• No results found

Boundedness of rough singular integral operators and commutators on Morrey Herz spaces with variable exponents

N/A
N/A
Protected

Academic year: 2020

Share "Boundedness of rough singular integral operators and commutators on Morrey Herz spaces with variable exponents"

Copied!
15
0
0

Loading.... (view fulltext now)

Full text

(1)

R E S E A R C H

Open Access

Boundedness of rough singular integral

operators and commutators on Morrey-Herz

spaces with variable exponents

Liwei Wang

1*

, Meng Qu

2

and Lisheng Shu

2

*Correspondence:

wangliwei@ahpu.edu.cn

1Department of Applied

Mathematics, School of Mathematics and Physics, Anhui Polytechnic University, Wuhu, 241000, The People’s Republic of China

Full list of author information is available at the end of the article

Abstract

By decomposing functions, we establish some boundedness results for some rough singular integrals on the homogeneous Morrey-Herz spacesMK˙qα,p(),·λ)(Rn), where the two main indices are variable. The corresponding results as regards their

commutators are also considered.

MSC: 42B20; 42B25

Keywords: variable exponent; Morrey-Herz spaces; commutators; singular integrals

1 Introduction

In recent years, function spaces with variable exponents have been intensively studied; see [–] for example. The origin of such spaces is the study of PDE with non-standard growth conditions, fluid dynamics and image restoration; see [–]. By virtue of the fundamental work [] by Kováčik and Rákosník appearing in , the Lebesgue spaces and various other function spaces have been investigated in the variable exponent setting. Meanwhile, the boundedness of some classical operators, such as the Hardy-Littlewood maximal op-erator, singular integrals and commutators, has been proved on these spaces; see [–] and the references therein.

Herz spaces have been playing a central role in harmonic analysis. After they were in-troduced in [], the theory of these spaces had a remarkable development in part due to its useful applications. For instance, they are good substitutes of the ordinary Hardy spaces when considering the boundedness of non-translation invariant singular integral operators, they also appear in the characterization of multiplier on Hardy spaces and in the regularity theory for elliptic and parabolic equations in divergence form; see [–] for example.

One of the important problems on Herz spaces is the boundedness of sublinear opera-tors satisfying the size condition

Tf(x)

Rn |f(y)|

|x–y|ndy, x∈/suppf, (.)

for integrable and compactly supported functionsf. We mention that condition (.) was initially studied by Soria and Weiss [] and it is satisfied by several classical

(2)

erators, such as Calderón-Zymund operators, the Carleson maximal operator and the Hardy-Littlewood maximal operator. Hernández, Li, Lu, and Yang [–] proved that if a sublinear operatorT is bounded onLp(Rn) and satisfies the size condition (.), then T is bounded on the homogeneous Herz spacesK˙,q(Rn) and on the non-homogeneous Herz spacesKpα,q(Rn). This result is extended to the generalized Herz spacesK˙pα(,·q)(Rn) and Kpα(,·q)(Rn) with variable exponentp(·) by Izuki []. In , Almeida and Drihem [] made a further step and gave boundedness results forTonK˙pα((··)),q(Rn) andKα(·),q

p(·) (Rn), where the

exponentαis variable as well.

Denote bySn–the unit sphere inRn(n) with normalized Lebesgue measure. Let Ls(Sn–) for somes(,∞] be homogeneous of degree zero. In this paper, we consider

sublinear operators satisfying the size condition

Tf(x)

Rn

|(xy)|

|x–y|n f(y)dy, x∈/suppf, (.)

for integrable and compactly supported functionsf and commutators defined by

[b,T]f(x) :=b(x)Tf(x) –T(bf)(x), bBMO

Rn. (.)

Lu et al.first proved the boundedness for both T and [b,T] on Herz spaces and

Morrey-Herz spaces with constant exponent; see [, ]. Motivated by the work of Lu [] and Almeida [], we shall generalize these results to the case of variable exponent and also consider the boundedness on Morrey-Herz spaces with variable exponent. Our approach is mainly based on some properties of variable exponent and BMO norms ob-tained by the author [].

For brevity, we denoteB:={y∈Rn:|x–y|<r}.fBstands for the integral average off onB,i.e. fB=|B|

Bf(x)dx.p(·) means the conjugate exponent /p(·)+/p(·) = .Cdenotes a positive constant, which may have different values even in the same line.f gmeans thatfCg, andfgmeansf gf.

2 Preliminaries and lemmas

LetE⊂Rnwith the Lebesgue measure|E|> ,p(·) :E[,) be a measurable function. The Lebesgue space with variable exponentLp(·)(E) is defined by

Lp(·)(E) =

f is measurable :

E

|f(x)| λ

p(x)

dx<∞for some constantλ> 

.

