2,butnotforD3underbothemissionscenarios.
3.6. Impactoffutureclimatechangeonfamilyfood self-sufficiency
Under thecurrent climateconditions,the foodneedsofthe largeand medium farms weresatisfiedby on-farm production whilethesmallfarmtypedidnotachievethis (Table6).Under future climate and current cropping practices, food availability wasreducedforallfarmtypes,butlargefarmsstillachievedfood self-sufficiency(Table6).Themediumfarmsdroppedbelowthe self-sufficiencythresholdandsmallfarmsexperienceda further decreaseinfoodself-sufficiency.Underfutureclimateconditions, largefarmsincreasedtheirfoodself-sufficiencystatusby apply-ingrecommendedfertilizerrates(Table6).Mediumfarmsraised foodself-sufficiencyabove100%byadvancingplantingfromthe currentmedium plantingdate(D2) toearlyplantingdate(D1). Applyingtherecommended fertilizerrates incombination with earlyplantingfurtherincreasedfoodproduction,whereasapplying recommendedfertilizerrateswithoutearlierplantingwas insuffi-cienttoreachfoodself-sufficiency.Forsmallfarms,plantingearlier and/orapplyingtherecommendedfertilizerrateswasinsufficient toachievefoodself-sufficiencyunderfutureclimateconditions.
T im e to f lo w er in g ( d ay s) 50 55 60 65 70 75 Baseline V1D1 Baseline V3D1 Future V3D1 Future V1D1
rcp4.5 with maize rcp8.5 with maize
Year 1970 1995 2020 2045 2070 Year 1970 1995 2020 2045 2070 Ti me t o fl ow er in g (d ay s) 40 45 50 55 60
rcp4.5 with millet rcp8.5 with millet
a) b)
c) d)
Fig.5.Simulatedtimetoflowering(days)fortheV1(longduration)andV3(shortduration)varietiesofearlyplanted(D1)maize(a,b)andmillet(c,d),undercurrent farmer’spractice(F1;60kgNha−1formaizeandnoNformillet)duringtheperiod2010-69comparedtothebaselineperiod(1980–2009)fortwofutureclimatescenarios
(rcp4.5and8.5).SimulateddataincluderesultsfromfiveselectedGCMs.
Table5
Averagesimulatedyield(kgha−1)andfirstorderinteractioneffectoffertilizerapplication,plantingdateandvarietybyclimate,comprisingthecurrentandtheprojected
mid-century(2040–2069)climateunderthercp4.5andrcp8.5scenarios.
Maize Millet
Factor Baseline rcp4.5 rcp8.5 Baseline rcp4.5 rcp8.5
Fertilizer F1 1554 768 669 1010 935 884 F2 1857 845 764 1303 1138 1064 P 0.001 0.001 SED 23 9 Planting D1(Early) 2320 1240 1082 1462 1375 1313 date D2(Medium) 2107 985 844 1062 937 867 D3(Late) 689 194 225 945 797 743 P 0.001 0.001 SED 28 11
Variety V1(Longduration) 1844 840 712 1248 1123 1067
V3(Shortduration) 1566 772 722 1065 950 881
P 0.001 0.055
SED 23 9
FormaizeF1=applicationof60kgNha−1asfarmerpractice,F2=applicationof85kgNha−1asrecommendedpractice.FormilletF1=applicationof0kgNha−1asfarmer
practice,F2=applicationof40kgNha−1asrecommendedpractice.D1,D2andD3arerespectivelyearly(June),medium(July)andlate(August)plantingdate.V1andV3
arelongandshortdurationvariety.Rcp4.5andrcp8.5arethelowandhighemissionscenarioforthemid-centuryperiod(2040–2069),SED:standarderrorofthedifference
betweenmeans.
4. Discussion
Underbothemissionscenarios(rcp4.5andrcp8.5)temperatures are predicted to increase in southern Mali with strong nega-tiveconsequencesforcropproductivity,especiallymaize.Ifcrop managementisimproved(ifdelaysinplantingdateareavoided, recommendedfertilizationratesusedandthebestperformingcrop varietieschosen),thelossincropyieldduetoclimatechangecan becompensatedandeventurnedintoanincreasecomparedwith currentyields.Wenowdiscussourmainfindingsinmoredetail, anddrawconclusionsontheconsequencesforsmallholderfamily foodself-sufficiency.
