• No results found

Value from Waste. Amsterdam s Vision on the 4 th -generation Waste-2-Energy. Ir. M.A.J. (Marcel) van Berlo

N/A
N/A
Protected

Academic year: 2021

Share "Value from Waste. Amsterdam s Vision on the 4 th -generation Waste-2-Energy. Ir. M.A.J. (Marcel) van Berlo"

Copied!
55
0
0

Loading.... (view fulltext now)

Full text

(1)

ISWA

Ir. M.A.J. (Marcel) van Berlo

Waste & Energy Company City of Amsterdam

info@afvalenergiebedrijf.nl

Value from Waste

Amsterdam’s Vision on

the 4

th

-generation Waste-2-Energy

ISWA congress 2007

Plant Visit at Afvalenergiebedrijf

(2)

ISWA

1. INTRODUCTION

1. INTRODUCTION

1. Introduction

2. Scenarios for Recovery

3. Amsterdam

4. New generation of waste incineration

5. Conclusion

1. Introduction

2. Scenarios for Recovery

3. Amsterdam

4. New generation of waste incineration

5. Conclusion

(3)

Gemeente Amsterdam

Afval Energie Bedrijf

Society

Society

Raw materials

Air

Water

Waste

Water

Waste

Exhaust

Society

(4)

Gemeente Amsterdam

Afval Energie Bedrijf

Closing the loop

Closing the loop

Waste

Energy

Air

Water

Waste

Water

Exhaust gas

Society

WFPP

Raw materials

(5)

Gemeente Amsterdam

Afval Energie Bedrijf

Desert

Desert

• Scarcity • Survival • Self supporting • Deterrence • Robustness • Long live cycle

• Economical (=Zuinig)

• Waste prevention • Residues remain

(6)

Gemeente Amsterdam

Afval Energie Bedrijf

Tropical rain

forest:

Tropical rain

forest:

• Abundance • Growth • Competition • Complexity • Redundancy • Short life-cycle • Wasteful (=Verspillend) • Massive disposal • Massive recycling: 1. Eat-and-be-eaten =

use the proteins

2. Down cycle =

Molecular decomposition

3. Production =

(7)

Gemeente Amsterdam

Afval Energie Bedrijf

Grades of recycling

Grades of recycling

Society

Reuse: “as-is or repair”

Disassemble: “components”

Fragment: “materials”

Decompose: “Molecules”

Convert: “Atoms and energy”

Second hand car

Dismantling the car

Shredder

Fermentation, Pyrolysis

Burn

(8)

Gemeente Amsterdam

Afval Energie Bedrijf

Waste is a RENEWABLE !

Waste is a RENEWABLE !

l

100% Sustainable

Energy from an endless

flow of waste

l

50% Renewable

CO2-free energy

from biomass

l

100% Sustainable

Energy from an endless flow of waste

l

50% Renewable

CO2-free energy

from biomass

l

Richer than most RAW MATERIALS

high concentration of

valuable METALS

l

Richer than most RAW MATERIALS

high concentration of

valuable METALS

Waste Fired Power Plant

Renewable

ENERGY 50% of waste is BIOMASS

(9)

Gemeente Amsterdam

Afval Energie Bedrijf

2. Dutch scenario 2012

2. Dutch scenario 2012

0 10 20 30 40 50 60 70 Not Combustible Combustible Reuse 0 10 20 30 40 50 60 70 Not Combustible Combustible Reuse

Total Waste Production

0 2 4 6 8 10 12 2002 2012 Landfill

Other waste incineration R1 Hazardous waste R1 Sludges D10 Incineration D10 0 2 4 6 8 10 12 2002 2012 Landfill

Other waste incineration R1 Hazardous waste R1 Sludges D10 Incineration D10

Combustible Waste

(10)

Gemeente Amsterdam

Afval Energie Bedrijf

Dutch Results of policy

Dutch Results of policy

0

10

20

30

40

50

60

70

19

85

19

88

19

91

19

94

19

97

20

00

20

03

M

ton/

y

ear

Reuse/Recycling

Incineration

Discharge

Landfill

(11)

ISWA

Dutch waste policy

Instruments for steering waste management:

ƒ Regulations on landfill (1980-90)

ƒ Legislation

- stringent emission limits incineration(1990) - directives and covenants (glass, paper, CFK)

ƒ Ban on landfill and

landfill tax

for combustible waste (1995)

ƒ Financial incentives (REB 1997, MEP 2005)

Preference order:

1.