This is a Banach space with the Luxemburg-Nakano norm

f Lp(·)(E)=inf

λ>  :

E |f(x)|

λ p(x)

dx≤

.

The space with variable exponentLploc(·)(E) is defined by

Lploc(·)(E) =f :fLp(·)(K) for all compact subsetsKE.

We denote

p–=ess inf

p(x) :xE, p+=ess sup

(3)

P(E) =p(·) :p–>  andp+<∞

,

and

B(E) =p(·)P(E) :Mis bounded onLp(·)(E),

where the Hardy-Littlewood maximal operatorMis defined by

Mf(x) =sup

r>

rn

B(x,r)∩E

f(y)dy.

A functionα(·) :RnRis called log-Hölder continuous at the origin (or has a log decay at the origin), if there exists a constantClog>  such that

α(x) –α()Clog

log(e+ /|x|)

for allx∈Rn. If, for someα

∞∈RandClog> , we have

α(x) –α∞≤ Clog log(e+|x|)

for allx∈Rn, thenα(·) is called log-Hölder continuous at infinity (or has a log decay at infinity).

ByPlog(Rn) andPlog

∞(Rn) we denote the class of all exponentspP(Rn) which have

a log decay at the origin and at infinity, respectively. It is worth noting that if p(·)

Plog

 (Rn)∩P

log

∞(Rn), then we havep(·)∈B(Rn); see [] or [].

LetBk={x∈Rn:|x| ≤k},Rk=Bk\Bk–andχk=χRk be the characteristic function of the setRkfork∈Z. Almeida and Direhem [] first introduced the following Herz spaces with variable exponents.

Definition . Let  <q≤ ∞,p(·)P(Rn) andα(·) :RnRwithαL(Rn).

() The homogeneous Herz spaceK˙pα((··)),q(Rn)is defined as the set of allf Lp(·)

loc(Rn\{})

such that

f ˙

Kp(·)α(·),q(Rn):=

k∈Z

(·)fχkqLp(·)(Rn)

/q <∞.

() The non-homogeneous Herz spaceKpα((··)),q(Rn)consists of allfLploc(·)(Rn)such that

f Kα(·),q

p(·) (Rn):= fχBLp(·)(Rn)+

k≥

(·)fχk q Lp(·)(Rn)

/q <∞,

with the usual modification whenq=∞.

Definition . Let  <q≤ ∞, p(·)∈P(Rn), λ<andα(·) :RnRwithα L∞(Rn). The homogeneous Morrey-Herz spaceMK˙α(·),λ

(4)

fLploc(·)(Rn\{}) such that

f MK˙q,p(·)α(·),λ(Rn):=sup L∈Z

–

L

k=–∞

(·)fχk q Lp(·)(Rn)

/q <∞,

with the usual modification whenq=∞.

Remark . It is easy to see that MK˙qα,(p·(),·)(Rn) = K˙α(·),q

p(·) (Rn). If α(·) is constant, then

MK˙qα,p(),·λ)(Rn) =MK˙α,λ

q,p(·)(Rn), which is first defined by Izuki []. If bothα(·) andp(·) are

constant, thenMK˙qα,p(),·)(Rn) =K˙α,p

q (Rn) are classical Herz spaces in [], andMK˙qα,p(),·λ)(Rn) = MK˙α,λ

p,q(Rn) are classical Morrey-Herz spaces in [].

In [, ], Lu and Zhu obtained the following result:

Proposition . Let <q≤ ∞,p(·)∈P(Rn), λ<andαL(Rn).Ifα is log-Hölder continuous both at origin and at infinity,then

f MK˙α(·),λ

q,p(·)(Rn)≈max

sup

L<,L∈Z –

L

k=–∞

()q fχk qLp(·)(Rn) /q

,

sup

L≥,L∈Z

– –

k=–∞

()q fχk qLp(·)(Rn) /q

+ – L

k=

q fχk qLp(·)(Rn) /q

.

Before stating our main results, we introduce some key lemmas which will be used later.

Lemma .([]) (Generalized Hölder inequality) Let p(·)P(Rn),if f Lp(·)(Rn)and gLp(·)(Rn),then

Rn

f(x)g(x)dxrp f Lp(·)(Rn) g Lp(·)(Rn),

where rp=  + /p–– /p+.

Lemma .([]) LetLs(Sn–),s[,].If a> ,d(,s]and–n+(n–)d

s <ν<∞, then

|y|≤a|x|

|y|ν(xy)ddy

/d

Ls(Sn–)|x|(ν+n)/d.