4.1. ClimatechangeinsouthernMali
ThecurrenttrendofclimatewarminginsouthernMali(Traore etal.,2013)willcontinue andevenincrease inspeed,resulting in an increase of maximum and minimum temperature of 2.9 and 3.3◦C respectivelybythemid-centuryperiod (2040–2069). Thisresultiscorroboratedacrossthethreemainecologicalzones (Sudanian,SahelianandSahelo−Saharan)ofWestAfrica( CEDEAO-ClubSahel/OCDE/CILSS, 2008). As a consequence, temperature thresholdswithnegativeeffects oncropyieldsthat used tobe reachedrarely,arenowattainedmorefrequently(Stottetal.,2004). Thistrendwillintensifybymid-centuryifgreenhousegas emis-sions continue unabated(Stottet al.,2011).Thegeographically widespreadwarmingtrendinWestAfricaincludesatendencyof
V1 Baseline rcp4.5 rcp8.5 Yie ld ( k g ha -1 ) 0 1000 2000 3000 4000 b) V3 Baseline rcp4.5 rcp8.5 D1F1 D1F2 D2F1 D2F2 D3F1 D3F2 c) V1 Baseline rcp4.5 rcp8.5 Y ie ld ( k g ha -1 ) 0 500 1000 1500 2000 d) V3 Baseline rcp4.5 rcp8.5 SED SED SED SED a)
Fig.6. Averagesimulatedgrainyieldofthelong(V1)andshort(V3)durationvarietiesofmaize(a,b)andmillet(c,d)underthebaselineclimateandunderthetwofuture climatescenarios(rcp4.5and8.5)forthemid-century(2040-69)period.FormaizeF1=applicationof60kgNha−1asfarmerpractice,F2=applicationof85kgNha−1as
recommendedpractice.FormilletF1=noNappliedasfarmerpractice,F2=applicationof40kgNha−1asrecommendedpractice.D1,D2andD3correspondrespectivelyto
early(June),medium(July)andlate(August)planting.SED:Standarderrorofthedifferencebetweenmeans.
Table6
Futureclimatechangeimpactonthefoodself-sufficiencyoflarge,mediumandsmallfarmtypes.
Croppingpractice Climate Maize
(kgfarm−1) Millet (kgfarm−1) Sorghum (kgfarm−1) Foodself-sufficiency(%,
expressedinkcalterms)
Largefarm Currentpractice Baseline 2451 4927 7390 176
rcp4.5 1605 4457 6685 152
rcp8.5 1538 4542 6163 146
Adaptationoption Fertilizer rcp4.5 1944 6149 9224 206
rcp8.5 1939 6063 9094 204
Mediumfarm Currentpractice Baseline 3650 1503 3506 103
rcp4.5 2679 1393 3251 87 rcp8.5 2568 1386 3235 85 Adaptationoption F2*D1 rcp4.5 4851 2022 4979 141 D1 4005 1907 4696 126 F2 2986 1477 3447 94 F2*D1 rcp8.5 4840 1979 4874 139 D1 3838 1897 4672 124 F2 2979 1446 3375 93
Smallfarm Currentpractice Baseline 693 1802 970 41
rcp4.5 678 1746 940 40 rcp8.5 650 1694 912 39 Adaptationoption F2*D2 rcp4.5 756 1974 1148 46 D2 497 1862 992 40 F2 558 1771 1031 40 F2*D2 rcp8.5 754 1932 1091 45 D2 482 1662 963 37 F2 577 1734 979 39
Currentpracticefertilization(F1)is60kgNha−1formaizeandnoNformilletandsorghumforallfarmtypes.Recommendedfertilizer(F2)formaizeis85kgNha−1and
40kgNha−1formilletandsorghum.Early(D1)andmedium(D2)plantingdatewithlongdurationvarietywasconsideredascurrentpracticeforthelargeandmediumfarm
typerespectivelyandlateplantingandshortdurationvarietywasconsideredascurrentpracticeforthesmallfarmtype.Forthelargefarmstheadaptationoptionwasthe
recommendedfertilizerrate,keepingearlyplanting.Forthemediumandsmallfarmtypesadaptationoptionsweretherecommendedfertilizerrateandplantingearlierin
thegrowingseason.Thelattermeantmovingfrommedium(D2)toearly(D1)plantingdateforthemediumfarmtypeandfromlate(D3)tomedium(D2)plantingdatefor
drierregionstowarmupmorerapidlythanwetterregions(Dai etal.,2004).
