• No results found

Notions of generalized s convex functions on fractal sets

N/A
N/A
Protected

Academic year: 2020

Share "Notions of generalized s convex functions on fractal sets"

Copied!
16
0
0

Loading.... (view fulltext now)

Full text

(1)

R E S E A R C H

Open Access

Notions of generalized

s

-convex functions

on fractal sets

Adem Kılıçman

1*

and Wedad Saleh

2

*Correspondence:

akilic@upm.edu.my

1Department of Mathematics and

Institute for Mathematical Research, University Putra Malaysia, Serdang, 43400, Malaysia

Full list of author information is available at the end of the article

Abstract

The purpose of this article is to present some new inequalities for products of generalized convex and generalizeds-convex functions on fractal sets. Furthermore, some applications are given.

MSC: 26A51; 26D07; 26D15; 53C22

Keywords: s-convex functions; fractal space; local fractional derivative

1 Introduction

Letf: I⊂R−→Rα. For anyx

,x∈Iandγ ∈[, ] if the inequality

fγx+ ( –γ)x

γαf(x) + ( –γ)αf(x)

holds, thenf is called a generalized convex function onI []. Inα= , we have convex function, convexity is defined only in geometrical terms as being the property of a function whose graph bears tangents only under it [].

The convexity of functions plays a significant role in many fields, for example, in biolog-ical system, economy, optimization, and so on [–].

In recent years, the fractal theory has received significantly remarkable attention from scientists and engineers. In the sense of Mandelbrot, a fractal set is one whose Hausdorff dimension strictly exceeds the topological dimension [, ]. Many researchers studied the properties of functions on fractal space and constructed many kinds of fractional calcu-lus by using different approaches [–]. Particularly, in [], Yang gave the analysis of local fractional functions on fractal space systematically, which includes local fractional calculus and the monotonicity of function.

LetRαbe the real line numbers on fractal space. Then by using Gao-Yang-Kang’s

con-cept one can explain the definitions of the local fractional derivative and local fractional integral as in [–]. Now if

,rαandrα∈Rα( <α≤), then

() rα+∈Rα,∈Rα,

()

 +=rα+ = (r+r)α= (r+r)α,

()

 + (rα+) = (rα+) +,

()

= = (rr)α= (rr)α,

()

(rα) = (rαrα)rα,

()

(rα+) = (rαrα) + (rαrα),

(2)

()

 + α= α+ = andrα·α= α· =.

Let us start with some definitions as regards the local fractional calculus onRα.

Definition .[] Letybe a local fractional continuous function on the interval [a,a].

The local fractional integral of the functiony(m) of orderαis defined by

aI

(α)

ay(m) =

( +α)– a

a

y(μ)(dμ)α

=( +α)– lim

μ−→

n

i=

y(μi)(μi)α

withμi=μi+–μiandμ=max{μi:i= , , . . . ,n– }where [μi,μi+],i= , , . . . ,n

,μ=a <μ<· · ·<μn–<μn=a is a partition of the interval [a,a] and is the

well-known Gamma function(m) =tm–etdt.

In [], Mo and Sui introduced the definitions of two kinds of generalizeds-convex func-tions on fractal sets as follows.

Definition .

(i) A functionf:R+−→Rα, is called a generalizeds-convex ( <s< ) in the first sense

if

f(γa+γa)≤γsαf(a) +γsαf(a) ()

for alla,a∈R+and allγ,γ≥withγs+γs= . This class of functions is

denoted byGK

s.

(ii) A functionf:R+−→Rα, is called a generalizeds-convex ( <s< ) in the second

sense if () holds for alla,a∈R+and allγ,γ≥withγ+γ= . This class of

functions is denoted byGK

s.

In the same paper, [], Mo and Sui proved that all functions fromGKs, fors∈(, ), are nonnegative.

In this article, recall thatgsandgs are the generic classes consistent for those

func-tions that are generalizeds-convex in the first sense, and in the second sense, respectively. It is well known that there are many important established inequalities for the class of generalized convex functions, however, one of the most famous is known as the general-ized Hermit-Hadamard inequality, or the ‘generalgeneral-ized Hadamard inequality’ and stated as follows (see []): letf be a generalized convex function on [a,a]⊆R,a<a, then

f

a+a

( +α) (a–a)αa

Ia(α)f(x)≤f(a) +f(a) α .

