• No results found

On a multidimensional Hilbert type inequality with parameters

N/A
N/A
Protected

Academic year: 2020

Share "On a multidimensional Hilbert type inequality with parameters"

Copied!
14
0
0

Loading.... (view fulltext now)

Full text

(1)

R E S E A R C H

Open Access

On a multidimensional Hilbert-type

inequality with parameters

Yanping Shi

1*

and Bicheng Yang

2

*Correspondence:

jsdxsysyp1978@163.com

1Normal College of Jishou

University, Jishou, Hunan 416000, P.R. China

Full list of author information is available at the end of the article

Abstract

In this paper, by the use of the way of weight coefficients, the transfer formula, and the technique of real analysis, we introduce some proper parameters and obtain a multidimensional Hilbert-type inequality with the following kernel:

s

k=1

(min{,cknβ})

γ

s

(max{,cknβ})

λ+γ

s

and a best possible constant factor. The equivalent form, the operator expressions with the norm, and some particular cases are also considered. The lemmas and theorems provide an extensive account of this type of inequalities.

MSC: 26D15; 47A07

Keywords: Hilbert-type inequality; weight coefficient; equivalent form; operator; norm

1 Introduction

Ifp> ,p+q= ,f(x),g(y)≥,fLp(R

+),gLq(R+),fp= (

fp(x)dx) 

p> ,g q> , then we have the following Hardy-Hilbert’s integral inequality (cf.[]):

 ∞

f(x)g(y)

x+y dx dy<

π

sin(π/p)fpgq, ()

where the constant factor π

sin(π/p) is the best possible. Assuming that am,bn≥, a=

{am}∞m=∈lp,b={bn}∞n=∈lq,ap= (

m=a

p m)

p> ,b

q> , we have the following dis-crete Hardy-Hilbert’s inequality with the same best constantsin(ππ/p):

m=

n=

ambn

m+n<

π

sin(π/p)apbq. ()

Inequalities () and () are important in analysis and its applications (cf.[–]).

In , by introducing an independent parameter λ∈(, ], Yang [] gave an exten-sion of () atp=q=  with the kernel (x+y)λ. In recent years, Yang [] and [] gave some extensions of () and () as follows:

(2)

Ifλ,λ∈R,λ+λ=λ,(x,y) is a non-negative homogeneous function of degree –λ,

with

k(λ) =

(t, )–dtR+,

φ(x) =xp(–λ)–,ψ(x) =xq(–λ)–,f(x),g(y),

fLp,φ(R+) =

f;fp,φ:=

φ(x) f(x) pdx

p <∞

,

gLq,ψ(R+),fp,φ,gq,ψ> , then we have

 ∞

(x,y)f(x)g(y)dx dy<k(λ)fp,φgq,ψ, ()

where the constant factor k(λ) is the best possible. Moreover, if (x,y) is finite and

(x,y)–((x,y)–) is decreasing with respect tox>  (y> ), then foram,bn≥,

alp,φ=

a;ap,φ:=

n=

φ(n)|an|p

p

<∞

,

b={bn}∞n=∈lq,ψ,ap,φ,bq,ψ> , we have the following inequality:

m=

n=

(m,n)ambn<k(λ)ap,φbq,ψ, ()

where the constant factork(λ) is still the best possible.

Clearly, forλ= ,k(x,y) = x+y,λ=q,λ=p, () reduces to (), while () reduces to

(). Some other results including the multidimensional Hilbert-type integral, discrete, and half-discrete inequalities are provided by [–].

In this paper, by the use of the way of weight coefficients, the transfer formula and tech-nique of real analysis, a multidimensional discrete Hilbert’s inequality with parameters and a best possible constant factor is given, which is an extension of () for

(m,n) =

s

k=

(min{m,ckn}) γ s

(max{m,ckn}) λ+γ

s .

The equivalent form, the operator expressions with the norm, and some particular cases are also considered.

2 Some lemmas

Ifi,j∈N(N is the set of positive integers),α,β> , we put

:=

i

k=

|xk|α

α

x= (x, . . . ,xi)∈R

i,

:=

j

k=

|yk|β

β

y= (y, . . . ,yj)∈R

j.

