• No results found

Neural Network Method for Fault Diagnosis of Analog Circuit Based on Kurtosis and Skewness

N/A
N/A
Protected

Academic year: 2020

Share "Neural Network Method for Fault Diagnosis of Analog Circuit Based on Kurtosis and Skewness"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

n o e c n e r e f n o C l a n o it a n r e t n I 8 1 0

2 Communicaiton,NetworkandAritifcia lIntelilgence(CNAI2018) 8 7 9 : N B S

I -1-60595- 50 -5 6

r

o

f

d

o

h

t

e

M

k

r

o

w

t

e

N

l

a

r

u

e

N

F

a

u

l

t

D

i

a

g

n

o

s

i

s

o

f

A

n

a

l

o

g

C

ri

c

u

i

t

B

a

s

e

d

o

n

K

u

r

t

o

s

i

s

a

n

d

S

k

e

w

n

e

s

s

o

a

T

X E

I

1,*

a

n

d

H

e

n

g

LI

2

1Schoo lofComputerScienceandEngineering,HunanUniverstiyofScienceandTechnology ,

a n i h C , 1 0 2 1 1 4 n a t g n a i X

2CollegeofForeignLanguage,Centra lSouthUniverstiyofForestryandTechnology,

, 4 0 0 0 1 4 a h s g n a h

C China

r o h t u a g n i d n o p s e r r o C * : s d r o w y e

K Analog cricuti, Fautl diagnosis, High-order cumulants, Informaiton fusion, Neura l k r o w t e n . .t c a r t s b

A This paper proposes the method of analog circui tfaul tdiagnosis based on high-order h t i w d e n i b m o c s t n a l u m u

c InformaitonFusion .I tisto extracttheorigina lvoltageand curren tsignals r i e h t e n i m r e t e d o t , t s e t r e d n u t i u c r i c e h t f o l a n i m r e t t u p t u o m o r

f kurtosis and skewness as faul t

d n a , s r o t c e v n e g i

e to impor tthem into improved BP neura lnetwork for faul tdiagnosis. As for f o n o i t c u r t s n o

c faul teigenvectors ,high-ordercumulantst echnique ,comparedt oPrincipalComponen t s i s y l a n

A (PCA) which is based on second order statistics ,pays more attention to information r e t f A . A C P y b d e t c e l g e

n Information Fusion isemployed to integratevoltagewith curren tasfaul t g i e s e k a m t i , s r o t c e v n e g i

e envectors show relatively comprehensive faul tinformation .Diagnosis d n a e t a r n o i t i n g o c e r r e h g i h e v a h y a w s i h t n i d e n i a g s r o t c e v n e g i e t l u a f t a h t y f i r e v r e h t r u f s e l p m a x e . y c a r u c c a s i s o n g a i d n o it c u d o r t n I o r p t s r i f s a w h c i h w , t i u c r i c g o l a n a f o s i s o n g a i d t l u a

F posedformilitaryi n1960’s,i san i nteresting

l l e w y r e v t o n s a w t n e m p o l e v e d s t i , y l e t a n u t r o f n U . y r o e h t t i u c r i c n i c i p o t h c r a e s e

r due to the

e h t , t i u c r i c g o l a n a f o y t i x e l p m o

c tolerance of analog faul tand some other related factors .Unti l t h t i w , y l t n e c e

r hedevelopmen tofartificia lintelligence ,someinteresting andusefu lresultsinother o t d e s u e r a s d l e i

f faul tdiagnosisofanalogcircuit ,whichmakesi tbecominganewi nterdisciplinary . a e h t s a h w o n t i u c r i c g o l a n a f o s i s o n g a i d t l u a f , y l t n a t r o p m i e r o

M dvantage of higher diagnosis

n i s l o h t n e m l a n o i t i d a r t e h t h t i w d e r a p m o c y t i x e l p m o c d e c u d e r y l t a e r g d n a n o i t a t u p m o c s s e l , y c a r u c c a e c n e g i l l e t n i l a i c i f i t r a f o t n e m y o l p m e e h t , e r o f e r e h T . s 0 7 9 1 d n a s 0 6 9