Wefoundnoclearchangesinthemonthlyorannualamounts ofrainfallforthenearfuturewhileoverWestAfricathereislow tomediumconfidenceinprojectedchangesofrainfall(Niangetal., 2014).Extremelydryandwetyearswilllikelybecomemore fre-quentduringthe21stcentury(Daietal.,2004)andtheincrease oftemperatureinfuture willlikelyleadtohighersoil evapora-tionlossesandthusdryingoftopsoillayers,therebypotentially increasingtheintensityanddurationofdroughts(Trenberth,2011).
4.2. Effectofclimatechangeonmaizeandmilletyields
Bothlong and shortduration maize and millet varietiesare negativelyaffectedbyclimatechange.Ourmodelpredictions sug-gestthatthetemperatureincreasewillsubstantiallyreducegrain yields,especially ofmaize,stronglyaffectingfoodproductionin theSudano-Sahelianzone. Ourfindings resultingfroma locally calibrated and tested cropgrowth model add evidence to sev-eralstudies that have predicted the potentialimpact of future climatechangeontheperformanceofsub-SaharanAfrica agricul-ture(Barriosetal.,2008;Sultanetal.,2013;Serdecznyetal.,2016). Wefoundalargevariabilityinfutureclimateimpactonyieldof maizeandmillet.Thislargevariabilityisinlinewithfindingsof
Fischeretal.(2001)andParryetal.(2004)showingthatthe mag-nitudeofcropyieldresponsestoclimatechangeinsub-Saharan Africavariedconsiderablyfrom−98%to+16%althoughinmost casespredictedchangesarenegative(Challinoretal.,2007).This largevariabilityinpredictedyieldsislargelyexplainedbyspatial variabilityandbydifferencesinthetypeofclimateandcropgrowth simulationmethodsused.
Thenegativeimpactsof increasedtemperaturesonyieldsof maize,andtoalesserextentmillet,highlighttheimportanceof copingwithglobalwarming,especiallyforresource-limited small-holderfarmers.IntheSudano-Sahelianregion,poorsoilfertility andinappropriatemanagementpracticesareamajorcauseoflow cropproductivity.Separatingthesefactorsfromeffectsofclimate changeandvariabilityisnotstraightforward(Simeltonetal.,2013), butourresultsshowedthatcurrentcroppingsystemswithlow fertilizerinput (e.g.millet), areless sensitivetoclimatechange thancroppingsystemswithhigherfertilizerinput(e.g.maize).As croppingsystemsintensify,goodmanagementintermsoftimely plantingandchoosingadaptedvarietiesbecomesessentialtocope withclimatechange.
Withnoclear predictedchange inrainfall in ourstudy,the predictedclimateimpactwasprimarilyrelatedtoincreased tem-perature.However,apossiblerainfallchangemayhaveanimpact onthecropresponse totemperature increase.For example,for amillet varietyinNiger, itwaspredictedthatchanges in rain-fallstronglyaffectedthenegativeeffectsofincreasedtemperature (+1.5◦C),witha59%versus26%cropyieldlossfordecreasingand increasingrainfallrespectively(SalackandTraore,2006).Similarly,
Roudieretal.(2011)showedthatrainfallchanges,stilluncertain inclimateprojections, havethepotentialtoaggravate or mod-erateimpactdue totemperaturedependingonwhetherrainfall decreasesorincreases.
Our resultsshowedthat akey cause oflower cropyieldsis thereductionofthetimetoflowering,therebyreducingthe effec-tiveperiodduringwhichbiomassandassimilatebuild-upbefore grainfillingcantakeplace.Wefoundthatbymid-centuryforthe rcp4.5andrcp8.5scenariosrespectively,28%and38%ofdaily max-imumtemperaturesduringthegrowingperiodwerehigherthan thethresholdvalueof38◦CabovewhichAPSIMsimulatestheeffect ofheatstressonthenumberofmaizegrains.Forbothscenarios, 57%ofthedailymeantemperatureswereabovethethresholdvalue of30◦CmaizegrainfillingisnegativelyaffectedinAPSIM(Fig.A5).