(3)

Lemma  If g(t) (> )is decreasing inR+and strictly decreasing in[n,∞)⊂R+(n∈N),

satisfyingg(t)dtR+,then we have

g(t)dt<

n=

g(n) <

g(t)dt. ()

Proof Since by the assumption, we have

n+

n

g(t)dtg(n)≤

n

n–

g(t)dt (n= , . . . ,n), n+

n+

g(t)dt<g(n+ ) < n+

n

g(t)dt,

it follows that

 <

n+

g(t)dt< n+

n=

g(n) < n+

n= n

n–

g(t)dt=

n+

g(t)dt<∞.

In the same way, we still have

 <

n+

g(t)dt

n=n+

g(n)≤

n+

g(t)dt<∞.

Hence, choosing plus for the above two inequalities, we have ().

Lemma  If sN,γ,M> , (u)is a non-negative measurable function in(, ],and

DM:=

xRs+; s

i=

i

,

then we have the following transfer formula(cf.[]):

· · ·

DM

s

i=

xi

M

γ

dx· · ·dxs

=M

ss(

γ)

γs(s

γ)

(u)uγs–du. ()

Lemma  For sN,γ,ε> ,we have

m

mγsε=

s(

γ)

εsε/γγs–(s

γ)

+O() ε→+, ()

wherem=∞ms=· · · ∞m=.

Proof ForM>s/γ, we set

(u) =

,  <u<M, (Mu/γ)sε, s

(4)

Then by Lemma  and (), it follows that

m

mγsε

{xRs+;xi≥}

xγsεdx

= lim M→∞

· · ·

DM

s

i=

xi

M

γ

dx· · ·dxs

= lim M→∞

Mss(γ)

γs(s

γ)

s/

Mu/γsεuγs–du

=

s(

γ)

εsε/γγs–(s

γ)

.

By Lemma  and in the above way, we still find

 <

{mNs;mi} msε

γ

{xRs+;xi≥}

xsε

γ dx=

s(

γ)

εsε/γγs–(s

γ)

.

Fors= ,  <m=m––ε

γ <∞; fors≥,

 <

{mNs;i,m i=}

mγsεa+

{mNs–;mi}

m–(γs–)–(+ε)

a+

s–(

γ)

( +ε)(s– )(+ε)/γγs–(s–

γ )

<∞ (aR+),

and then

m

mγsε=

{mNs;i,mi

=}

mγsε+

{mNs;mi} mγsε

O() +

s(

γ)

εsε/γγs–(s

γ)

ε→+. ()

Then we have ().

Example  ForsN,  <c≤ · · · ≤cs<∞,λ,λ> –γ,λ+λ=λ, we set

(x,y) :=

s

k=

(min{x,cky}) γ s

(max{x,cky}) λ+γ

s

(x,y)∈R+= RR+

.

(a) We find

ks(λ) := ∞

(,u)–du

u=/t =

(t, )–dt

=

s

k=

(min{t,ck}) γ

s

(max{t,ck}) λ+γ

s

–dt

=

c

s

k=

(min{t,ck}) γ

stλ– (max{t,ck})

λ+γ s

dt+

cs s

k=

(min{t,ck}) γ

stλ– (max{t,ck})

λ+γ s

(5)

+ s– i= ci+ ci s k=

(min{t,ck}) γ stλ– (max{t,ck})

λ+γ s dt = s k= 

c(kλ+γ)/s

c

+γ–dt+ s

k=

k/s

cs

tλ–γ–dt

+ s– i= ci+ ci i k= c γ s k

+ s

k=i+

tγs

c

λ+γ s k

–dt

= c

λ+γ

λ+γ

s k=c

λ+γ s k

+ 

(λ+γ)cλs+γ s k= c γ s k + s– i= i

k=c

γ s k

s k=i+c

λ+γ s k

ci+

ci

–isλ+(–si)γ–dt.

Ifλ–isλ+ ( –si)γ= , then

ci+

ci

–isλ+(–si)γ–dt=c

λ–isλ+(–si)γ

i+ –c

λ–iλs+(–si)γ i

λ–isλ+ ( –si)γ

;

if there exists ai∈ {, . . . ,s– }, such thatλ–isλ+ ( –is)γ = , then we find ci+

ci

–i+(–

i

s )γ–dt=ln

ci+

ci

=lim ii

ci+

ci

–isλ+(–si)γ–dt,

and we still indicateln(ci+

ci ) by the following formal expression:

–

iλ s +(–

i

s )γ

i+ –c

λ–i+(–

i

s )γ i

λ–isλ+ ( –is)γ

.