1 in faul tdiagnosis of analog

a e r o m d e t c a r t t a s a h t i u c r i

c ndmorer esearchers’i nterest .Somei nterestingr esultsint hisaspec tmainly , n o i t a m r o f s n a r t t e l e v a w , k r o w t e n l a r u e n y z z u f e d u l c n

i simulatedannealingalgorithm ,suppor tvector

n o o s d n a e n i h c a

m [ -9]1 .Simulated annealing hastheshortcomingsofslow convergen tspeed ,long

. s r e t e m a r a p d n a s e u l a v l a i t i n i e h t o t e v i t i s n e s y r e v s i e c n a m r o f r e p m h t i r o g l a s t i d n a , e m i t n o i t u c e x e h c i h w n i , g n i m m a r g o r p c i t a r d a u q g n i s u y b r o t c e v t r o p p u s e h t s e v l o s ) M V S ( e n i h c a m r o t c e v t r o p p u S m e h t f o n o i t a l u c l a c e h

t -ordermatrix isinvolved .Whenthevalueofmisverybig ,i ttakesalo tof . x i r t a m e h t f o e g a r o t s d n a n o i t a t u p m o c e h t r o f y r o m e m e n i h c a m f o t n u o m a t a e r g a d n a e m i t g n i t u p m o c S e h t , s t i u c r i c g o l a n a f o s i s o n g a i d t l u a f e h t n i r e i f i s s a l c e h t s a d e s u s i M V S e h t n e h w , e c n e

H VM

e g r a l n o t n e m e l p m i o t d r a h y r e v s i m h t i r o g l

a -scaletraining samples .Moreover ,theclassicsuppor t e h t e v l o s o t e l b a c i l p p a t o n t u b , n o i t a c i f i s s a l c y r a n i b r o f d i l a v y l n o s i m h t i r o g l a e n i h c a m r o t c e v i t l u

m -classification problems .When fuzzy neura lnetwork is used for faul tdiagnosis of analog t n i o p r a l u g e r f o m e l b o r p e h t s a h d n a k r o w t e n e h t f o e r u t c u r t s e h t e n i m r e t e d y l d r a h n a c e n o , s t i u c r i c c i t a m o t u a d n a s e l u r y z z u f f o n o i t c a r t x e c i t a m o t u a e h t , n o i t i d d a n I . " n o i s o l p x e n o i t a n i b m o c “ t a z i m i t p o d n a n o i t a r e n e

(2)

e v o b a e h t g n i s u f

o -mentionedmethodt oanalogcircuitf aul tdiagnosisareasfollows .Firstly ,stimulus , y l d r i h T ; d e t c a r t x e e r a s l a n g i s t l u a f l a n i g i r o e h t , y l d n o c e S ; t s e t r e d n u t i u c r i c e h t o t d e i l p p a e r a s l a n g i s e r a s r o t c e v n e g i e t l u a

f constructed and then faults are identified .Among them ,the third step of e h t g n i t c u r t s n o

c faul teigenvectorsi st hekeyprocedure .Unfortunately ,mos toft hecurren tresults[ -9]1

t o n n a

c giveaverygoodanswerto thisstep .Thecommonly-used method ,in which origina lvoltage y b d e m r o f s n a r t t s r i f e r a s l a n g i s t l u a

f wavele ttransformation and then analyzed by using PCA,can f o t c e p s a e h t m o r f , r e v e w o H . t n e t x e e m o s o t n o i t a m r o f n i l a n i g i r o e h t f o s c i t s i r e t c a r a h c e h t n i a t n i a m , s c i t s i t a t s l a n g i

s principa lconstituentscomingfromPCAonlyi nvolvesecondorderstatistics .When s e l b a i r a v m o d n a r t u p n i e h

t obeyGaussiandistribution ,eachprincipa lcomponenti si ndependent .As n o n h t i w s e l b a i r a v m o d n a r r o

f -Gaussian distribution , the high-order statistics contain some e b t o n d l u o h s h c i h w n o i t a m r o f n

i neglected .In addition ,the information of single voltage signals c

a r t x

e ted bythismethodcannotmaximallyexpressthefaul tfeaturesofacircuit ,and thenthefaul t o t y r a s s e c e n s i t i , y c a r u c c a e h t e v o r p m i o t , e r o f e r e h T . y r o t c a f s i t a s t o n s e m i t e m o s s i y c a r u c c a s i s o n g a i d f s r o t c e v n e g i e t l u a f s a n o i t a m r o f n i f o e g n a r e d i w e k a

t orcircui tfaul tdiagnosis .Motivated by above

o s l a e w d n a , s i s o n g a i d t l u a f t i u c r i c g o l a n a o t n i n o i s u f n o i t a m r o f n i s e i l p p a r e p a p s i h t , s n o i s s u c s i d . e .i , n o i t a m r o f n i t n a t r o p m i r e h t o n a r e d i s n o