Prevention

2.

Reuse and Recycling

3.

Incineration/energy production

4.

Landfill

(12)

ISWA

Cost ranges for Waste Management options

20 50 30 150 30 200 110 80 0 50 100 150 200

Landfill Incineration Reuse/recycling

€ / ton MSW

Landfill Tax

Maximum cost range Minimum cost

Price competition versus Preference order

ƒ Cheap landfill beats every other option

ƒ Landfill tax (or landfill ban) is needed to give reuse/recycling a fair chance

ƒ WtE (as alternative for land filling) is needed to implement landfill taxes

ƒ Prices of incineration are within range of reuse/recycling options

(13)

Gemeente Amsterdam

Afval Energie Bedrijf

2. SCENARIOS: “Integral chain efficiency”

2. SCENARIOS: “Integral chain efficiency”

Paper

Glass

Household

Energy

30%

WFPP

30%

Separation

(mechanical)

Energy

28%

Overall efficiency Conversion efficiency 30% Percent of Mass

RDF

40%

25%

Landfill

Energy

2%

25% 20% Digestion 5% recovery

Material

Source

Paper

Glass

Landfill 1,5%

Materials

SAI

(14)

The NEW Generation WtE

Third generation (1985-now) is

“designed to be CLEAN”

Fourth generation (now--> ….) is

“designed for RECOVERY”

of ENERGY and MATERIALS

Third generation (1985-now) is

“designed to be CLEAN”

Fourth generation (now--> ….) is

“designed for RECOVERY”

(15)

2. PERFORMANCE INDICATORS for WtE

2. PERFORMANCE INDICATORS for WtE

Energy LCA, GHG-emission/ avoidance, LCC Mass Dust, NOx, CO, HCl, SO2, CxHy dioxin, HM, CO2 Deviation rate R1/D10, Exergy, Primary-resources

Output

Quantity

Effect

Evaluation

Acidity, Toxicity, CO2-equiv Waste WtE Electricity Exhaust gas Residues Heat Materials

Input

(16)

Gemeente Amsterdam

Afval Energie Bedrijf

RECOVERY is the new RULE !

RECOVERY is the new RULE !

It was

WI

Waste incineration

It is

WTE

Waste To Energy

It will be

WFPP Waste Fired

Power Plant

It was

WI

Waste incineration

It is

WTE

Waste To Energy

It will be

WFPP

Waste Fired

Power Plant

ca.

15%

Æ

30%

ca.

15%

(17)

Gemeente Amsterdam

Afval Energie Bedrijf

Electrical Efficiency of Power Plants

Electrical Efficiency of Power Plants

Depends on

fuel quality

:

l

Natural Gas

55 %

l

Oil

50 %

l

Coal

45 %

l

Lignite

40 %

l

Biomass

35 %

l

Waste 15…22 %....30%

Depends on

fuel quality

:

l

Natural Gas

55 %

l

Oil

50 %

l

Coal

45 %

l

Lignite

40 %

l

Biomass

35 %

l

Waste 15…22 %....30%

Current: State-of-the-Art Current: State-of-the-Art New:

Best Available Technology

New:

Best Available Technology

Current Average

(18)

EXergy Production

EXergy Production

0,0% 5,0% 10,0% 15,0% 20,0% 25,0% 30,0% 35,0% 40,0% 45,0% 50,0% Exergy equ. Recovered metals Exergy efficiency

Exergy equ. Recovered metals 0,0% 0,0% 4,5% 7,0% 10,8% 7,0% 10,8% 4,5% Exergy efficiency 0,0% 2,0% 14,6% 19,8% 30,0% 24,5% 33,1% 14,6% DUMPSITE LANDFILL+ biogas engines WtE Average NL WtE Convention al WtE Optimised WtE Conv.+CHP WtE Optim.+CH P WtE heat only

(19)

R1 / D10

(with proposed limits)

R1 / D10

(with proposed limits)