Hence, we may set

ks(λ) =

+γ

λ+γ

s k=c

λ+γ s k

+ 

(λ+γ)cλs+γ s k= c γ s k + s– i=

–

s+(–si)γ

i+ –c

λ–isλ+(–si)γ i

λ–s + ( –si)γ

i k=c

γ s k

s k=i+c

λ+γ s k

. ()

In particular, (i) fors=  (orcs=· · ·=c), we have(x,y) = (

min{x,cy})γ (max{x,cy})λ+γ and

k(λ) =

λ+ γ

(λ+γ)(λ+γ)

 

; ()

(ii) fors= , we have(x,y) = (min{x,cy}min{x,cy}) γ/ (max{x,cy}max{x,cy})(λ+γ)/ and

k(λ) =

c

cγ

cλ–

λ

 

(λ+γ)c

λ

 

+ 

(λ+γ)

+c

λ–λ  –c

λ–λ

(λ–λ)c

λ

 

(6)

(iii) forγ = , we haveλ,λ> ,(x,y) =

s

k=(max{x,cky})

λ s and

ks(λ) =ks(λ) :=

  λ

s k=c

λ s k

+ 

λcλs

+ s–

i=

–

i i+ –c

λ–isλ

i

λ–s

s k=i+c

λ s k

; ()

(iv) forγ = –λ, we haveλ<λ,λ< ,(x,y) = sk=(min{x,cky})

λ s and

ks(λ) =ks(λ) :=

cλ 

(–λ)

+ 

(–λ)cs k= cλ s k + s– i=

–

si s λ i+ –c

λ–ssiλ i

λ–ss

i k= cλ s k ; ()

(v) forλ= , we haveλ= –λ,|λ|<γ (γ> ),

k(x,y) =

s

k=

min{x,cky} max{x,cky}

γ s ,

and

ks(λ) =k()s (λ) :=

+γ

γ +λ

s k=c

γ s k

+ c

λ–γ

s

γλ

s k= c γ s k + s– i=

+(–

i s)γ

i+ –c

λ+(–si)γ

i

λ+ ( –si)γ

i k=c

γ s k

s k=i+c

γ s k

. ()

(b) Since forj∈N, we find

(x,y)

yj–λ =

yj–λ

s

k=

(min{c–

k x,y}) γ s

c

λ s

k(max{c–k x,y}) λ+γ

s = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

yj–λ–γ

s k=  c λ s k(c–kx)

λ+γ s

,  <yc–

s x,

yj+λ+γsi(λ+γ)

s k=i+(c–k x)

γ s

s k=c

λ s k

i k=(c–k x)

λ+γ s

, c–

i+x<yc–i x(i= , . . . ,s– ),

yj+λ+γ

s k=

(c–k x)γs c

λ s k(y)

λ+γ s

, c– x<y<∞,

forλ≤j–γ(λ> –γ),(x,y) 

yj–λ is decreasing fory>  and strictly decreasing for the

large enough variabley. In the same way, fori∈N, we find

(x,y)

xi–λ =

xi–λ

s

k=

(min{x,cky}) γ s

(max{x,cky}) λ+γ

s = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

xi–λ–γ s

k=  (cky)λ+

,  <xcy, 

xi–λ–γ+is(λ+γ) i

k=(cky)

γ s

s k=i+(cky)

λ+γ s

, ciy<xci+y(i= , . . . ,s– ), 

xi+λ+γ

s k=(cky)

γ

(7)

then forλ≤i–γ (λ> –γ),(x,y) 

xi–λ is decreasing forx>  and strictly decreasing

for the large enough variablex.

In view of the above results, fori,j∈N, –γ <λ≤i–γ, –γ <λ≤j–γ,λ+λ=λ,

(x,y)yj–λ ((x,y) 

xi–λ) is still decreasing fory>  (x> ) and strictly decreasing for

the large enough variabley(x).

Definition  Fors,i,j∈N,  <c≤ · · · ≤cs<∞, –γ <λ≤i–γ, –γ <λ≤j–γ, λ+λ=λ,m= (m, . . . ,mi)∈Ni,n= (n, . . . ,nj)∈Nj, define two weight coefficients

w(λ,n) andW(λ,m) as follows:

w(λ,n) :=

m s

k=

(min{,cknβ}) γ

s

(max{,cknβ}) λ+γ

s

β mi–λ

α

, ()

W(λ,m) :=

n s

k=

(min{,cknβ}) γ s

(max{,cknβ}) λ+γ

s

α nj–λ

β

, ()

wherem=∞mi

=· · · ∞

m=and

n=

nj=· · · ∞

n=.