Simulatedphotosynthesisisalsonegativelyaffectedbyincreased temperatures:bymid-century8%ofdailymeantemperatureswere abovethethresholdvalueof35◦Cforbothcrops.Formaizethe threeprocesses(grainformation,grainfillingandphotosynthesis) wereaffectedbythepredictedtemperatureincreases,whilefor milletonlyphenologyandgrainfillingwereaffected.Thelarge dif-ferenceinthepredictedyieldresponsesbetweenmaizeandmillet toclimatechangeindicatesthattheeffectofthepredicted temper-atureincreaseongrainnumberislarge.
Althoughwithcurrentpracticesmaizeproductivitywasmore stronglyimpactedbyclimatechangethanmilletproductivity,poor yields(lessthan1200kgha−1)wereobtainedmorefrequentlywith
milletthanwithmaize,bothforlongandshortdurationvarieties (Fig.4).Itmeansthatthetrendofexpansionofmaizecultivation (Soumaréetal.,2004)islikelytocontinue,despitethepotential strongdeclineinpredictedyieldsunderclimatechange.
4.3. Adaptationoptionsforfamilyfood-sufficiency
Toachieve familyfoodself-sufficiencycurrentcrop manage-mentstrategiesneedtobeimproved.Theeffectivenessofchanging plantingdateasanadaptationoptionvariesaccordingtofarmtype (Table3).Early plantingis animportantoptiontoachieve food self-sufficiencyforthemedium-sizedfarms.Otherstudies(Kamara etal.,2009)havealsoshowntheimportanceofplantingdatefor enhancingcropproductivity.Theadoptionofearlierplantingwill toagreatextentdependonimprovementofcurrentplanting tech-niques,whichcurrentlyrelyonarudimentaryseederthathasnot evolvedsinceitsintroductionin1960(FAO,2008).Moreefficient seederswouldallowfasterplantingofalargerareaallowing farm-erstotakeadvantageofthefirstrains(Traore,2014).
Althoughfarmersareawareofthebeneficialeffectsofmineral fertilizer on crop productivity, access to a secure and afford-ablesupplyremains themainconstraint.Besidesincreasingthe amounts of fertilizer used, fertilizer use efficiencyneeds to be improved(deRidderetal.,2004).Forinstance,micro-dosingor hillapplicationcanimprovefertilizeruseefficiency,resultingin increasedcropyieldsandfarmer’sincome(Sawadogo-Kaboréetal., 2009).Yetthesmallerfarmersremainfoodinsecureevenwhen improvingtheplantingdate fromlatetomediumand applying therecommendedfertilizerratesbecauseoftheirlimitedcropped area.Achievingfoodsecurityforthisgroupoffarmerswillrequire off-farmactivitiesgiventheirlandconstraints.Bydisaggregating theclimatechangeimpactassessment byfarmtype, adaptation optionsandstrategiescanbetailoredtospecificfarmcontexts,thus increasingtheirrelevanceandlikelihoodofadoption.
4.4. Uncertaintyinprojectionsanditsimplications
Ourresultsshowedlargeuncertaintyinyieldpredictionswith the different GCMs and RCPs both for maize and millet. This uncertaintyprimarilystemsfromthevariationsinthewayGCMs respond tochanges in atmospheric forcing (Teng et al., 2012), whichisassociatedwiththestructureoftheclimatemodels,model parameterization,andalsowithspatialresolution.Basedonthese uncertainties,itcanbeinferredthatresultsobtainedwithagroup orensembleofGCMsaremorereliablethanresultsobtainedwith individualGCMs.Assengetal.(2013)showedthattheuncertainty inclimatechangeimpactprojectionsalsoresultsfromthechoice ofcropmodels.Itisthereforesuggestedtousemulti-cropmodel ensemblesinasimilarwayastheuseofmultiGCMensembles. Ourresultsobtainedwithasinglecropgrowthsimulationmodel shouldthereforebeinterpretedwiththislimitationinmind.
5. Conclusion
With both emission scenarios, i.e. the worst case scenario (rcp8.5)andaloweremissionscenario(rcp4.5),temperaturesin southern Mali will continue to increase. The rise in tempera-turehasnegative consequences for crop productivityand food self-sufficiency.Ourmodelpredictionssuggestthatunderfuture climatechange,thelargeandmediumfarmscanremainfood self-sufficient.Adaptationofcropmanagementthroughearlyplanting, increasedfertilizerratesandadaptedcropvarietiesisessentialto copewithclimatechange.Smallerfarmsarelikelynottoachieve foodself-sufficiencyunderanyofthesemanagementscenariosand willneedoff-farmemploymentorsomeformofsocialsupport. Decisionmakingbyextensionanddevelopmentagentsandpolicy makerscanbesupportedbytheseplace-basedfindingsthatapply totheSudano-SahelianzoneofWestAfrica.