c electric curren tof analog circuit ,as an information r o f e c r u o

s faul teigenvectors construction .Thus faul teigenvectors aredetermined by voltageand h g i h g n i n i b m o c y b t i u c r i c g o l a n a f o d o h t e m s i s o n g a i d t l u a f a e s o p o r p e w n e h T . s l a n g i s t n e r r u

c -order

d o h t e m r u o f o e r u d e c o r p f e i r b e h T . n o i s u f n o i t a m r o f n i d n a s t n a l u m u

c isasfollows :wefirs tcollec t

d n a s i s o t r u k r i e h t e n i m r e t e d o t r e d r o n i l a n i m r e t t u p t u o m o r f s l a n g i s t n e r r u c d n a e g a t l o v l a n i g i r o n o i t a g a p o r P k c a B r o r r E e v o r p m i o t t u p n i s a d e s u e r a y e h t n e h t d n a , s r o t c e v n e g i e t l u a f s a s s e n w e k s u a f r o f k r o w t e n l a r u e n ) P B

( l tdiagnosis .Sof tfaul tdiagnosis of tested circuits shows tha tfaul t o t s e h c a e r y c a r u c c a s i s o n g a i d t l u a f d n a , e t a r n o i t i n g o c e r h g i h e v a h y a w s i h t n i d e n i a g s r o t c e v n e g i e n o n e s o n g a i d n a c t i ,r e v o e r o M . % 0 0

1 -linearcircui tfaultsandcatastrophicfaultssuccessfully ,which .t i u c r i c g o l a n a f o s i s o n g a i d t l u a f r o f d o h t e m e v i t c e f f e w e n a s e d i v o r p h g i

H -orde rCumulants ,Kurtossi ,andSkewness

h g i

H -ordercumulants(HOC)t echniquei sanewt echnologyrapidlydevelopedi nrecen tyears ,andas n i l a e d l o o t t n a t r o p m i n

a g with non-Gaussiansignals ,nonlinearsignalsandblind signals ,i tattracts h c i h w f o , s e g a t n a v d a f o s ’ t I . n o i t n e t t a g n i s a e r c n

i the unique is tha t i t can detec t nonlinear

i t i d n a , s l a n g i s e h t g n o m a s c i t s i r e t c a r a h c g n i l p u o c e h t t c a r t x e d n a s c i t s i r e t c a r a h

c s insensitive to

n a c d n a , e s i o n n a i s s u a

G abandont heeffectsofinterferenceofnoise .What’smore,t heoretically,i tcan f o l a n g i s t l u a F . y c a r u c c a n o i t a c i f i t n e d i d n a s i s y l a n a e h t e v o r p m i d n a , e s i o n e h t e t a n i m i l e y l e t e l p m o c e n i l n o n s i f l e s t i t i u c r i c g o l a n

a ar ,which makes faul tsigna linevitably noisy with the effects of d n a e r u t a r e p m e

t environment .Therefore ,it’s a better and applicable choice to use high-order t i h t i w l a e d o t s t n a l u m u c h g i

H -orde rCumulants

, n o i t c n u f c i t s i r e t c a r a h c e h t f o n o i t c u d o r t n i h t i

W high-ordercumulants Ck,t osinglerandomvariable , : s a d e n i f e d e b n a c 0 ) ( 1 k

k k k

d C d j ω ω ψ ω =

= k=1,2,…,n ( 1)

h c i h w n i ) ( n l )

(ω φ ω

ψ = ] ) ( p x e [ ) ( p x e ) ( )

f x jωx dx E jωx

φ ∞

− =

(3)

, e g a r e v a l a c i t s i t a t s r o f g n i d n a t s , s n o i t a t c e p x e d n a m e d f o r o t a r e p o n a s i } · {

E ψ(ω) and φ(ω)

d n a r f o n o i t c n u f c i t s i r e t c a r a h c d n o c e s e h t d n a t s r i f e h t s a y l e v i t c e p s e

r omvariablex.

r o t c e v m o d n a r r o f s

A ( 1, 2, , )T

k

x x x

x=  ,t hedefinitionofhigh-ordercumulantsi sdefinedas :

2

1 1

1

1

1 1 ,

, ,

1 0

1

1 0

) , , ( ) (

) , , ( n l ) (

k k

k

k

k

k

k

k

k

j C

j

γ γ γ

γ

γ γ γ

ω ω

γ γ

γ γ

ω ω

ω ω ψ

ω ω

ω ω φ

ω ω

= =

= =

=

− =

∂ ∂

∂ −

∂ ∂

 