Lemma  As the assumptions of Definition,then(i)we have w(λ,n) <K(s)

nNj, ()

W(λ,m) <K(s)

mNi, ()

where

K(s)= j(

β)

βj–(j

β)

ks(λ), K(s)= i(

α)

αi–(i

α)

ks(λ); ()

(ii)for p> ,  <ε<p(λ+γ),settingλ=λ–pε(∈(–γ,i–γ)),λ=λ+εp (> –γ),we

have

 <K(s) –θλ(n)

<w(λ,n), ()

where

 <θλ(n) =

ks(λ)

i/α/

s

k=

(min{v,ck}) γ

svλ– (max{v,ck})

λ+γ s

dv=O

+λ

β

, ()

K(s)= i(

α)

αi–(i

α)

ks(λ). ()

Proof By Lemma , Example , and (), it follows that

w(λ,n) <

Ri+

s

k=

(min{,cknβ}) γ s

(max{,cknβ}) λ+γ

s

β xi–λ

α

dx

= lim M→∞

DM s

k=

(min{M[i

i=(

xi M)

α]α,c

knβ}) γ s

(max{M[i

i=(Mxi)

α]α,c

knβ}) λ+γ

s

–inλ

β dx

[i

i=(

xi M)α]

i–λ

(8)

= lim M→∞

Mii(

α)

αi(i

α)

s

k=

(min{Mu/α,c

knβ}) γ s

(max{Mu/α,c

knβ}) λ+γ

s

βu

i

α–du

Mi–λu(i–λ)/α

= lim M→∞

i(

α)

αi(i

α)

s

k=

(min{Mu/α,c

knβ}) γ snλ

β

(max{Mu/α,c

knβ}) λ+γ

s

uλα–du

u= βMαvα

=

i(

α)

αi–(i

α)

s

k=

(min{v,ck}) γ

svλ– (max{v,ck})

λ+γ s

dv

=

i(

α)

αi–(i

α)

ks(λ) =K(s).

Hence, we have (). In the same way, we have ().

By Lemma , Example , and in the same way as obtaining (), we have

w(λ,n) >

{xRi+;xi≥}

s

k=

(min{,cknβ}) γ s

(max{,cknβ}) λ+γ

s

β dx

xi–λ

α

=

i(

α)

αi–(i

α)

i/α/ s

k=

(min{v,ck}) γ svλ– (max{v,ck})

λ+γ s

dv=K(s) –θλ(n)

> ,

 <θλ(n) =

ks(λ)

i/α/

s

k=

(min{v,ck}) γ

svλ– (max{v,ck})

λ+γ s

dv.

Forc– i/α, we findvi/α/c≤ck(k= , . . . ,s) and

θλ(n) =

ks(λ)

i/α/

+γ–dv s

k=ck λ+γ

s =(

s k=ck

λ+γ s )– (λ+γ)ks(λ)

i/α

λ+γ

,

and then () follows.

3 Main results

Setting(m) :=mp(i–λ)–i

α (mNi) and (n) :=nq(j– λ)–j

β (nNj), we have the

following.

Theorem  If s,i,j∈N,  <c≤ · · · ≤cs<∞, –γ <λ≤i–γ, –γ <λ≤j–γ,λ+λ= λ,ks(λ)is indicated by(),then for p> ,p+q= ,am,bn≥,  <ap,,bq, <∞,we

have the following inequality:

I:= n

m s

k=

(min{,cknβ}) γ s

(max{,cknβ}) λ+γ

s

ambn

<K(s)

pK(s)

 

qa

p,bq, , ()

where the constant factor

K(s)pK(s)

 

q =

j(

β)

βj–(j

β)

p i(

α)

βi–(i

α)

q

(9)

is the best possible.In particular,for s=  (or cs=· · ·=c),we have the following inequality:

n

m

(min{,c})γambn (max{,c})λ+γ

<K()

pK()

 

qa

p,bq, , ()

where

K()

pK()

 

q

=

j(

β)

βj–(j

β)

p i(

α)

βi–(i

α)

q (λ+ γ)cλ 

(λ+γ)(λ+γ)

. ()

Proof By Hölder’s inequality (cf.[]), we have

I = n

m s

k=

(min{,cknβ}) γ s

(max{,cknβ}) λ+γ

s

m(αi–λ)/q n(βj–λ)/p

am

n(j–λ)/p

β m(αi–λ)/q

bn

m

W(λ,m)mαp(i–λ)–iapm

p

n

w(λ,n)nq(j–

λ)–j

β bqn

q .