Lemma .([]) Let p(·)P(Rn).If q(p

+,∞)and p(x) =q(x) +q (x∈Rn),then we

have

fg Lp(·)(Rn) f Lq(·)(Rn) g Lq(Rn)

for all measurable functions f and g.

(5)

Lemma . Let p(·)B(Rn),then we see that for all balls B inRn,

|B| χB Lp(·)(Rn) χB Lp(·)(Rn).

Lemma . Let p(·)B(Rn),then we see that for all balls B inRnand all measurable subsets SB,

χS Lp(·)(Rn) χB Lp(·)(Rn)

|S| |B|

δ

, χS Lp (·)

(Rn) χB Lp(·)(Rn)

|S| |B|

δ ,

whereδ,δare constants with <δ,δ< .

Lemma . Let bBMO(Rn),k>j(k,jN),then we have

sup

B⊂RnχB Lp(·)(Rn)

(b–bBBLp(·)(Rn)b BMO

and

(b–bBjBkLp(·)(Rn)(k–j) b BMO χBk Lp(·)(Rn).

Lemma . LetαL∞(Rn)and r

> .Ifαis log-Hölder continuous both at origin and

at infinity,then

(x)(y)× ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

(rr)

α+,  <r

≤r/,

, r/ <r≤r,

(rr)

α, r

> r,

for any xB(,r)\B(,r/)and yB(,r)\B(,r/),with the implicit constant not

de-pending on x,y,r,and r.

3 Main results and their proofs

In this section, we prove the boundedness of sublinear operatorsT satisfying the size

condition (.) and the commutators [b,T] defined as in (.) on the homogeneous

Morrey-Herz spaceMK˙qα,(p·(),·)λ(Rn), respectively.

Our main results in this paper can be stated as follows.

Theorem . Suppose that p(·)Plog(Rn)Plog(Rn)andLs(Sn–),s> (p)

+.Let <

λ<n,  <q≤ ∞, –/s<ν<∞and letα(·)∈L∞(Rn)be log-Hölder continuous both at the origin and at infinity,such that

λ–νn/s<α–≤α+<–νn/s, (.)

where <δ,δ< are the constants appearing in Lemma..Then every sublinear

(6)

Theorem . Suppose that bBMO(Rn)and let[b,T

]be defined as in(.).Under the

assumptions in Theorem.,if[b,T]is bounded on Lp(·)(Rn),then[b,T]is also bounded

on MK˙qα,(p·(),·λ)(Rn).

Remark . According to Remark ., Theorem . and Theorem . extend the corre-sponding results in [] to a more generalized function space. Moreover, comparing with [, ], our main results generalize the integral kernel to the case ofLs(Sn–).

Our proofs use partially some decomposition techniques already used in [] where the constant exponent case was studied. We consider only  <q<∞, the arguments are similar in the caseq=∞.

Proof of Theorem. LetfMK˙qα,(p·(),·λ)(Rn). We decompose

f(x) =

j=–∞

f(x)χj(x) =

j=–∞

fj(x).

Then we have

T(f)

q

MK˙q,p(·)α(·),λ(Rn)=sup L∈Z

Lλq L

k=–∞

(·)T

(f)χk q Lp(·)(Rn)

sup

L∈Z –Lλq

L

k=–∞

(·)

k–

j=–∞

T(fj)(·)

χk(·) q

Lp(·)(Rn)

+sup

L∈Z –Lλq

L

k=–∞

(·)

k+

j=k–

T(fj)(·)

χk(·) q

Lp(·)(Rn)

+sup

L∈Z

Lλq L

k=–∞

(·)

j=k+

T(fj)(·)

χk(·) q

Lp(·)(Rn)

=:U+U+U.

First we estimateU. Noting that ifxRk,yRjandjk– , then|x–y| ≈ |x| ≈k, by Lemma ., we get

(x)

k–

j=–∞

T(fj)(x)

χk(x) k–

j=–∞

–kn

Rj

(x)(xy)f

j(y)dy·χk(x)

k–

j=–∞

–kn(kj)α+

Rj

(y)(x–y)fj(y)dy·χk(x),

which combining with Lemma . yields

(·)

k–

j=–∞

T(fj)(·)χk(·)

Lp(·)(Rn)

k–

j=–∞

–kn(kj)α+(·)f

(7)

We define a variable exponentp(·) byp(x) =p(x)+s, sinces> (p)+, by Lemma . and

Lemma ., we obtain

(x–·)χj(·)Lp(·)(Rn)

(x–·)χj(·)Ls(Rn)χj(·)Lp(·)(Rn)

–

Rj

|y|(xy)sdy

/s

χBj(·)Lp(·)(Rn)

–k(ν+n/s) Ls(Sn–)χBj(·)

Lp(·)(Rn)|Bj|–/s, (.)

where the last inequality is based on the fact that χBj(·) Lp(·)(Rn)χBj(·) Lp(·)(Rn)|Bj|–/s; see [], p., for the details.