0 0,05 0,84 0,63 0,5 0,91 0,88 1,11

0,6

0,65

0

0,2

0,4

0,6

0,8

1

1,2

DUM P S IT E L ANDF IL L Wt E A ver ag e Wt E Co n v . Wt E O p tim . Wt E Co n v .+ CHP Wt E O p tim .+CHP W tE h eat onl y

(20)

Gemeente Amsterdam

Afval Energie Bedrijf

3. Amsterdam:

Waste & Energy Enterprise

3. Amsterdam:

Waste & Energy Enterprise

l

Owned by Local government

l

Long term contracts

l

Commercial operation: 70 €/ton of waste

l

Capital intensive

l

Industrial scale

l

Mission:

Maximise the use of waste

l

Ambitious targets

-

Best environmental performance

-

Lowest cost

l

Owned by Local government

l

Long term contracts

l

Commercial operation: 70 €/ton of waste

l

Capital intensive

l

Industrial scale

l

Mission:

Maximise the use of waste

l

Ambitious targets

-

Best environmental performance

(21)

Gemeente Amsterdam

Afval Energie Bedrijf

Generations in Waste incineration

Generations in Waste incineration

Generation Capacity [ton/year] Operational paradigm

1885

-

Open air incineration

1

st

1917

150.000 Hygiene

2

nd

1969

500.000

Flue gas de-dusting

3

rd

1993

800.000 Chemical

cleaning

4

th

2006

+

500.000

RECOVERY

of ENERGY and MATERIALS

Generation Capacity [ton/year] Operational paradigm

1885

-

Open air incineration

1

st

1917

150.000 Hygiene

2

nd

1969

500.000

Flue gas de-dusting

3

rd

1993

800.000 Chemical

cleaning

4

th

2006

+

500.000

RECOVERY

of ENERGY and MATERIALS

Start collection

Start collection

(22)

Gemeente Amsterdam

Afval Energie Bedrijf

1

st

Incineration 1919-1969

(23)

Gemeente Amsterdam

Afval Energie Bedrijf

AVI-Noord 1969-1993

(24)

Gemeente Amsterdam

Afval Energie Bedrijf

Aerial picture (overview)

(25)

Gemeente Amsterdam

Afval Energie Bedrijf

Construction of WFPP in Amsterdam

(26)

ISWA

Generations Waste to Energy in Amsterdam

0 200.000 400.000 600.000 800.000 1.000.000 1.200.000 1.400.000 1.600.000 1.800.000 2.000.000 19 15 19 20 19 25 19 30 19 35 19 40 19 45 19 50 19 55 19 60 19 65 19 70 19 75 19 80 19 85 19 90 19 95 20 00 20 05 Waste [Tons/Year] 0 100.000 200.000 300.000 400.000 500.000 600.000 700.000 800.000 900.000 1.000.000 Elektricity [MWh/Year] HR-AEC AEC - slib AEC - afval AVI-Noord2 AVI-Noord1 E-productie 4e 1e 2e 3e 4e 3e 2e 1e

(27)

Gemeente Amsterdam

Afval Energie Bedrijf

SIZE MATTERS

Investment in relation to the capacity of 4 Dutch AVI’s

SIZE MATTERS

Investment in relation to the capacity of 4 Dutch AVI’s

0 500 1000 1500 2000 100 200 300 400 500 600 700 800 900

Capacity in 1000 ton / year 0 500 1000 1500 2000 100 200 300 400 500 600 700 800 900

Capacity in 1000 ton / year

AVI Amsterdam AVI Amsterdam Investment Investment in in €€ perper ton / ton / yearyear

(28)

Gemeente Amsterdam

Afval Energie Bedrijf

4. New generation in Waste incineration

4. New generation in Waste incineration

Historical waste incineration “generations”:

l

0

Open air incineration

l

1

st

1900

oven

l

2

nd

1960

dust removal

from flue gas

l

3

rd

1985

chemical cleaning of flue gas

In this presentation we outline a new step:

l

4

th

2006

RECOVERY

of energy and materials

Historical waste incineration “generations”:

l

0

Open air incineration

l

1

st

1900

oven

l

2

nd

1960

dust removal

from flue gas

l

3

rd

1985

chemical cleaning

of flue gas

In this presentation we outline a new step:

l

4

th

2006

RECOVERY

(29)

Gemeente Amsterdam

Afval Energie Bedrijf

Why new generation ?