Then by () and (), we have ().

For  <ε<p(λ+γ),λ=λ–εp,λ=λ+εp, we set

am=m

i+λ–

α =mαλ–i, bn=n

λ–j–ε β

mNi,nNj.

Then by () and (), we obtain

ap,bq, =

m

mp(i–λ)–i

α a

p m

p

n

nq(j–λ)–j

β b

q n

q

=

m

mαi–ε

p

n

nβj–ε

q

=

ε

i(

α)

/ααi–(i

α)

+εO()

p

×

j(

β)

/ββj–(j

β)

+εO()

q

, ()

I:= n

m s

k=

(min{,cknβ}) γ s

(max{,cknβ}) λ+γ

s

am

bn

=

n

w(λ,n)nβj–ε>K(s)

n

 –O

+λ

β

nβj–ε

=K(s)

n

nβj–ε

n

O

+λ+j+

ε q

β

=K(s)

j(

β)

εjε/ββj–(j

β)

+O() –O()

(10)

If there exists a constant K ≤(K(s))p(K(s)

 ) 

q, such that () is valid as we replace

(K(s))p(K(s)

 ) 

q byK, then using () and () we have

K(s)+o() j(

β)

/ββj–(j

β)

+εO() –εO()

<εI<εKap,ϕbq,ψ

=K

i(

α)

/ααi–()

+εO()

p j(

β)

/ββj–(j

β)

+εO()

q .

Forε→+, we find

j(

β)

βj–(j

β)

i(

α)

αi–(i

α)

ks(λ)≤K

i(

α)

αi–(i

α)

p j(β)

βj–(j

β)

q ,

and then (K(s))p(K(s)

 ) 

qK. Hence,K= (K(s)

 ) 

p(K(s)

 ) 

q is the best possible constant factor

of ().

Theorem  As regards the assumptions of Theorem,for <ap,<∞,we have the

following inequality with the best constant factor(K(s))p(K(s)

 ) 

q:

J:=

n

npλ–j

β

m s

k=

(min{,cknβ}) γ

s

(max{,cknβ}) λ+γ

s

am

pp

<K(s)pK(s)

 

qa

p,, ()

which is equivalent to().In particular,for s=  (or cs=· · ·=c),we have the following

inequality equivalent to():

n

npλ–j

β

m

(min{,c})γ

(max{,c})λ+γ

am

pp

<K()pK()

 

qa

p,. ()

Proof We setbnas follows:

bn:=np

λ–j

β

m s

k=

(min{,cknβ}) γ s

(max{,cknβ}) λ+γ

s

am

p–

, nNj.

Then it follows thatJp=bqq, . IfJ= , then () is trivially valid for  <ap,<∞; if

J=∞, then it is impossible since the right hand side of () is finite. Suppose that  <J<

∞. Then by (), we find

bqq, =Jp=I<K(s) 

pK(s)

 

qa

p,bq, ,

namely,

bqq–, =J<K(s)pK(s)

 

qa p,,

(11)

On the other hand, assuming that () is valid, by Hölder’s inequality, we have

I = n

(n)

–

q

m s

k=

(min{,cknβ}) γ sam (max{,cknβ})

λ+γ s

(n)

qb n

Jbq, . ()

Then by (), we have (). Hence () and () are equivalent. By the equivalency, the constant factor (K(s))p(K(s)

 ) 

q in () is the best possible.

Other-wise, we would reach a contradiction by () that the constant factor (K(s))p(K(s)

 ) 

q in ()

is not the best possible.

4 Operator expressions and some particular cases

Forp> , we define two real weight normal discrete spaceslp,ϕandlq,ψ as follows:

lp,ϕ:=

a={am};ap,=

m

(m)apm

p <∞

,

lq,ψ:=

b={bn};bq, =

n

(n)bqn

q <∞

.

As regards the assumptions of Theorem , in view ofJ< (K(s))p(K(s)

 ) 

qa

p,, we give

the following definition.