From (.), (.), Lemma ., and Lemma ., we deduce that

(·)

k–

j=–∞

T(fj)(·)χk(·)

Lp(·)(Rn)

k–

j=–∞

–kn(kj)(α++ν+n/s)

Ls(Sn–)(·)fj

Lp(·)(Rn)χBj(·)Lp(·)(Rn)χBk(·)Lp(·)(Rn)

k–

j=–∞

(kj)(α++ν+n/s)

Ls(Sn–)(·)fj Lp(·)(Rn)

χBj(·) Lp(·)(Rn) χBk(·) Lp(·)(Rn)

k–

j=–∞

(jk)(–α+–νn/s)(·)f

jLp(·)(Rn). (.)

For convenience below we putσ=–α+–νn/s. It follows from the condition (.)

thatσ> . Now we can distinguish two cases as follows: Case◦: If  <q≤, using the well-known inequality

j=

aj q

j=

aqj (aj> ,j= , , . . .), (.)

we have

Usup

L∈Z –Lλq

L

k=–∞

k–

j=–∞

(jk)σq(·)fj q Lp(·)(Rn)

sup

L∈Z

Lλq L–

j=–∞

(·)f

j q Lp(·)(Rn)

L

k=j+

(jk)σq

sup

L∈Z –Lλq

L–

j=–∞

(·)fj q Lp(·)(Rn)

f q

(8)

Case◦: If  <q<∞, by Hölder’s inequality, we have

Usup

L∈Z –Lλq

L

k=–∞

k–

j=–∞

(jk)σq/(·)fjqLp(·)(Rn) k–

j=–∞

(jk)σq/ q/q

sup

L∈Z

Lλq L

k=–∞

k–

j=–∞

(jk)σq/(·)f

j q Lp(·)(Rn)

sup

L∈Z

Lλq L–

j=–∞

(·)fjqLp(·)(Rn) L

k=j+

(jk)σq/

sup

L∈Z

Lλq L–

j=–∞

(·)f

j q Lp(·)(Rn)

f q

MK˙q,p(·)α(·),λ(Rn).

Next we estimateU. By Proposition . and the hypothesisTis bounded onLp(·)(Rn),

so that

U≈ max

sup

L<,L∈Z –Lλq

L

k=–∞

()

k+

j=k–

T(fj)(·)

χk(·) q

Lp(·)(Rn) ,

sup

L≥,L∈Z

–Lλq

–

k=–∞

()

k+

j=k–

T(fj)(·)

χk(·) q

Lp(·)(Rn)

+ –Lλq L

k=

k+

j=k–

T(fj)(·)

χk(·) q

Lp(·)(Rn)

max

sup

L<,L∈Z –Lλq

L

k=–∞

()|fχk|qLp(·)(Rn),

sup

L≥,L∈Z

–Lλq

–

k=–∞

()|fχk|qLp(·)(Rn)+ –L

λq L

k=

∞|fχk|qLp(·)(Rn)

f q

MK˙q,p(·)α(·),λ(Rn).

ForU, once again by Proposition ., we have

U≈ max

sup

L<,L∈Z –Lλq

L

k=–∞

()

j=k+

T(fj)(·)

χk(·) q

Lp(·)(Rn) ,

sup

L≥,L∈Z

–Lλq

–

k=–∞

()

j=k+

T(fj)(·)

χk(·) q

Lp(·)(Rn)

+ –Lλq L

k=

j=k+

T(fj)(·)

χk(·) q

Lp(·)(Rn)

(9)

To estimateI, observe that ifxRk,yRjandjk+ , then|x–y| ≈ |y| ≈j. We apply Lemma . and obtain

T(fj)(x)–jn

Rj

(xy)fj(y)dy

–jn fj Lp(·)(Rn)(x–·)χj(·)Lp(·)(Rn). (.)

An application of (.), (.), and Lemma . gives

j=k+

T(fj)(·)χk(·)

Lp(·)(Rn)

j=k+

–jn fj Lp(·)(Rn)(x–·)χj(·)Lp(·)(Rn)χBk(·)Lp(·)(Rn)

j=k+

(kj)(ν+n/s) Ls(Sn–) fj Lp(·)(Rn)

χBk(·) Lp(·)(Rn) χBj(·) Lp(·)(Rn)

j=k+

(kj)(+ν+n/s) f

j Lp(·)(Rn). (.)