Acknowledgements
We thank the International Development Research Centre (IDRC)andDepartmentforInternationalDevelopment(DFID)for fundingthroughtheClimateChangeAdaptationinAfrica(CCAA) GranttotheUniversityofZimbabwe.Additionalfundingfromthe InstitutD’EconomieRuraleduMaliisgratefullyacknowledged.We thanktheWorldClimateResearchProgramme’sWorkingGroup onCoupled Modelling, which is responsible for CMIP, and the climatemodellinggroups(CNRM-CM5,ECEARTH,HADGEM2-ES, IPSL-CM5A-LR,MPI-ESM-LR)formakingavailabletheirmodel out-put. We are grateful to Neil Huth, Myriam Adam, Irenikatche AkponikpèandDilysMacCarthyforhelpwiththeAPSIMmodel.
AppendixA. Supplementarydata
Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.fcr.2016.11.002.
References
Akponikpè,P.B.I.,Gérard,B.,Michels,K.,Bielders,C.,2010.UseoftheAPSIMmodel inlongtermsimulationtosupportdecisionmakingregardingnitrogen managementforpearlmilletintheSahel.Eur.J.Agron.32,144–154. Asseng,S.,Ewert,F.,Rosenzweig,C.,Jones,J.W.,Hatfield,J.L.,Ruane,A.C.,Boote,
K.J.,Thorburn,P.J.,Rötter,R.P.,Cammarano,D.,2013.Uncertaintyinsimulating wheatyieldsunderclimatechange.Nat.Clim.Change3,827–832.
Barrios,S.,Ouattara,B.,Strobl,E.,2008.Theimpactofclimaticchangeon agriculturalproduction:isitdifferentforAfrica?FoodPolicy2,287–298. Butt,T.A.,McCarl,B.A.,Angerer,J.,Dyke,P.T.,Stuth,J.W.,2005a.Theeconomicand
foodsecurityimplicationsofclimatechangeinmali.Clim.Change68,355–378. Butt,T.A.,McCarl,B.A.,Kergna,A.O.,2005b.Policiesforreducingagriculturalsector
vulnerabilitytoclimatechangeinMali.ClimatePolicy5,581–596. CEDEAO-ClubSahel/OCDE/CILSS,2008.Climateandclimatechange.Theatlason
regionalintegrationinWestAfrica.Environmentseries,p.13.
Challinor,A.,Wheeler,T.,Garforth,C.,Craufurd,P.,Kassam,A.,2007.Assessingthe vulnerabilityoffoodcropsystemsinAfricatoclimatechange.Clim.Change83, 381–399.
Chuku,C.A.,Okoye,C.,2009.Increasingresiliencereducingvulnerabilityin sub-SaharanAfricanagriculture:strategiesforriskcopingandmanagement. Afr.J.Agric.Res.4,1524–1535.
Dai,A.,Lamb,P.J.,Trenberth,K.E.,Hulme,M.,Jones,P.D.,Xie,P.,2004.Therecent Saheldroughtisreal.Int.J.Climatol.24,1323–1331.
deRidder,N.,Breman,H.,vanKeulen,H.,Stomph,T.J.,2004.Revisitinga‘cure againstlandhunger’:soilfertilitymanagementandfarmingsystemsdynamics intheWestAfricanSahel.Agric.Syst.80,109–131.
Deveze,J.C.,2006.Ledevenirdesagriculturescotonnières:CasduMali.AFD,Mali. Djouara,H.,Bélières,J.F.,Kébé,D.,2006.Lesexploitationsagricolesfamilialesdela
zonecotonnièreduMalifaceàlabaissedesprixducoton-graine.Cahiers Agricultures15,1–8.
FAOandINPhO,1993.Riceinhumannutrition,Rome.