2 Basic results for generalizeds-convex functions Lemma . If fGK

s or fGKs,then f(γx+γx)≤γαsf(x) +γαsf(x)

(3)

So, we might re-write the definitions of generalizeds-convexity in the first sense and the second sense as follows.

Definition . A functionf:I⊂R+−→Rα is called a generalizeds-convex in the first

sense if

fγx+

 –γs

sx

γαsf(x) +

 –γsαf(x)

for allx,x∈Iand for all ≤γ ≤.

Definition . A functionf:I⊂R+−→Rαis called a generalizeds-convex in the second

sense if

fγx+ ( –γ)x

γαsf(x) + ( –γ)αsf(x)

for allx,x∈Iand for all ≤γ ≤.

Theorem . The classes GK, GKand the class of generalized convex functions are equivalent when the domain is restricted toR+.

Proof Simply an issue of applying the definitions.

Now, some results as regards generalizeds-convex functions are given.

Remark .

(i) IffGK

s, thenf( x+x

s )≤

f(x)+f(x)

α .

(ii) IffGK

s, thenf(x+x)≤

f(x)+f(x)

αs .

(iii) For a function that is both generalizedgsandgs, there is a one-to-one

correspondence between the set of all pairs of the sort(γ,η)with respect togsand

the set of all pairs of the sort(γ,η)with respect togs. (So we may write eachγ as a

γsand eachηas aηsandvice versa. This happens in the light of the fact that

≤γ,η≤,≤s≤.)

Theorem . If a function fGK

s and fGKs,then f(γx+ηx)≤γαsf(x) +ηαsf(x)≤γαsf(x) +ηαsf(x)

for some{γi,ηi,i= , } ⊂[, ].

Proof It follows from the one-to-one correspondence proved before. To eachγ,ηsuch

that γ+η = , there correspondsγ, η whereγs+ηs=  andγ ≥γ, η≥η since

{γi,ηi,i= , } ⊂[, ].

Theorem . If a function fGK

sand fGKsand its domain concurs with its counter-domain,then fofGK

(4)

Proof f(γx+ ( –γs)

sx)γαs

f(x) + ( –γs)αf(x), then

αsf(x) +

 –γsαf(x)

γαsαsff(x)

+ –γsααsff(x)

=γαsfof(x) +βαsfof(x).

3 Inequalities for generalizeds-convex functions Theorem . Let g: [, ]−→Rαbe a function such that

g(γ) = 

(a–a)α(( +α))

a

a

a

a

fγx+ ( –γ)x

(dx)α(dx)α,

where f: [a,a]−→Rαand fGKs.Then:

(i) gGK

s in[, ].IffGKs,thengGKs.

(ii) αg() = αg() =α

(a–a)α(+α)aI

(α)

af(x)is an upper bound forg(γ).

(iii) α(–s)g(γ)g( ) =

 (a–a)α((+α))

a

a

a

af(

x+x

 )(dx)

α(dx

)α,γ ∈[, ].

Proof (i) Take{γ,γ} ⊂[, ],γ+γ= ,t,t∈DandfGKs, then we have g(γt+γt)

= 

(a–a)α(( +α))

a

a

a

a

f(γt+γt)x

+ – (γt+γt)

x

(dx)α(dx)α

≤ 

(a–a)α(( +α))

a

a

a

a

γαsf(tx+x–tx)

+γαsf(tx+x–tx)

(dx)α(dx)α

=γαs

(a–a)α(( +α))

a

a

a

a

ftx+ ( –t)x

(dx)α(dx)α

+γαs

(a–a)α(( +α))

a

a

a

a

ftx+ ( –t)x

(dx)α(dx)α

=γαsg(t) +γαsg(t),

which implies thatgGK

s in [, ].

(ii) Sincefx+ ( –γ)x)≤γαsf(x) + ( –γ)αsf(x) we have

A=  (( +α))

a

a

a

a

fγx+ ( –γ)x

(dx)α(dx)α

≤ 

(( +α))

a

a

a

a

γαsf(x)(dx)α(dx)α

+ 

(( +α))

a

a

a

a

( –γ)αsf(x)(dx)α(dx)α

=γαs

( +α)(a–a)

α

aI

(α)

af(x) + ( –γ)

αs

( +α)(a–a)

α

aI

(α)

af(x)

= (γ

αs+ ( –γ)αs)

( +α) (a–a)

α

aI

(α)

(5)

sinceγαsα. Because ( –γ)αsαas well, we have

A≤ 

α

( +α)(a–a)

α

aI

(α)

af(x).