 

( 2)

, h c i h w n

I φ(ω1,,ωk)=E[exp(j(ω1x1++ωkxk))] , γ =γ1+γ2+γk . Especially , when

3 2

1 γ γ 1

γ = = = and γ =3 ,t hird-ordercumulanti smarkedas:

3 2 1 1

, 1 , 1

3x C cum(x,x ,x)

C = = )( 3 k

, y l l a r e n e

G -ordercumulanti sasfollow:

1 1

1

1, ) [ ( ), ( ), , ( )]

( k k

x

k cum xt xt x t

C τ τ = +τ  +τ ( 4)

si s o t r u

K a Snd kewness

f

I {x(n)} isthestationaryrandomprocessofzeromean ,first-order ,second-order ,third- order ,and h

t r u o

f -ordercumulantscanbei llustratedas:

1

1x mx E{x(t)}

C = = )( 5

2x( ) E{x(t)x(t )} Rx(t)

C τ = +τ = )( 6

2 1

2 1

3x( , ) E{x(t)x(t )x(t )}

C τ τ = +τ +τ ( )7

3 2

1 3

2 1 4

1 3 2 2

3 1

1 2 3

} ) ( ) ( ) ( ) ( { ) , , (

) ( ) ( ) ( ) (

) ( ) (

x

x x x

x

x x

t x t x t x t x E C

R R R

R R R

τ τ

τ τ

τ τ

τ τ τ τ

τ τ

τ τ τ

+ +

+ =

− −

− −

− −

)( 8

n

I formula (7) ,ifτ12=0 , -1 D slice of third order cumulants can be obtained .I tis defined as l

a n g i s l a e r f o s s e n w e k

s {x(n)} and marked as { 3( )}

x E x t

S = . Similarly , in formula (8) , f

i τ123 =0 ,anotheri mportan tconcept ,kurtosis ,canbeobtained ,whichi sasfollow :

2 2 4()} 3 { ()}

{

x E x t E x t

K = −

x

R stands for autocorrelation .Based on the above definition ,we know tha tfirst-order and d

n o c e

s -ordercumulantsofrandomvariablexofGaussiandistributionarerespectivelyt hemeanand e

c n a i r a

v ofx ,andhigh-ordercumulantsofGaussianr andomvariablexi salwaysequalt ozero .Asfor s

s e c o r p m o d n a r n a i s s u a

G {x(n)},i tshigh-ordercumulantsarealwaysequalt ozeroaswel lwheni ts h

g i h t a h t d e c u d e d e b n a c t i , e r o f e r e h T . 2 s d e e c x e r e d r

o -ordercumulantsareno tsensitivet oGaussian

n e h W . s s e c o r

p outer noise is the gaussian colored one ,high-order cumulants can completely e

t a n i m i l

e theeffec tofnoiseandi mprovet heaccuracyofi dentificationanddiagnosisi nt heory.

s is o n g a i

D Principle

s o h c r e p a p s i h T . 1 e r u g i f s a d e w o l l o f s i e l p i c n i r p s i s o n g a i

(4)

s u l u m i t s a , y l t s r i F . s u l u m i t s e h t s a s l a n g i s y r o t a l u m i t

s isexertedonthecircui tundertest .Secondly ,

e h t g n i s u y b , y l d r i h T . t u p t u o e h t m o r f d e n i a t b o e r a t i u c r i c f o s l a n g i s t n e r r u c d n a e g a t l o v l a n i m r e t

x o b l o o t s i s y l a n

a ofhigh-ordercumulants ,kurtosisandskewnessoft ermina lsignalsaredeterminedas k

r o w t e n l a r u e n o t n i t u p n i e r a y e h t , y l l a n i F . s r o t c e v n e g i e t l u a f e h

t forfaul tdiagnosis.

D . 1 e r u g i

F iagnosticschematic.

si s o n g a i

D Example

d a u q s i t i u c r i c s i s o n g a i

D po - ma p high-pass filter(seen in figure 2) , in which R1=R4=5kΩ ,

R2=R3=R5=R8=R9=R10=10kΩ ,R6=3kΩ,R7=4kΩ,C1=20nF ,C2=5nF ,andtheinpu tAC voltageVinis