In the sequel, we putη=+ν+n/sfor short. If  <q≤, in view ofη> , from (.),

(.), and (.), we conclude that

I sup

L<,L∈Z

Lλq L

k=–∞

()q

j=k+

(kj)ηq f j qLp(·)(Rn)

sup

L<,L∈Z –Lλq

L

k=–∞

()q L–

j=k+

(kj)ηq fj qLp(·)(Rn)

+ sup

L<,L∈Z –Lλq

L

k=–∞

()q

j=L

(kj)ηq fj qLp(·)(Rn)=:I+I.

ForI, noting thatη+α() >η+α–> , hence we have

I sup

L<,L∈Z –Lλq

L–

j=–∞

()q fj qLp(·)(Rn) j–

k=–∞

(kj)(η+α())q

sup

L<,L∈Z –Lλq

L–

j=–∞

()q fj qLp(·)(Rn) f q

MK˙q,p(·)α(·),λ(Rn).

ForI, sinceληα() <ληα–< , we get

I sup

L<,L∈Z –Lλq

L

k=–∞

()q

j=L

(kj)ηq–()qjλq

×–jλq j

l=–∞

(10)

sup

L<,L∈Z –Lλq

L

k=–∞

k(α()+η)q

j=L

j(ληα())q

f q

MK˙q,p(·)α(·),λ(Rn)

sup

L<,L∈Z

–LλqL(α()+η)qL(ληα())q f q

MK˙q,p(·)α(·),λ(Rn)

f q

MK˙q,p(·)α(·),λ(Rn).

If  <q<∞, we have

I sup

L<,L∈Z –Lλq

L

k=–∞

()q

L

j=k+

(kj)η fj Lp(·)(Rn) q

+ sup

L<,L∈Z

Lλq L

k=–∞

()q

j=L+

(kj)η f

j Lp(·)(Rn) q

=:Ia+Ib.

ForIa, by Hölder’s inequality, we get

Ia sup L<,L∈Z

–Lλq L

k=–∞

L

j=k+

()q fj qLp(·)(Rn)

(kj)(η+α())q/

×

L

j=k+

(kj)(η+α())q/

q/q

sup

L<,L∈Z

Lλq L

j=–∞

()q f j qLp(·)(Rn)

j–

k=–∞

(kj)(η+α())q/

sup

L<,L∈Z

Lλq L

j=–∞

()q f j qLp(·)(Rn)

f q

MK˙q,p(·)α(·),λ(Rn).

ForIb, as argued inI, we obtain

Ib sup L<,L∈Z

–Lλq L

k=–∞

j=L+

() fj Lp(·)(Rn)(kj)(η+α()+λ)/(kj)(η+α()–λ)/ q

sup

L<,L∈Z –Lλq

L

k=–∞

j=L+

()q fj qLp(·)(Rn)

(kj)(η+α()+λ)q/

×

j=L+

(kj)(η+α()–λ)q/ q/q

sup

L<,L∈Z –Lλq

L

k=–∞

j=L+

(11)

×–jλq j

l=–∞

()q fl qLp(·)(Rn)

sup

L<,L∈Z –Lλq

L

k=–∞

kλq

j=L+

(kj)(η+α()–λ)q/ f q

MK˙q,p(·)α(·),λ(Rn)

f q

MK˙q,p(·)α(·),λ(Rn).

Hence, we arrive at the desired inequality,

II+If q

MK˙q,p(·)α(·),λ(Rn).

We omit the estimation ofJsince it is essentially similar to that ofI. Consequently, the proof of Theorem . is complete. Proof of Theorem. LetfMK˙qα,(p·(),·λ)(Rn). We decompose

f(x) =

j=–∞

f(x)χj(x) =

j=–∞

fj(x).

Then we have

[b,T](f)

q

MK˙q,p(·)α(·),λ(Rn)=sup L∈Z

–Lλq L

k=–∞

(·)[b,T](f)χk q Lp(·)(Rn)

sup

L∈Z

Lλq L

k=–∞

(·)

k–

j=–∞

[b,T](fj)(·)

χk(·) q

Lp(·)(Rn)

+sup

L∈Z

Lλq L

k=–∞

(·)

k+

j=k–

[b,T](fj)(·)

χk(·) q

Lp(·)(Rn)

+sup

L∈Z

Lλq L

k=–∞

(·)

j=k+

[b,T](fj)(·)

χk(·) q

Lp(·)(Rn)

=:V+V+V.