(iii) Sincef is generalizeds-convex in the second sense,

fx+ ( –γ)x) +f(( –γ)x+γx)

αsf

x+x

for allγ ∈[, ] andx,x∈[a,b].

If we integrate on [a,a]×[a,a], we obtain

 αs(( +α))

a

a

a

a

fγx+ ( –γ)x

+f( –γ)x+γx

(dx)α(dx)α

≥ 

(( +α))

a

a

a

a

f

x+x

(dx)α(dx)α

 α(s–)(a

–a)α(( +α))

a

a

a

a

fγx+ ( –γ)x

(dx)α(dx)α

≥ 

(a–a)α(( +α))

a

a

a

a

f

x+x

(dx)α(dx)α,

which means that

α(–s)g(γ)g

 

.

The proof is complete.

Assume the following functions:

(i) gF: [, ]−→R

α, defined by

gF(γ) =

 (( +α))

a

a

a

a

fγx+ ( –γ)x

F(x)F(x)(dx)α(dx)α,

wheref: [a,a]⊂R+−→RαandfGKs.

(ii) gF: [, ]−→R

α, defined by

gF(γ) =

 (( +α))

a

a

a

a

fγx+ ( –γ)x

F(x)F(x)(dx)α(dx)α,

wheref: [a,a]⊂R+−→RαandfGKs. Theorem . The following holds:

(i) gFandgFare both symmetric aboutγ =

 .

(6)

(iii) We have the upper bound

αg

F() =

α

(( +α))

a

a

a

a

f(x)F(x)F(x)(dx)α(dx)α

for the functiongF(γ).

Proof (i) gF and gF are both symmetric aboutγ =

 because gF(γ) =gF( –γ) and

gF(γ) =gF( –γ).

(ii) We get

gF

γt+ ( –γ)t

= 

(( +α))

a

a

a

a

fγt+ ( –γ)t

x

+ –γt+ ( –γ)t

x

F(x)F(x)(dx)α(dx)α.

But

γt+ ( –γ)t

x+ ( –

γt+ ( –γ)t

x

=γtx+ ( –γ)tx+γx+ ( –γ)x–γtx– ( –γ)tx

=γ(tx+x–tx) + ( –γ)(tx+x–tx).

SincefGK

s,

gF

γt+ ( –γ)t

= 

(( +α))

a

a

a

a

fγt+ ( –γ)t

x

+ –γt+ ( –γ)t

x

F(x)F(x)(dx)α(dx)α

γαs  (( +α))

a

a

a

a

ftx+ ( –t)x

F(x)F(x)(dx)α(dx)α

+ ( –γ)αs  (( +α))

a

a

a

a

ftx+ ( –t)x

F(x)F(x)(dx)α(dx)α

=γαsgF(t) + ( –γ)

αsg F(t),

which proves thatgF∈GK

s.

(iii) From the definition and the assumptions, we get

gF(γ) =

 (( +α))

a

a

a

a

fγx+ ( –γ)x

F(x)F(x)(dx)α(dx)α

γαs  (( +α))

a

a

a

a

f(x)F(x)F(x)(dx)α(dx)α

+ ( –γ)αs  (( +α))

a

a

a

a

f(x)F(x)F(x)(dx)α(dx)α

=γαs+ ( –γ)αs  (( +α))

a

a

a

a

(7)

≤ α (( +α))

a

a

a

a

f(x)F(x)F(x)(dx)α(dx)α

= αgF().

Theorem . Let f,f: [a,a]⊂R+−→Rα,a<a,be nonnegative,and generalized

s-convex functions in the second sense.If f∈GKsand f∈GK

son[a,a]for someγ∈[, ]

and s,s∈(, ],then

 (( +α))

a

a

a

a

 

f

γx+ ( –γ)x

f

γx+ ( –γ)x

(dγ)α(dx)α(dx)α

≤ α( + (γ+γ)α)

( + (γ+γ+ )α)

(( +α))(a–a)

α

a

a

f(x)f(x)(dx)α

+ 

α(( +α))βα(a–a) α T

(a,b) +T(a,b)

,

where

βα=

 

γαs( –γ)αs(dγ)α,

T(a,a) =f(a)f(a) +f(a)f(a),

and

T(a,a) =f(a)f(a) +f(a)f(a).