. V 6

5 R

k 0 1 1

V

c a V 6

0 2

C n 5

8 R

k 0 1

n i V

9 R

k 0 1

0 0

0 1 R

k 0 1

A 3 U

8 9 7 A U

3 2

8

4

1

+

-+

V

-V

T U O

A 1 U

8 9 7 A U

3 2

8

4

1

+

-+

V

-V

T U O

A 4 U

8 9 7 A U

3 2

8

4

1

+

-+

V

-V

T U O

A 2 U

8 9 7 A U

3 2

8

4

1

+

-+

V

-V

T U O

6 R

k 3 1

C n 0 2

0

2 V

c d V 2 1

0

2 R

k 0 1

0 3 V

c d V 2 1

V

0

t u o V

3 R

k 0 1

1 R

k 5

7 R

k 4 4

R k 5

. 2 e r u g i

F Fourop-ampbiquadhighpassfilter.

t a h t s w o h s s i s y l a n a e h

T circui toutpu tVou tis more sensitiveto resistors R1 ,R4 ,R6 ,and R7and

s e c n a t i c a p a

c C1andC2.Within5%oft hecomponentt olerance,t hereare13statesi ncludingf ault-free

R n i s a i b e v i t a g e n d n a e v i t i s o p f o % 0 5 f o s e t a t s t l u a f t f o s d n a e t a t

s 1 ,R4 ,R6, R7, C1andC2.

e e r h

T -layerBPneura lnetworkwithsinglehiddenl ayeri susedasfaul tclassifier .Thenumberofi ts f o d e s o p m o c e r a s r o t c e v n e g i e t l u a f e h t , e r e H . s t n e m e l e r o t c e v n e g i e t l u a f f o r e b m u n e h t s i s r e y a l t u p n i

b m u n e h t o s , s i s r o t u k d n a s s e n w e k s t n e r r u c e h t d n a e g a t l o v t u p t u o e h

t ersofneuronsi nt hei npu tand

n a c s r o t c e v t u p t u O . s e t a t s t l u a f f o r e b m u n e h t g n i e b r e t t a l e h t , 3 1 d n a 4 y l e v i t c e p s e r e r a s r e y a l t u p t u o

s i h t s a d e n i f e d e

b — supposet hatt hereareMkindsofstatesse tupi nt hecircuit ,andnetworkoutpu t s

i a( 1,a2,….ai… a. j….aM) .Ift hecircuitl ocatesi nstatei ,andi faiisequalt oone,t heothersequalt o0 ,

. e

.i desiredoutpu tvectorsofnetworkare(0,0,….1,….0),t hent henumberofneuronsi nhiddenl ayers a

l u m r o f l a c i r i p m e y b d e n i m r e t e d e b n a

c 1[ 0]

0 1

1 h m n

n

m+ + ≤ ≤ + + (9) .

s n o r u e n t u p t u o f o r e b m u n e h t , ” n “ e l i h w , s n o r u e n t u p n i f o r e b m u n e h t r o f s d n a t s ” m “ , t i n I

t n e n o p m o c e h t f o e g n a r e c n a r e l o t % 5 n i h t i

W values ,Monte-Carloanalysishasbeendoneforeach . s e l p m a s g n i y f i t n e d i r o f s e m i t 0 4 d n a s e l p m a s g n i n i a r t r o f s e m i t 0 6 , s e m i t 0 0 1 r o f t i u c r i c e h t f o e t a t s

s i s o t r u k e h t s i 1 e l b a

T and skewnessdetermined withhigh-ordercumulantsin variousstatesofthe circui tand Table 2 shows the outpu tresults of neura lnetwork diagnosis .While Figure 3 is the

(5)