FAO,1990.Proteinqualityevaluation.ReportofaJointFAO/WHOExpert Consultation,Bethesda,MD,USA,4–8December1989.Rome,FAO.66pp. FAO,2008.AgriculturalmechanizationinAfrica.Timeforaction:planning
investmentforenhancedagriculturalproductivity.Reportofanexpertgroup meetingjointlyheldbyFAOandUNIDOinViennaon29–30November2007. Rome,FAO.26pp.
Fischer,G.M.,ShahH.,vanVelthuizen,F.O.,Nachtergaele,2001.Global agro-ecologicalassessmentforagricultureinthe21stcentury:Methodology andResults.InternationalInstituteforAppliedSystemsAnalysis,Vienna,119 pp.
Fischer,G.,Shah,M.,Tubiello,F.,VanVelhuizen,H.,2005.Socio-economicand climatechangeimpactsonagriculture:anintegratedassessment,1990–2080. Philos.Trans.R.Soc.Biol.Sci.360,2067–2083.
Fraser,E.D.G.,Dougill,A.J.,Hubacek,K.,Quinn,C.H.,Sendzimir,J.,Termansen,M., 2011.Assessingvulnerabilitytoclimatechangeindrylandlivelihoodsystems: conceptualchallengesandinterdisciplinarysolutions.Ecol.Soc.16,01. Giller,K.E.,Tittonell,P.,Rufino,M.C.,vanWijk,M.T.,Zingore,S.,Mapfumo,P.,
Adjei-Nsiah,S.,Herrero,M.,Chikowo,R.,Corbeels,M.,Rowe,E.C.,Baijukya,F., Mwijage,A.,Smith,J.,Yeboah,E.,vanderBurg,W.J.,Sanogo,O.M.,Misiko,M., deRidder,N.,Karanja,S.,Kaizzi,C.,K’ungu,J.,Mwale,M.,Nwaga,D.,Pacini,C., Vanlauwe,B.,2011.Communicatingcomplexity:integratedassessmentof trade-offsconcerningsoilfertilitymanagementwithinAfricanfarming systemstosupportinnovationanddevelopment.Agric.Syst.104,191–203. Haddeland,I.,Heinke,J.,Voß,F.,Eisner,S.,Chen,C.,Hagemann,S.,Ludwig,F.,2012.
Effectsofclimatemodelradiation,humidityandwindestimateson hydrologicalsimulations.Hydrol.EarthSyst.Sci.16,305–318.
IPCC,2013.Summaryforpolicymakers.In:T.F.Stocker,D.,Qin,G.K.,Plattner,M., Tignor,S.K.,Allen,J.,Boschung,A.,Nauels,Y.,Xia,B.Y.,Midgley,P.M.(Eds.), ClimateChange2013:ThePhysicalScienceBasis.ContributionofWorking GroupItotheFifthAssessmentReportoftheIntergovernmentalPanelon ClimateChange.CambridgeUniversityPress,Cambridge,UnitedKingdomand NewYork,NY,USA.
IPCC,I.,2014.ClimateChange2014:Impacts,Adaptation,andVulnerability.PartA: GlobalandSectoralAspects.ContributionofWorkingGroupIItotheFifth AssessmentReportoftheIntergovernmentalPanelonClimateChange.In: Field,C.B.,Barros,V.R.,Dokken,D.J.,Mach,K.J.,Mastrandrea,M.D.,Bilir,T.E., Chatterjee,M.,Ebi,K.L.,Estrada,Y.O.,Genova,R.C.,Girma,B.,Kissel,E.S.,Levy, A.N.,MacCracken,S.,Mastrandrea,P.R.,White,L.L.(Eds.).CambridgeUniversity Press,Cambridge,UnitedKingdomandNewYork,NY,USA,1132pp. Kamara,A.,Friday,Y.E.,David,C.,Lucky,O.O.,2009.Plantingdateandcultivar
effectsongrainyieldindrylandcornproduction.Agron.J.101,91–98. Keating,B.A.,Carberry,P.S.,Hammer,G.L.,Probert,M.E.,Robertson,M.J.,
Holzworth,D.,Huth,N.I.,Hargreaves,J.N.,Meinke,H.,Hochman,Z.,2003.An overviewofAPSIM,amodeldesignedforfarmingsystemssimulation.Eur.J. Agron.18,267–288.
Lobell,D.B.,Burke,M.B.,Tebaldi,C.,Mastrandrea,M.D.,Falcon,W.P.,Naylor,R.L., 2008.Prioritizingclimatechangeadaptationneedsforfoodsecurityin2030. Science319,607–610.