Proof Sincef∈GKsandf∈GK

son [a,a],

f

γx+ ( –γ)x

γαsf

(x) + ( –γ)αsf(x),

f

γx+ ( –γ)x

γαsf

(x) + ( –γ)αsf(x),

for allγ ∈[, ]. Sincefandfare nonnegative,

f

γx+ ( –γ)x

f

γx+ ( –γ)x

γα(s+s)f

(x)f(x) + ( –γ)α(s+s)f(x)f(x)

+γαs( –γ)αsf

(x)f(x) +γαs( –γ)αsf(x)f(x).

Integrating both sides of the above inequality over [, ], we obtain

( +α)

 

f

γx+ ( –γ)x

f

γx+ ( –γ)x

(dγ)α

≤ 

( +α)f(x)f(x) 

γα(s+s)(dγ)α

+ 

( +α)f(x)f(x) 

( –γ)α(s+s)(dγ)α

+ 

( –α)f(x)f(x) 

(8)

+ 

( +α)f(x)f(x) 

γαs( –γ)αs(dγ)α

= ( + (s+s)α) ( + (s+s+ )α)

f(x)f(x) +

( + (s+s)α)

( + (s+s+ )α)

f(x)f(x)

+ 

( +α)βα f(x)f(x) +f(x)f(x)

.

If we integrate both sides of the above inequalities on [a,a]×[a,a], we obtain

 (( +α))

a

a

a

a

 

f

γx+ ( –γ)x

f

γx+ ( –γ)x

(dγ)α(dx)α(dx)α

( + (s+s)α)

( + (s+s+ )α)

 (( +α))

a

a

a

a

f(x)f(x)(dx)α(dx)α

+ a

a

a

a

f(x)f(x)(dx)α(dx)α

+ 

(( +α))βα

a

a

a

a

f(x)f(x)(dx)α(dx)α

+ a

a

a

a

f(x)f(x)(dx)α(dx)α

= ( + (s+s)α) ( + (s+s+ )α)

(( +α))(a–a)

α

× a

a

f(x)f(x)(dx)α+

a

a

f(x)f(x)(dx)α

+ 

(( +α))βα

a

a

f(x)(dx)α

a

a

f(x)(dx)α

+ a

a

f(x)(dx)α

a

a

f(x)(dx)α

.

By using the right half of the generalized Hadamard inequality on the right side of the above inequality, we have

 (( +α))

a

a

a

a

 

f

γx+ ( –γ)x

f

γx+ ( –γ)x

(dγ)α(dx)α(dx)α

≤ α( + (s+s)α)

( + (s+s+ )α)

(( +α))(a–a)

α

a

a

f(x)f(x)(dx)α

+ 

α(( +α))βα(a–a) α

T(a,a) +T(a,a)

.

The proof is complete.

Remark .

(i) Ifα= , in Theorem ., then

β= 

γs( –γ)s(dγ) =(s+ )(s+ )

(9)

and

a

a

a

a

 

f

γx+ ( –γ)x

f

γx+ ( –γ)x

(dγ)(dx)(dx)

≤ 

s+s+ 

(a–a)

a

a

f(x)f(x)dx

+(s+ )(s+ ) (s+s+ )

(a–a) T(a,a) +T(a,a)

.

(ii) Ifα= , ands=s= , then(s(+)s+s(+)s+)=. Also,

β= 

γs( –γ)s(dγ) =(s+ )(s+ )

(s+s+ )

,

which implies that

a

a

a

a

 

f

γx+ ( –γ)x

f

γx+ ( –γ)x

(dγ)(dx)(dx)

≤

(a–a) a

a

f(x)f(x)dx

+ 

(a–a)

T

(a,a) +T(a,a)

.

Theorem . Let f,f: [a,a]⊂R+−→Rα,a<a,be nonnegative and generalized

s-convex functions in the second sense.If f∈GKsand f∈GK

son[a,a]for someγ∈[, ]

and s,s∈(, ],then

 (( +α))

a

a

 

f

γx+ ( –γ)

a+b

f

γx+ ( –γ)

a+b

(dγ)α(dx)α

( + (s+s)α)

( + (s+s+ )α)

( +α)

a

a

f(x)f(x)(dx)α

+ 

α( +α)

( + (s+s)α)

α( + (s

+s+ )α)

+ 

( +α)βα

×(a–a)α T(a,a) +T(a,a)

,

whereβα,T(a,a),and T(a,a)are defined in Theorem..