1 e l b a

T . Kurtosisandskewnessundervariousstates. s

s l a c t l u a

F Faul t

e d o c

l a n i m o

n Faultyvalue Outpu tvoltage Outpu tcurrent s

i s o t r u

k skewness kurtosis skewness R1↑ F 1 5 k 7.5k 12.764 3.1430 1.5503 -0.4165

R1↓ F 2 5 k 2.5k 10.326 2.5693 0.5826 -1.4857

R4↑ F 3 5 k 7.5k 11.362 2.8921 2.0579 1.3586

R4↓ F 4 5 k 2.5k 16.248 3.8952 3.3825 2.7625

R6↑ F 5 3 k 4.5k 14.742 3.3895 2.9825 0.9956

R6↓ F 6 3 k 1.5k 13.267 3.0567 3.1624 2.5243

R7↑ F 7 4 k 6 k 14.876 3.2265 6.5622 3.5213

R7↓ F 8 4 k 2 k 9.4862 2.1837 5.0527 3.0845

C1↑ F 9 2 0n 3 0n 9.9887 2.4372 2.0547 1.3845

C1↓ F 10 2 0n 1 0n 8.9736 2.1536 1.2846 0.9645

C2↑ F 11 5 n 7.5n 15.283 3.2769 3.6257 1.9864

C2↓ F 12 5 n 2.5n 15.365 3.4435 5.0945 3.7536

l a m r o

N F 0 10.988 2.6321 3.1520 1.6251

0 100 200 300 400 500

0 1-4

0 1-3

0 1-2

0 1-1

0 10

0 11

s h c o p E 1 8 5

kc

al

B-l

ao

G

eul

B-gni

ni

ar

T

1 0 0 . 0 s i l a o G , 9 5 6 9 9 9 0 0 0 . 0 s i e c n a m r o f r e P

e r u g i

F 3. Convergencecurvesofneura lnetwork.

2 e l b a

T . Output nof eura lnetwork.

t l u a f e h t , t i u c r i c e v o b a e h t n i d e s u s i k r o w t e n l a r u e n t e l e v a w h t i w d e n i b m o c n o i s u F n o i t a m r o f n I

o f o s t n e i c i f f e o c t e l e v a W . d e g n a h c n u e d o

m utpu tvoltage and outpu tcurren tare inpu tinto neura l e

r a k r o w t e n l a r u e n e h t f o t u p t u o d n a e v r u c e c n e g r e v n o C . n o i t a c i f i t n e d i t l u a f r o f k r o w t e

n separately

e r u g i f n i n w o h

s 4 andt able3.

0

F F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10 F 11 F 12

3 0 0 0 .

0 0.0003 0.0003 0.0003 -0.0001 0.0003 0.0004 0.0003 -0.0033 0.0004 0.0003 0.0003 0.0003

8 0 9 0 .

0 0.9025 0.0908 0.0909 -0.0000 0.0909 0.0904 0.0909 0.0017 0.0903 0.0909 0.0909 0.0909

9 0 9 0 .

0 0.0910 0.9520 0.0911 0.0000 0.0911 0.0903 0.0911 0.0003 0.0901 0.0911 0.0911 0.0911

9 0 9 0 .

0 0.0907 0.0910 0.9620 0.0905 0.0906 0.0929 0.0905 -0.0017 0.0932 0.0904 0.0904 0.0904

1 0 0 0 .

0 0.0003 -0.0000 0.0006 0.9999 0.0004 -0.0022 0.0006 0.0012 -0.0025 0.0006 0.0006 0.0006

4 1 9 0 .

0 0.0913 0.0914 0.0911 0.0003 0.9570 0.0924 0.0912 -0.0065 0.0926 0.0911 0.0911 0.0911

3 1 9 0 .

0 0.0914 0.0912 0.0917 0.0002 0.0916 0.9840 0.0917 -0.0031 0.0893 0.0917 0.0917 0.0917

0 1 9 0 .

0 0.0909 0.0910 0.0907 0.0001 0.0908 0.0921 0.9696 -0.0021 0.0922 0.0908 0.0907 0.0908

-0.0001 -0.0003 0.0001 -0.0008 0.0002 -0.0005 0.0029 -0.0007 0.9981 0.0033 -0.0007 -0.0008 -0.000 7

2 0 9 0 .

0 0.0901 0.0902 0.0899 -0.0001 0.0900 0.0911 0.0899 0.0077 0.9865 0.0899 0.0899 0.0899

0 1 9 0 .

0 0.0912 0.0909 0.0915 0.0000 0.0913 0.0889 0.0915 0.0009 0.0886 0.9625 0.0915 0.0915

4 1 9 0 .

0 0.0914 0.0913 0.0916 0.0001 0.0915 0.0904 0.0915 -0.0042 0.09 03 0.0916 0.9758 0.0916

7 1 9 0 .

(6)

0 1000 2000 3000 4000 5000 6000 7000 8000 0

1-3

0 1-2

0 1-1

0 10

0 11

s h c o p E 9 3 0 8

kc

al

B-l

ao

G

eul

B-gni

ni

ar

T

1 0 . 0 s i l a o G , 7 7 7 9 9 9 0 0 . 0 s i e c n a m r o f r e P

e r u g i

F 4. Convergencecurveofneura lnetwork.

3 e l b a

T . Output fo n ue ra lnetwork.

0

F F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10 F 11 F 12

4 0 2 0 .

0 -0.1368 -0.0057 -0.0577 0.0447 0.0463 0.0740 0.0192 -0.0092 -0.0187 0.0926 0.0610 -0.0912

1 3 9 1 .