Muller,C.A.,BondeauA.,Popp,K.,Waha,M.,Fader,2010.Climatechangeimpacts onagriculturalyields.BackgroundnotetotheWorldDevelopmentReport 2010.PotsdamInstituteforClimateImpactResearch,Potsdam.
Nakicenovic,N.J.,Alcamo,G.,Davis,B.,deVries,J.,Fenhann,S.,Gaffin,K.,Gregory, A.,Grubler,T.Y.Jung,T.,Kram,2000.Specialreportonemissionsscenarios:a specialreportofWorkingGroupIIIoftheIntergovernmentalPanelonClimate Change.PacificNorthwestNationalLaboratory,Richland,WA(US),
EnvironmentalMolecularSciencesLaboratory(US).
Niang,I.,Ruppel,O.C.,Abdrabo,M.A.,Essel,A.,Lennard,C.,Padgham,J.,Urquhart, P.,2014.Africa.In:Barros,V.R.,etal.(Eds.),ClimateChange2014:impacts, adaptation,andvulnerability.PartB:regionalaspects.Contributionof WorkingGroupIItotheFifthAssessmentReportoftheIntergovernmental PanelonClimateChange.CambridgeUniversityPress,CambridgeandNew York,NY,pp.1199–1265.
Parry,M.L.,Rosenzweig,C.,Iglesias,A.,Livermore,M.,Fischer,G.,2004.Effectsof climatechangeonglobalfoodproductionunderSRESemissionsand socio-economicscenarios.GlobalEnviron.Change14,53–67.
Piani,C.,Weedon,G.,Best,M.,Gomes,S.,Viterbo,P.,Hagemann,S.,Haerter,J., 2010.Statisticalbiascorrectionofglobalsimulateddailyprecipitationand temperaturefortheapplicationofhydrologicalmodels.J.Hydrol.395, 199–215.
Rosenzweig,C.,Parry,M.L.,1994.Potentialimpactofclimate-changeonworld foodsupply.Nature367,133–138.
Rosenzweig,C.,Jones,J.W.,Hatfield,J.L.,Ruane,A.C.,Boote,K.J.,Thorburn,P.,Antle, J.M.,Nelson,G.C.,Porter,C.,Janssen,S.,Asseng,S.,Basso,B.,Ewert,F.,Wallach, D.,Baigorria,G.,Winter,J.M.,2013.Theagriculturalmodelintercomparison andimprovementproject(AgMIP):protocolsandpilotstudies.Agric.Forest Meteorol.170,166–182.
Roudier,P.,Sultan,B.,Quirion,P.,Berg,A.,2011.Theimpactoffutureclimate changeonWestAfricancropyields:whatdoestherecentliteraturesay? GlobalEnviron.Change10,1073–1083.
Salack,S.,Traore,S.,2006.Impactsdeschangementsclimatiquessurlaproduction dumiletdusorghodanslessitespilotesduplateaucentral,deTahouaetde Fakara.Internshipreport.AGRHYMET/CILSS,Niamey,Niger.
Sawadogo-Kaboré,S.M.,Fosu,R.,Tabo,R.,Kanton,S.,Buah,A.,Bationo,S. Ouédraogo,S.,Pale,M.Bonzi,K.,Ouattara,2009.Improvingcropproductivity andfarmerincomeusingfertilizermicrodosingandthewarrantagesystemin theVoltaBasin.CGIARChallengeProgramonWaterandFood:135.
Schlenker,W.,Lobell,D.B.,2010.Robustnegativeimpactsofclimatechangeon Africanagriculture.Environ.Res.Lett.5,014010.
Serdeczny,O.,Adams,S.,Baarsch,F.,Coumou,D.,Robinson,A.,Hare,W.,Schaeffer, M.,Perrette,M.,Reinhardt,J.,2016.ClimatechangeimpactsinSub-Saharan Africa:fromphysicalchangestotheirsocialrepercussions.Reg.Environ. Change,1–16.
Simelton,E.,Quinn,C.H.,Batisani,N.,Dougill,A.J.,Dyer,J.C.,Fraser,E.D., Mkwambisi,D.,Sallu,S.,Stringer,L.C.,2013.Israinfallreallychanging? Farmers’perceptions,meteorologicaldata,andpolicyimplications.Clim.Dev. 5,123–138.