Why new generation ?

RECOVERY is the

“next logical step”.

RECOVERY is the

“next logical step”

.

Historical development of public awareness:

Historical development of public awareness:

A newly identified need leads to

a new technical concept.

A newly identified need

leads to

a new technical concept.

The adapted installations will have

additional lifetime because of

social acceptability

The adapted installations will have

additional lifetime

because of

(30)

Gemeente Amsterdam

Afval Energie Bedrijf

4th-generation Incineration

4th-generation Incineration

l

Cost must go down

l

Reliable, proven technology

l

Energy Optimisation

to the max !!

Leap from 22%

to >30%

l

Material reuse

to the max !!

Fe, Al, Cu, Gypsum, CaCl2,

Washed bottom ash = N1 quality building material

Washed fly ash = inert

l

Cost must go down

l

Reliable, proven technology

l

Energy Optimisation

to the max !!

Leap from 22%

to >30%

l

Material reuse

to the max !!

Fe, Al, Cu, Gypsum, CaCl2,

Washed bottom ash = N1 quality building material

Washed fly ash = inert

=

WFPP

(31)

Gemeente Amsterdam

Afval Energie Bedrijf

CONCEPT for RECOVERY

CONCEPT for RECOVERY

Incineration Fluegass cleaning Chemicals 10 kg Chemicals 10 kg Fluegass Fluegass Municipal Municipal Solid Solid Waste Waste

850

850

kWh/tonkWh/ton = =

30

30

%

%

of energy in wasteof energy in waste

Salt 7 kg Gypsum 5 kg Fly-ash 10 kg Residue Residue 55 kgkg Non Ferro 5 kg Iron 25 kg Sand 100 kg Granulate 100 kg Fines Fines 2020 kgkg SAI Output per Output per ton of waste: ton of waste:

Energy utilisation rate = 0,84

Energy utilisation rate = 0,84

EU discussion on R1/D10

(32)

Gemeente Amsterdam

Afval Energie Bedrijf

Sorting After Incineration

Sorting After Incineration

Sort Bottom Bottom ash ash Cyclone 6 6--40mm40mm 2 2--6mm6mm <2mm <2mm Clean sand

Dewatering Sludge cakeSludge cake

Magnet Eddy current

Density separation Magnet

Iron

Non-Fe metals Coarse granulate Fine granulate Washing water Washing water

(33)

ISWA

(34)

Gemeente Amsterdam

Afval Energie Bedrijf

HR-AVI project

HR-AVI project

l

Systematic approach to optimise recovery

l

Using proven technologies in new combination

l

Electrical efficiency >30%

l

New logistic concept

l

Budget:

400 M€

l

Construction start:

Begin 2004

l

Completion:

End 2006

l

Systematic approach to optimise recovery

l

Using proven technologies in new combination

l

Electrical efficiency >30%

l

New logistic concept

l

Budget:

400 M€

l

Construction start:

Begin 2004

l

Completion:

End 2006

=

WFPP

(35)

Gemeente Amsterdam

Afval Energie Bedrijf

- Large 1st draw: Height >20m,

Flue-gas velocity < 3m/s - Large 2nd and 3rd-draw

- Super-heater: Flue-gas velocity < 2,5 m/s - Second Economiser after fabric filter

- Flue-gas recirculation

(primary and secondary air) 3e 2e 1e Evaporator Superheater Economiser

2

3 4

terti secu terti secu Prim 1st 2nd 850°C 3rd 650°C SSH 1 180°C

1

4th α Ketelas 1 Ketelas 2 Bodemas SSH 2 SSH 3 SSH 4 ECO 1 ECO 2 ECO 3

Sketch boiler design

(36)

Gemeente Amsterdam

Afval Energie Bedrijf

Superheated steam 440-480°C

Steam pressure 125-130 bar

Steam reheating after HP-turbine

Extra economiser

Drum

Boiler

Reheater

25°C 0,03 bar

Superheater

x

1 2

x

320°C 13 bar 190°C 14 bar 480°C 130 bar 335°C 135 bar

Turbine

Sketch steam reheating

Sketch steam reheating

(37)