Definition  Define a multidimensional Hilbert-type operatorT :lp,lp, –p as fol-lows: Foralp,, there exists an unique representationTalp, –p, satisfying

Ta(n) := m

s

k=

(min{,cknβ}) γ s

(max{,cknβ}) λ+γ

s

am

nNj. ()

Forblq, , we define the following formal inner product ofTaandbas follows:

(Ta,b) := n

m s

k=

(min{,cknβ}) γ

s

(max{,cknβ}) λ+γ

s

ambn. ()

Then by Theorem  and Theorem , for  <ap,ϕ,bq,ψ <∞, we have the following

equivalent inequalities:

(Ta,b) <K(s)pK(s)

 

qa

p,bq, , ()

Tap, –p<

K(s)pK(s)

 

qa

p,. ()

It follows thatTis bounded with

T:= sup

a(=θ)∈lp,

Tap, –p

ap,

K(s)pK(s)

 

q. ()

Since the constant factor (K(s))p(K(s)

 ) 

(12)

Corollary  As regards the assumptions of Theorem,T is defined by Definition,it fol-lows that

T=K(s)pK(s)

 

q

=

j(

β)

βj–(j

β)

p i(

α)

αi–(i

α)

q

ks(λ). ()

Remark  (i) Fori=j=  in (), we have the inequality

m=

n=

s

k=

(min{m,ckn}) γ s

(max{m,ckn}) λ+γ

s

ambn<ks(λ)ap,φbq,ψ. ()

Hence, () is an extension of () for

(m,n) =

s

k=

(min{m,ckn}) γ s

(max{m,ckn}) λ+γ

s .

(ii) Forγ =  in () and (), we have  <λ≤i,  <λ≤jand the following

equiva-lent inequalities:

n

m

ambn

s

k=(max{,cknβ}) λ s

<Ks(λ)ap,bq, , ()

n

npλ–j

β

m

am

s

k=(max{,cknβ}) λ s

pp

<Ks(λ)ap,, ()

where the best possible constant factor is defined by

Ks(λ) :=

j(

β)

βj–(j

β)

p i(

α)

βi–(i

α)

q

ks(λ), ()

andks(λ) is indicated by ().

(iii) Forγ = –λin () and (), we haveλ<λ≤i+λ,λ<λ≤j+λ,λ,λ<  and

the following equivalent inequalities:

n

m

ambn

s

k=(min{,cknβ}) λ s

<Ks(λ)ap,bq, , ()

n

npλ–j

β

m

am

s

k=(min{,cknβ}) λ s

pp

<Ks(λ)ap,, ()

where the best possible constant factor is defined by

Ks(λ) :=

j(

β)

βj–(j

β)

p i(

α)

βi–(i

α)

q

ks(λ), ()

(13)

(iv) Forλ=  in () and (), we haveλ= –λ,  <γ+λ≤i,  <γλ≤j(γ> ),

and the following equivalent inequalities:

n

m s

k=

min{,cknβ}

max{,cknβ}

γ s

ambn<Ks()(λ)ap,bq, , ()

n

npλ+j

β

m s

k=

min{,cknβ}

max{,cknβ}

γ s

am

pp

<K()

s (λ)ap,, ()

where the best possible constant factor is defined by

Ks()(λ) :=

j(

β)

βj–(j

β)

p i(

α)

βi–(i

α)

q

ks()(λ), ()

andk()s (λ) is indicated by ().

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the mathematical studies, participated in the sequence alignment and drafted the manuscript. YS participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.

Author details

1Normal College of Jishou University, Jishou, Hunan 416000, P.R. China.2Department of Mathematics, Guangdong

University of Education, Guangzhou, Guangdong 51003, P.R. China.

Acknowledgements

This work is supported by Hunan Province Natural Science Foundation (No. 2015JJ4041), and Science Research General Foundation Item of Hunan Institution of Higher Learning College and University (No. 14C0938).

Received: 17 July 2015 Accepted: 10 November 2015

References

1. Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934)

2. Mitrinovi´c, DS, Peˇcari´c, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991)

3. Yang, BC: Hilbert-Type Integral Inequalities. Bentham Science, Sharjah (2009) 4. Yang, BC: Discrete Hilbert-Type Inequalities. Bentham Science, Sharjah (2011)

5. Yang, BC: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)

6. Yang, BC: Two Types of Multiple Half-Discrete Hilbert-Type Inequalities. Lambert Academic Publishing, Saarbrücken (2012)

7. Yang, BC: On Hilbert’s integral inequality. J. Math. Anal. Appl.220, 778-785 (1998)

8. Yang, BC, Brneti´c, I, Krni´c, M, Peˇcari´c, JE: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal. Appl.8(2), 259-272 (2005)

9. Krni´c, M, Peˇcari´c, JE: Hilbert’s inequalities and their reverses. Publ. Math. (Debr.)67(3-4), 315-331 (2005)

10. Yang, BC, Rassias, TM: On the way of weight coefficient and research for Hilbert-type inequalities. Math. Inequal. Appl.