0 0.4644 0.0015 -0.0392 0.1517 0.0962 -0.0432 -0.0010 -0.0324 -0.0151 -0.0240 0.0099 0.0816

5 1 0 .

0 7 -0.0707 0.9973 -0.0811 -0.0063 0.1484 -0.0418 0.0200 0.0217 0.0053 0.0086 0.0317 0.0660 -0.0076 -0.2087 0.0065 0.9314 0.0470 0.2454 0.0114 -0.0008 -0.0191 0.0845 0.0430 0.0360 0.0715

-0.1203 0.1033 0.0075 0.0199 1.0080 -0.0181 0.0299 -0.0149 -0.0143 0.0618 0.0552 0.0506 0.0025

0 3 4 2 .

0 0.1097 -0.0005 0.0798 -0.0593 0.9493 -0.1375 -0.0055 0.0270 0.0035 0.0862 0.0528 0.0917

7 0 5 3 .

0 0.0076 0.0015 0.0429 0.0553 -0.2127 0.9364 -0.0002 0.0254 0.0230 0.0065 0.0116 0.0826

1 2 2 0 .

0 0.0137 -0.0027 0.0067 -0.0266 -0.0147 0.0043 0.9997 -0.0064 0.0274 0.0932 0.0031 0.0047

-0.0075 -0.0195 0.0023 -0.0099 -0.0129 0.0700 -0.0319 -0.0055 1.0187 0.0327 0.0045 0.0630 0.0702

5 2 1 0 .

0 0.0247 0.0425 -0.0694 0.0032 0.0862 0.0089 -0.0487 0.0523 0.99 70 0.0128 0.0412 -0.0825

7 9 5 0 .

0 -0.3589 0.0261 0.0028 0.0712 -0.0037 -0.0310 0.0062 0.0062 0.0080 1.0025 0.0060 0.0120

-0.0642 0.0589 0.0052 0.0672 -0.0014 0.0216 0.0481 0.0756 -0.0893 0.0059 0.0815 0.98 90 0.1123 1

6 7 1 .

0 0.0569 0.0027 0.0038 0.0591 0.0682 0.0952 0.0384 0.0059 0.0640 0.0720 0.0806 0.99 25

b s e c n e r e f f i d e h t t a h t d e c it o n e b n a c t i , 1 e l b a t m o r

F etweenkutorsisandskewnessofoutpu tvotlageand

h g i h e h t o t s e t u b i r t n o c h c i h w , s n o it i d n o c t l u a f s u o i r a v r e d n u e l b a r e d i s n o c e r a s l a n g i s t n e r r u c

r o t c e v n e g i e t l u a f f o n o it a n i m i r c s i

d composedbyt hesefourvaluesandt hehighi denitficaitonrateforfaul t e

r u g i f m o r f n e e s e b o s l a n a c s i h T . s i s o n g a i

d 3 andt able2 .Theneura lnetworkt rainingconvergeswtihin y

c a r u c c a s i s o n g a i d t l u a f d n a s p e t s 0 0 0

1 ofneura lnetwork is up to 100% in table2 ,whlie diagnosis s i t e l e v a w h ti w s l a n g i s t n e r r u c d n a e g a tl o v g n i s o p m o c e d y b d e t c a r t x e s r o t c e v n e g i e t l u a f f o y c a r u c c a

1 F t l u a F f o s i s o n g a i d s u o e n o r r e e h t d n a k r o w t e n l a r u e n f o s p e t s e c n e g r e v n o c e r o m s ti r o f , r o i r e f n

i .

n o is u l c n o C

h g i h h t i w , r e p a p s i h

T -ordercumulantscombinedwithI nformationFusion ,attemptst ocopewithfaul t s

s e n w e k s d n a s i s o t r u k h g u o r h t n w a r d s r o t c e v n e g i e t l u a f h t i w , t i u c r i c g o l a n a f o s l a n g i

s offaul tsignals ,

k r o w t e n l a r u e n P B o t n i m e h t s t u p n i d n

a for faul tdiagnosis . Diagnosis examples show tha tfaul t e h t d n a e t a r n o i t i n g o c e r h g i h e h t r o f t n e r e f f i d y l t n a c i f i n g i s e r a y a w s i h t n i d e t a r e n e g s r o t c e v n e g i e

k c i u

q BPnetwork convergence .So itsdiagnosis accuracy rateishigherthan tha tof othergenera l n

a w e n a s e d i v o r p h c i h w , s d o h t e

m deffectivewayforbotht heconstructionoffaul teigenvectorsand .t

i u c r i c g o l a n a f o s i s o n g a i d t l u a

f

s t n e m e g d e l w o n k c A

f s a w k r o w s i h

T inancially supported by ScientificResearch Fund of Hunan Provincia lEducation t

n e m t r a p e

(7)

6 6 3 1 5 E . o N t n a r

G ,the Nationa lNatura lScience Funds of China for Distinguished Young Scholar .