ISWA Generator Generator

Reheater (2x)

Reheater (2x)

Condensor Condensor Cooling water Cooling water HP-Turbine

HP-Turbine LP-TurbineLP-Turbine

(38)

ISWA

(39)

ISWA

Boiler WFPP

(40)

ISWA

Flue-gas cleaning WFPP

(41)

Gemeente Amsterdam

Afval Energie Bedrijf

Energy-potential in Waste

Energy-potential in Waste

Waste

in EU

:

182 MTon/year x 10 MJ/kg x 30%

Electricity:

= 550 PJ / year

= 150 TWh / year

= 17.300 MW-continuous

=

8 %

of total EU-production

Avoided CO

2

= 200 million tons per year

Waste

in EU

:

182 MTon/year x 10 MJ/kg x 30%

Electricity:

= 550 PJ / year

= 150 TWh / year

= 17.300 MW-continuous

=

8 %

of total EU-production

(42)

ISWA

Efficiency breakdown

0% 20% 40% 60% 80% 100% Conventional Boiler losses (stack) Cooling = Loss 20% el 0% 20% 40% 60% 80% 100% WFPP Boiler losses (stack) Cooling = Loss 30% el 20% el 0% 20% 40% 60% 80% 100% Conv+ heat

Boiler losses (stack)

Cooling = Loss Heat 20% el Derating of electricity by heat delivery 0% 20% 40% 60% 80% 100% WFPP+ heat Boiler losses (stack) Cooling = Loss Heat 30% el 20% el Derating of electricity by heat delivery

(43)

Greenhouse effect overall

Greenhouse effect overall

Greenhouse effect overall

976 328 81 -15 -219 -173 -349 -153 -400 -200 0 200 400 600 800 1.000 DUM PS ITE LAN DFI LL+ biog as e ngine s WtE Aver age N L WtE Conv entio nal WtE Op timis ed WtE Conv .+C HP WtE Opt im.+C HP WtE heat on ly kg CO2/ton Waste Landfill Electricity Heat

Combined heat and power

(44)

Greenhouse gas balance

Greenhouse gas balance

-1500 -1250 -1000 -750 -500 -250 0 250 500 750 1000 1250 1500 [kg CO2 / ton Waste]

Avoided CO2 by Heat delivery 0 0 -25 0 0 -241 -210 -563

Avoided CO2 by Electricity production 0 -33 -234 -332 -495 -248 -416 59

Avoided CO2 by metal recovery 0 0 -44 -65 -98 -65 -98 -44

Methane (CO2-equiv.) 1.251 693 15 15 15 15 15 15

CO2 emission Fos.orig. 0 0 383 381 374 381 374 394

CO2 emission Bio.orig. 208 151 468 468 468 468 468 468

CO2 used for biomass -483 -483 -483 -483 -483 -483 -483 -483

DUMPSIT

E LANDFILL

WtE

Average WtE Conv.

WtE Optim. WtE Conv.+CH P WtE Optim.+CH P WtE heat only

(45)

ISWA

WFPP

®

is the most cost-effective

renewable option…

Sources: EZ, Regeling subsidiebedragen milieukwaliteit elektriciteitsproductie; VROM, personal communication; ECN, 2002, Duurzame Energie en Ruimte, M. Menkveld; analysis Deloitte

Cost per avoided ton CO2

0 20 40 60 80 100 120 140 Waste-2-Energy WFPP® Wind on land

Biomass Wind on sea Photo-voltaic

1033

Cost per avoided ton CO2

0 20 40 60 80 100 120 140 Waste-2-Energy WFPP® Wind on land

Biomass Wind on sea Photo-voltaic

1033 € / av oid e d ton of C O 2 € / av oid e d ton of C O 2

(46)

ISWA

Optimal Electrical efficiency

OPTIMISATION:

•Local conditions •Cooling water •Type of waste •Size of installation •Electricity price •Depreciation time •Subsidies •Environmental profile •Permit conditions

OPTIMISATION:

•Local conditions •Cooling water •Type of waste •Size of installation •Electricity price •Depreciation time •Subsidies •Environmental profile •Permit conditions Source: W+G 0 5 10 15 20 25 30 35 20 40 60 80 Electricity price [€/MWh] Small installation Big installation % %