6(4), 625-658 (2003)

11. Yang, BC, Rassias, TM: On a Hilbert-type integral inequality in the subinterval and its operator expression. Banach J. Math. Anal.4(2), 100-110 (2010)

12. Azar, L: On some extensions of Hardy-Hilbert’s inequality and applications. J. Inequal. Appl.2009, Article ID 546829 (2009)

13. Arpad, B, Choonghong, O: Best constant for certain multilinear integral operator. J. Inequal. Appl.2006, Article ID 28582 (2006)

14. Kuang, JC, Debnath, L: On Hilbert’s type inequalities on the weighted Orlicz spaces. Pac. J. Appl. Math.1(1), 95-103 (2007)

15. Zhong, WY: The Hilbert-type integral inequality with a homogeneous kernel of Lambda-degree. J. Inequal. Appl.

2008, Article ID 917392 (2008)

(14)

17. Zhong, WY, Yang, BC: On multiple Hardy-Hilbert’s integral inequality with kernel. J. Inequal. Appl.2007, Article ID 27962 (2007)

18. Yang, BC, Krni´c, M: On the norm of a multi-dimensional Hilbert-type operator. Sarajevo J. Math.7(20), 223-243 (2011) 19. Krni´c, M, Peˇcari´c, JE, Vukovi´c, P: On some higher-dimensional Hilbert’s and Hardy-Hilbert’s type integral inequalities

with parameters. Math. Inequal. Appl.11, 701-716 (2008)

20. Krni´c, M, Vukovi´c, P: On a multidimensional version of the Hilbert-type inequality. Anal. Math.38, 291-303 (2012) 21. Yang, BC, Chen, Q: A multidimensional discrete Hilbert-type inequality. J. Math. Inequal.8(2), 267-277 (2014) 22. Rassias, MT, Yang, BC: On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent

function. Appl. Math. Comput.242, 800-813 (2014)

23. Chen, Q, Yang, BC: On a more accurate multidimensional Mulholland-type inequality. J. Inequal. Appl.2014, Article ID 322 (2014)

24. Rassias, MT, Yang, BC: On a multidimensional Hilbert-type integral inequality associated to the gamma function. Appl. Math. Comput.249, 408-418 (2014)

25. Yang, BC: On a more accurate multidimensional Hilbert-type inequality with parameters. Math. Inequal. Appl.18(2), 429-441 (2015)

26. Yang, BC: On a more accurate reverse multidimensional half-discrete Hilbert-type inequalities. Math. Inequal. Appl.

18(2), 589-605 (2015)

27. Yang, BC: Hilbert-type integral operators: norms and inequalities. In: Paralos, PM, et al. (eds.) Nonlinear Analysis: Stability, Approximation, and Inequalities, pp. 771-859. Springer, New York (2012)

References

Related documents

Results of antimicrobial activities of methanol extracts of used plant against the test microorganisms are shown in Table 1.. The results of antimicrobial activities

gariepinus by western blot method using Mouse monoclonal Anti-MT primary and HRP secondary antibody.. Western blot analysis of MT protein showing an increase in MT

consecutive steps of differentiation via sequential expression of bHLH myogenic regulatory factors [MRFs; Myf5, Myod1 and myogenin (Myog)], and first form committed progenitor

The purpose of this study is to identify the difficulties with breastfeeding encountered by women during the puerperium, to characterize the sociodemographic and

This study assessed the level of compliance using three different methods: pill count, self report and peak expiratory flow rate, in asthmatic patients attending

The findings revealed among others that the extent to which administrators manage time for quality administration of universities include: planning school

Considering Tuberculosis as a public health problem and the prison a place that can facilitate its development mainly due to the great population density existing

Meanwhile, respondents who also rated the health facilities and services as very poor, valued their quality of life as fair (43.9%) and good (34.1%).. Furthermore, 66.7% of the