Sissoko,F.,2009.Analysedesfluxd’eaudanslessystèmesdeculturesous couverturevégétaleenzonesoudanosahelienne:Casducotonseméaprèsune culturedesorgho/brachiariaausudduMali.Centreinternationald’etudes supérieuresensciencesagronomiquesMontpellier.MontpellierSupAgro,p. 169.
Soumaré,M.,Bazile,D.,Vaksmann,M.,Kouressy,M.,Diallo,K.,HamalaDiakité, C.H.,2004.Diversitéagroécosystémiqueetdevenirdescéréalestraditionnelles ausudduMali.CahiersAgricultures17,79–85.
Stott,P.A.,Stone,D.A.,Allen,M.R.,2004.HumancontributiontotheEuropean heatwaveof2003.Nature432,610–614.
Stott,P.A.,Jones,G.S.,Christidis,N.,Zwiers,F.W.,Hegerl,G.,Shiogama,H.,2011. Single-stepattributionofincreasingfrequenciesofverywarmregional temperaturestohumaninfluence.Atmos.Sci.Lett.12,220–227.
Sultan,B.,Roudier,P.,Quirion,P.,Alhassane,A.,Muller,B.,Dingkuhn,M.,Ciais,P., Guimberteau,M.,Traore,S.,Baron,C.,2013.Assessingclimatechangeimpacts onsorghumandmilletyieldsintheSudanianandSaheliansavannasofWest Africa.Environ.Res.Lett.8,014040.
Taylor,K.E.,Stouffer,R.J.,Meehl,G.A.,2012.AnoverviewofCMIP5andthe experimentdesign.Bull.Am.Meteorol.Soc.93,485–498.
Taylor,S.H.,Ripley,B.S.,Martin,T.,De-Wet,L.A.,Woodward,F.I.,Osborne,C.P., 2014.PhysiologicaladvantagesofC4grassesinthefield:acomparative experimentdemonstratingtheimportanceofdrought.GlobalChangeBiol.20, 1992–2003.
Teng,J.,Vaze,J.,Chiew,F.H.S.,Wang,B.,Perraud,J.-M.,2012.Estimatingthe relativeuncertaintiessourcedfromGCMsandhydrologicalmodelsin modelingclimatechangeimpactonrunoff.J.Hydrometeorol.13,122–139. Tingem,M.,Rivington,M.,2009.Adaptationforcropagriculturetoclimatechange
inCameroon:turningontheheat.Mitig.Adapt.Strateg.GlobalChange14, 153–168.
Tingem,M.,Rivington,M.,Bellocchi,G.,2009.Adaptationassessmentsforcrop productioninresponsetoclimatechangeinCameroon.Agron.Sustain.Dev. 29,247–256.
Traore,B.,Corbeels,M.,vanWijk,M.T.,Rufino,M.C.,Giller,K.E.,2013.Effectsof climatevariabilityandclimatechangeoncropproductioninsouthernMali. Eur.J.Agron.49,115–125.
Traore,B.,vanWijk,M.T.,Descheemaeker,K.,Corbeels,M.,Rufino,M.C.,Giller,K.E., 2014.EvaluationofclimateadaptationoptionsforSudano-Saheliancropping systems.FieldCropsRes.156,63–75.
Traore,B.,2014.ClimateChange,ClimateVariabilityandAdaptationOptionsin SmallholderCroppingSystemsoftheSudano–SahelRegioninWestAfrica PhD.WageningenUniversity.
Trenberth,K.E.,2011.Changesinprecipitationwithclimatechange.Clim.Res.47, 123.
Weedon,G.,Gomes,S.,Viterbo,P.,Shuttleworth,W.,Blyth,E.,Österle,H.,Adam,J., Bellouin,N.,Boucher,O.,Best,M.,2011.CreationoftheWATCHforcingdata anditsusetoassessglobalandregionalreferencecropevaporationoverland duringthetwentiethcentury.J.Hydrometeorol.12,823–848.
Willmott,C.J.,Ackleson,S.G.,Davis,R.E.,Feddema,J.J.,Klink,K.M.,Legates,D.R., O’Donnell,J.,Rowe,C.M.,1985.Statisticsfortheevaluationandcomparisonof models.J.Geophys.Res.Oceans1978–2012(90),8995–9005.