First we estimateV. Noting that|xy| ≈ |x| ≈kforxRk,yRjandjk– , then, from Lemma . and Lemma ., it follows that

(x)

k–

j=–∞

[b,T](fj)(x)χk(x)

k–

j=–∞

–kn

Rj

(x)b(x) –b(y)(xy)fj(y)dy·χk(x)

k–

j=–∞

–kn(kj)α+

Rj

(12)

k–

j=–∞

–kn(kj)α+b(x) –b Bj

Rj

(y)(xy)fj(y)dy

+

Rj(y)b

Bjb(y)(xy)fj(y)dy . (.)

Similar to (.), we define a variable exponentp(·) by p(x) =p(x)+s, sinces> (p)+, by

Lemma ., Lemma ., and Lemma ., we get

bBjb(·)

(x–·)χj(·)Lp(·)(Rn)

(x–·)χj(·)Ls(Rn)bBjb(·)

χj(·)Lp(·)(Rn)

b BMOχBj(·)Lp(·)(Rn)(x–·)χj(·)Ls(Rn)

b BMO(kj)(ν+n/s) Ls(Sn–)χBj(·) Lp(·)(Rn)

(kj)(ν+n/sBj(·)Lp(·)(Rn). (.)

Then by (.), Lemma ., (.), (.), Lemma ., and Lemma ., we obtain

(·)

k–

j=–∞

[b,T](fj)(·)χk(·)

Lp(·)(Rn)

k–

j=–∞

–kn(kj)α+(·)f

jLp(·)(Rn)bBjb(·)

χk(·)Lp(·)(Rn)(x–·)χj(·)Lp(·)(Rn)

+bBjb(·)

(x–·)χj(·)Lp(·)(Rn)χk(·)Lp(·)(Rn)

k–

j=–∞

–kn(kj)α+(·)f

jLp(·)(Rn)

×(k–j) b BMO(kj)(ν+n/s) Ls(Sn–)χBj(·)

Lp(·)(Rn)χBk(·)Lp(·)(Rn) + b BMO(kj)(ν+n/s) Ls(Sn–)χBj(·)

Lp(·)(Rn)χBk(·)Lp(·)(Rn)

k–

j=–∞

(k–j)kn(kj)α+(·)f

jLp(·)(Rn)(kj)(ν+n/sBj(·)Lp(·)(Rn)χBk(·)Lp(·)(Rn)

k–

j=–∞

(k–j)(kj)(α++ν+n/s)(·)f

jLp(·)(Rn)

χBj(·) Lp(·)(Rn) χBk(·) Lp(·)(Rn)

k–

j=–∞

(k–j)(jk)(–α+–νn/s)(·)f

jLp(·)(Rn). (.)

By comparing (.) with (.), after applying the same arguments used in the estimation ofUin Theorem ., we can easily get, for all  <q<∞,

V f q

(13)

Next we estimateV. Using Proposition . and the boundedness of [b,T] onLp(·)(Rn),

we derive the estimate

V≈ max

sup

L<,L∈Z

Lλq L

k=–∞

()

k+

j=k–

[b,T](fj)(·)

χk(·) q

Lp(·)(Rn) ,

sup

L≥,L∈Z

–Lλq

–

k=–∞

()

k+

j=k–

[b,T](fj)(·)

χk(·) q

Lp(·)(Rn)

+ –Lλq L

k=

k+

j=k–

[b,T](fj)(·)

χk(·) q

Lp(·)(Rn)

max

sup

L<,L∈Z –Lλq

L

k=–∞

()|fχk| q Lp(·)(Rn),

sup

L≥,L∈Z

–Lλq

–

k=–∞

()|fχ

k| q

Lp(·)(Rn)+ –L

λq L

k=

|fχ k|

q Lp(·)(Rn)

f q

MK˙q,p(·)α(·),λ(Rn).

ForV, we apply Proposition . again and obtain

V≈ max

sup

L<,L∈Z

Lλq L

k=–∞

()

j=k+

[b,T](fj)(·)

χk(·) q

Lp(·)(Rn) ,

sup

L≥,L∈Z

–Lλq

–

k=–∞

()

j=k+

[b,T](fj)(·)

χk(·) q

Lp(·)(Rn)

+ –Lλq L

k=

j=k+

[b,T](fj)(·)

χk(·) q

Lp(·)(Rn)

=:max{G,H}. (.)