(47)

ISWA

Income from waste and energy

110

0

10

20

30

40

50

60

-10 -5 0

5 10 15 20 25 30 35 40 45 50

Year (

before/after scheduled startup)

M / year Extra lifetime 4th-generation Gain on permiting HE Green Fee Aditional Electricity Electricity Waste 2 1 3 4

(48)

ISWA

2 1

3 4

(49)

ISWA

Incineration

SYNERGY

SYNERGY

Waste

Water

Waste

Biogas Engines

Electricity

Water

Electricity Sewage Sludge Biogas Heat Exhaust

Sewage

Treatment

Plant

(50)

ISWA

Patents for licensing

with support for implementation

Flue gas Cleaning

1. Dioxin removal in wet flue gas cleaning with detergents

2. Mercury removal in wet flue gas cleaning

3. Combining waste incineration and sewage treatment plant

Energy Recovery

4. High Efficiency - Waste Fired Power Plant

5. Flue gas recirculation to primary air

6. Steam super heater construction with screen pipes

7. Steam super heater with unround pipes

Material recovery

8. Salt fabrication from flue gas cleaning residue

9. Recovery of fine Non-Ferrous metals from bottom ash

10. Gravity Separation of Non-Ferrous metals from bottom ash Flue gas Cleaning

Flue gas Cleaning

1.

1. Dioxin removal in wet flue gas cleaning with detergentsDioxin removal in wet flue gas cleaning with detergents 2.

2. Mercury removal in wet flue gas cleaningMercury removal in wet flue gas cleaning 3.

3. Combining waste incineration and sewage treatment plantCombining waste incineration and sewage treatment plant

Energy Recovery

Energy Recovery

4.

4. High Efficiency High Efficiency -- Waste Fired Power PlantWaste Fired Power Plant 5.

5. Flue gas recirculation to primary airFlue gas recirculation to primary air 6.

6. Steam super heater construction with screen pipesSteam super heater construction with screen pipes 7.

7. Steam super heater with Steam super heater with unroundunround pipespipes

Material recovery

Material recovery

8.

8. Salt fabrication from flue gas cleaning residueSalt fabrication from flue gas cleaning residue 9.

9. Recovery of fine NonRecovery of fine Non--Ferrous metals from bottom ashFerrous metals from bottom ash 10.

(51)

ISWA

6. CONCLUSION

6. CONCLUSION

ƒ

COST can/must go DOWN

ƒ

SIMPLE process do it OPTIMAL

ƒ

Environmental efficiency use all SYNERGY

ƒ

Electrical Efficiency

> 30%

ƒ

COST can/must go DOWN

ƒ

SIMPLE process do it OPTIMAL

ƒ

Environmental efficiency use all SYNERGY

(52)

ISWA

Conclusion:

Waste is the directly available raw

material for clean renewable energy

and high quality building materials

Let’s explore together world’s most

valuable mineral

(53)

ISWA

Nothing is waste!

info@afvalenergiebedrijf.nl

(54)

Gemeente Amsterdam

Afval Energie Bedrijf

Tropical rain forest

(55)

AEB Amsterdam

References

Related documents

Prior to enactment of the Stark law, an HHS Office of the Inspector General study found that physicians with a financial interest in the clinical laboratories to which they

The specific objectives were; to establish the effect of management style in perfomance of family owned Matatu business, determine the effect of entrepreneurial culture in

Our experience indicates that mature Aboriginal students frequently identify trauma issues, including intergenerational trauma related to residential school experiences in

We have exploited unpublished data from the BLS for 1995–97 on the monthly frequency of price changes for 350 categories of consumer goods and services. We found considerably

Plaintiffs Marisela Herrera, Luz Sanchez, Nicholas Acosta, and Penny Wollmen bring this Class Action Complaint against JFK Medical Center Limited Partnership, doing business under

Regulatory bodies shall use the code to align licensing and re- licensing requirements accordingly; educational institutions shall include the ethical content in curricula

Under the influence of the authority and Charisma with which he acted, some followers saw in him a future ideal king of Israel and therefore called him son of David and Christ..

The present investigation was undertaken to explore the diversity among Indian mustard genotypes (varieties) using molecular polymorphism percentage, PIC were