7 2 7 5 2 9 0 5 . o N t n a r G r e d n u

s e c n e r e f e R

] 1

[ JinYu,LiuHong.Faul tdiagnosisofanalogcircui tbasedonwavele tneura lnetwork J[ .] Chinese ,t

n e m u r t s n I c i f i t n e i c S f o l a n r u o

J 2007,28(9),1600~1603.

] 2

[ ZhuWenji ,HeYigang .Neura lNetworkBasedSof tFaul tDiagnosisofAnalogCircui tWith s

e c n a r e l o

T [J] .TransactionsofChinaElectrotechnica lSociety,2009,24(11),184~191. ]

3

[ TangJingyuan ,Sh iYibing ,ZhangWei .Analogcircui tfaul tdiagnosisbasedonsuppor tvector e

l b m e s n e e n i h c a

m .[ J] ChineseJourna lofScientificInstrumen,t2008,29(6),1216~1220. ]

4

[ Bing Long , Jianguo Huang , Shulin Tian Leas t squares suppor t vector machine based g

o l a n

A -Circui tFaul tDiagnosis using wavele ttransform as preprocessor [C]. Communications , .

8 0 0 2 S A C C C I , 8 0 0 2 , s m e t s y S d n a s t i u c r i

C Fujian,China.2008:1026~1029.

] 5

[ XieYongle ,LiXifeng .AMethod to LocateParametricFaultsinAnalogIntegratedCircuits[J] . .

s r o t c u d n o c i m e S f o l a n r u o

J 2008,29(3),598~605.

] 6

[ BaoruHan ,HengyuWu.BasedonCompac tTypeofWavele tNeura lNetworkToleranceAnalog s

i s o n g a i D t l u a F t i u c r i

C [C]. Information Engineering and ComputerScience ,2009 ,ICIECS 2009. ,

n a h u

W China,2009:1~4. ]

7

[ HeWuming ,Wang Peiliang. Analog Circui tFaul tDiagnosis Based on RBF Neura lNetwork m

h t i r o g l A O S P y b d e z i m i t p

O [C]. Intelligen tComputation Technologyand Automation(ICICTA) , .

0 1 0

2 Changsha ,China,2010:628~631. ]

8

[ XieYongle .ACorrelationAnalysisApproachBasedFaul tDiagnosisofAnalogVLSICircuits .[ J] .

s r o t c u d n o c i m e S f o l a n r u o J e s e n i h

C 2007,28(12),1999~2005.

] 9

[ L iMu ,He Yigang ,Yuan Lifen .Faul tDiagnosis of Analog Circui tBased on Wavele tNeura l m

h t i r o g l A n o i t u l o v E l a i t n e r e f f i D s o a h C d n a s k r o w t e

N [C]. Electrica land Contro lEngineering

0 1 0 2 , ) E C E C I

( .Wuhan ,China,2010:986~989. 1

[ 0] T. Deliyannis ,Y. Sun ,J.K. Fidler1999Continuous-TimeActiveFilterDesign(BocaRaton ,FL: p

) s s e r P C R

References

Related documents

*In 2016 Melbourne Fringe will be using the Supper Room (previously The Warren) as a programmed venue for ticketed events on Thurs/Fri/Saturday nights throughout the Festival..

To calculate the symmetry energy in nuclear matter, we consider two quarks with equal masses and observe that the symmetry energy increases with the total charge showing the sti

The factors affecting crime occurrence in order of priority are: religious values, scientific courses and information of the offender’s futurity, identity giving, behavior

This study presented a series of five atraumatic frac- tures of the humeral shaft occurring during a maximal- effort throwing action whilst playing dodgeball.. Four of the patients

The essence of wisdom is an expression that refers to solid knowledge, which includes (can lead to) makrîfah (introduction) to Allah swt, which comes from the view of

Money : People often use rounding and estimating at a store to make sure they have enough money to pay for items before they get to the cashier!. Using

Of the total 140 respondents in this survey, 18 per cent (n=26) were individuals who had called the LEARN Line seeking help for someone other than themselves.. Demographic information

In this context, the goal of our paper is four-fold: (i) providing theoretical results showing that, in the case of binary classification, the expected error rate may be