To estimate G, we note that ifxRk,yRjandjk+ , then|xy| ≈ |y| ≈j. By Lemma ., we have

[b,T](fj)(x)–jn

Rj

b(x) –b(y)(x–y)fj(y)dy

–jnb(x) –bBk

Rj

(x–y)fj(y)dy

+

Rj

b(y) –bBk(x–y)fj(y)dy

–jn fj Lp(·)(Rn)b(x) –bBk(x–·)χj(·)Lp(·)(Rn) +(x–·)b(·) –bBk

χj(·)Lp(·)(Rn)

(14)

As argued for (.), we get actually

(x–·)b(·) –bBk

χj(·)Lp(·)(Rn)

(x–·)χj(·)Ls(Rn)b(·) –bBk

χj(·)Lp(·)(Rn)

(j–k) b BMOχBj(·)Lp(·)(Rn)(x–·)χj(·)Ls(Rn)

(j–k) b BMO–k(ν+n/s) Ls(Sn–)χBj(·)

Lp(·)(Rn)|Bj|–/s

(j–k)(kj)(ν+n/s)χ

Bj(·)Lp(·)(Rn). (.)

From (.) and (.), it follows that

[b,T](fj)(·)χk(·)Lp(·)(Rn)

–jn fj Lp(·)(Rn)

(kj)(ν+n/s) Ls(Sn–)χBj(·)

Lp(·)(Rn)b(·) –bBk

χk(·)Lp(·)(Rn)

+ (j–k) b BMO(kj)(ν+n/s) Ls(Sn–)χBj(·)

Lp(·)(Rn)χBk(·)Lp(·)(Rn)

–jn fj Lp(·)(Rn)

(kj)(ν+n/s)

Ls(Sn–)χBj(·)

Lp(·)(Rn) b BMOχBk(·)Lp(·)(Rn) + (j–k) b BMO(kj)(ν+n/s) Ls(Sn–)χB

j(·)Lp(·)(Rn)χBk(·)Lp(·)(Rn)

(j–k) fj Lp(·)(Rn)–jn(kj)(ν+n/s)χBj(·)

Lp(·)(Rn)χBj(·)Lp(·)(Rn)

χBk(·) Lp(·)(Rn) χBj(·) Lp(·)(Rn)

(j–k)(kj)(+ν+n/s) f

j Lp(·)(Rn). (.)

Hence we have

j=k+

[b,T](fj)(·)χk(·)

Lp(·)(Rn)

j=k+

(j–k)(kj)(+ν+n/s) f

j Lp(·)(Rn). (.)

By comparing (.) with (.), as long as we repeat the same procedure as the estimation ofIin Theorem ., we can immediately get for all  <q<∞,

G f q

MK˙q,p(·)α(·),λ(Rn).

We omit the estimation ofHsince it is essentially similar to that ofG. Consequently, the proof of Theorem . is complete.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors worked jointly in drafting and approved the final manuscript.

Author details

1Department of Applied Mathematics, School of Mathematics and Physics, Anhui Polytechnic University, Wuhu, 241000,

The People’s Republic of China.2Department of Applied Mathematics, School of Mathematics and Computer Science,

(15)

Acknowledgements

The authors would like to thank the referee for his very valuable comments and suggestions. Meng Qu is supported by National Natual Science Foundation of China (11471033) and University NSR Project of Anhui Province (KJ2014A087).

Received: 3 June 2016 Accepted: 2 September 2016

References

1. Almeida, A, Hästö, P: Besov spaces with variable smoothness and integrability. J. Funct. Anal.258, 1628-1655 (2010) 2. Cruz-Uribe, D, Fiorenza, A: Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Applied and Numerical

Harmonic Analysis. Birkhäuser, Basel (2013)

3. Diening, L, Hästö, P, Roudenko, S: Function spaces of variable smoothness and integrability. J. Funct. Anal.256, 1731-1768 (2009)

4. Yan, X, Yang, D, Yuan, W, Zhuo, C: Variable weak Hardy spaces and their applications. J. Funct. Anal. (2016). doi:10.1016/j.jfa.2016.07.006

5. Yang, D, Zhuo, C, Yuan, W: Triebel-Lizorkin type spaces with variable exponents. Banach J. Math. Anal.9, 146-202 (2015)

6. Yang, D, Zhuo, C, Yuan, W: Besov-type spaces with variable smoothness and integrability. J. Funct. Anal.269, 1840-1898 (2015)

7. Chen, Y, Levine, S, Rao, R: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math.66, 1383-1406 (2006)

8. Diening, L, R ˙užiˇcka, M: Calderón-Zygmund operators on generalized Lebesgue spacesLp(·)and problems related to

fluid dynamics. J. Reine Angew. Math.563, 197-220 (2003)

9. Harjulehto, P, Hästö, P, Lê, ÚV, Nuortio, M: Overview of differential equations with non-standard growth. Nonlinear Anal.72, 4551-4574 (2010)

10. Kováˇcik, O, Rákosník, J: On spacesLp(x)andWk,p(x). Czechoslov. Math. J.41, 592-618 (1991)

11. Almeida, A, Drihem, D: Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl.394, 781-795 (2012)

12. Cruz-Uribe, D, SFO, Fiorenza, A, Martell, J, Pérez, C: The boundedness of classical operators on variableLpspaces. Ann.

Acad. Sci. Fenn., Math.31, 239-264 (2006)

13. Diening, L, Harjulehto, P, Hästö, P, R ˙užiˇcka, M: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

14. Izuki, M: Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system. East J. Approx.15, 87-109 (2009)

15. Kokilashvili, V, Meskhi, A, Sarwar, M: Potential operators in variable exponent Lebesgue spaces: two-weight estimates. J. Inequal. Appl.2010, Article ID 329571 (2010)

16. Qu, M, Wang, J: A note on fractional integral operators on Herz spaces with variable exponent. J. Inequal. Appl.2016, Article ID 2 (2016)

17. Samko, S: Variable exponent Herz spaces. Mediterr. J. Math.10, 2007-2025 (2013)

18. Xu, J: Variable Besov and Triebel-Lizorkin spaces. Ann. Acad. Sci. Fenn., Math.33, 511-522 (2008)

19. Zhang, P, Wu, J: Commutators of the fractional maximal function on variable exponent Lebesgue spaces. Czechoslov. Math. J.64, 183-197 (2014)

20. Herz, C: Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech.18, 283-324 (1968)

21. Baernstein, A, Sawyer, E: Embedding and multiplier theorems forHp(Rn). Mem. Am. Math. Soc.53, 318 (1985)

22. Lu, S, Yang, D, Hu, G: Herz Type Spaces and Their Applications. Science Press, Beijing (2008) 23. Ragusa, M: Homogeneous Herz spaces and regularity results. Nonlinear Anal.71, 1909-1914 (2009) 24. Soria, F, Weiss, G: A remark on singular integrals and power weights. Indiana Univ. Math. J.43, 187-204 (1994) 25. Hernández, E, Yang, D: Interpolation of Herz spaces and applications. Math. Nachr.205, 69-87 (1999) 26. Li, X, Yang, D: Boundedness of some sublinear operators on Herz spaces. Ill. J. Math.40, 484-501 (1996) 27. Lu, S, Yang, D: The decomposition of the weighted Herz spaces and its application. Sci. China Ser. A38, 147-158

(1995)

28. Izuki, M: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math.36, 33-50 (2010)

29. Lu, S, Tang, L, Yang, D: Boundedness of commutators on homogeneous Herz spaces. Sci. China Ser. A41, 1023-1033 (1998)

30. Lu, S, Xu, L: Boundedness of rough singular integral operatorson the homogeneous Morrey-Herz spaces. Hokkaido Math. J.34, 299-314 (2005)

31. Izuki, M: Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent. Rend. Circ. Mat. Palermo59, 461-472 (2010)

32. Lu, Y, Zhu, Y: Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents. Czechoslov. Math. J.64, 969-987 (2014)

33. Izuki, M: Fractional integrals on Herz-Morrey spaces with variable exponent. Hiroshima Math. J.40, 343-355 (2010) 34. Lu, Y, Zhu, Y: Boundedness of multilinear Calderón-Zygmund singular operators on Morrey-Herz spaces with variable

exponents. Acta Math. Sin. Engl. Ser.30, 1180-1194 (2014)

35. Muckenhoupt, B, Wheeden, R: Weighted norm inequalities for singular and fractional integrals. Trans. Am. Math. Soc.

161, 249-258 (1971)

36. Nakai, E, Sawano, Y: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal.262, 3665-3748 (2012)

References

Related documents

This effect was not seen when clopidogrel was administrated after cangrelor which is due to inhibition of binding of active metabolite of clopidogrel to the

Preparation of Mobile Phase: The mobile phase used in the present research work for simultaneous quantification of rutin and isoquercitrin from the leaf powder of

The system includes the quality control unit and all of its review and approval duties (e.g., change control, reprocessing, batch release, annual record review,

Literature survey has indicated that there are no analytical methods for estimation of Esomeprazole single component by UV-Visible Spectrophotometry but there are

21.841/2004, that discipline the accountability of political parties, have been edited on the basis of the Corporate Law 6404/76 it is outdated, and that is why

Little anthropogenic activities are carrying on in the localities, therefore enrichment of stream sediments in some elements are directly linked to the high

When comparison was made between different food habits highly significant difference was observed in consumption of cereals, pulses, green leafy vegetables,

Fact: The medium chain fatty acids (Saturated fats) present in coconut oil increase rate of metabolism, thereby leading to higher consumption of energy