Proof Sincef∈GKsandf∈GK

son [a,a],

f

γx+ ( –γ)

a+a

γαsf

(x) + ( –γ)αsf

a+a

,

f

γx+ ( –γ)

a+a

γαsf

(x) + ( –γ)αsf

a+a

,

(10)

f

γx+ ( –γ)

a+a

f

γx+ ( –γ)

a+a

γα(s+s)f

(x)f(x) + ( –γ)α(s+s)f

a+a

f

a+a

+γαs( –γ)αsf

(x)f

a+a

+γαs( –γ)αsf

a+a

f(x).

Integrating both sides of the above inequality over [, ], we obtain

( +α)

 

f

γx+ ( –γ)

a+a

f

γx+ ( –γ)

a+a

(dγ)α

≤ 

( +α)f(x)f(x) 

γα(s+s)(dγ)α

+ 

( +α)f

a+a

f

a+a

 

( –γ)α(s+s)(dγ)α

+ 

( +α)f(x)f

a+a

 

γαs( –γ)αs(dγ)α

+ 

( +α)f

a+a

f(x)

 

γαs( –γ)αs(dγ)α

= ( + (s+s)α) ( + (s+s+ )α)

f(x)f(x)

+ ( + (s+s)α) ( + (s+s+ )α)

f

a+a

f

a+a

+ 

( +α)βα

f(x)f

a+a

+f

a+a

f(x)

.

If we integrate both sides of the above inequalities on [a,a], we obtain

 (( +α))

aa   f

γx+ ( –γ)

a+a

f

γx+ ( –γ)

a+a

(dγ)α(dx

)α

( + (s+s)α)

( + (s+s+ )α)

( +α)

a

a

f(x)f(x)(dx)α

+ ( + (s+s)α) ( + (s+s+ )α)

( +α)(a–a)

αf

a+a

f

a+a

+ 

(( +α))βα

f

a+a

a

a

f(x)(dx)α+f

a+a

a

a

f(x)(dx)α

( + (s+s)α)

( + (s+s+ )α)

( +α)

a

a

f(x)f(x)(dx)α

+ ( + (s+s)α) ( + (s+s+ )α)

( +α)(a–a)

αf(a) +f(a)

α

f(a) +f(a)

α

+ 

(( +α))(a–a)

α

βα

αf(a) +f(a) α

f(a) +f(a)

α

= ( + (s+s)α) ( + (s+s+ )α)

( +α)

a

a

(11)

+ ( + (s+s)α) α( + (s

+s+ )α)

( +α)(a–a)

α

T(a,a) +T(a,a)

+ 

α(( +α))(a–a)

αβ

α T(a,a) +T(a,a)

.

Then

 (( +α))

a

a

 

f

γx+ ( –γ)

a+a

f

γx+ ( –γ)

a+a

(dγ)α(dx

)α

( + (s+s)α)

( + (s+s+ ))α

( +α)

a

a

f(x)f(x)(dx)α

+ 

α( +α)

( + (s+s)α)

α( + (s

+s+ ))α

+ 

( +α)βα

×(a–a)α T(a,a) +T(a,a)

.

The proof is complete.

Remark . Ifα= , then

a

a

 

f

γx+ ( –γ)

a+a

f

γx+ ( –γ)

a+a

(dγ)(dx)

≤ 

s+s+ 

a

a

f(x)f(x)(dx)

+ 

 (s+s+ )

+(s+ )(s+ ) (s+s+ )

(a–a)T(a,a) +T(a,a)

.

Theorem . Let f,f: [a,a]⊂R+−→Rα,a<a,be nonnegative and generalized

s-convex functions in the second sense.If f∈GKsand f∈GK

son[a,a]for someγ∈[, ]

and s,s∈(, ],then

 (( +α))

a

a

 

f

γa+a

 + ( –γ)x

f

γa+a

 + ( –γ)x

(dγ)α(dx)α

( + (s+s)α)

( + (s+s+ )α)

( +α)

a

a

f(x)f(x)(dx)α

+ 

α( +α)

( + (s+s)α)

α( + (s

+s+ )α)

+ 

( +α)βα

×(a–a)α T(a,a) +T(a,a)

,

whereβα,T(a,a)and T(a,a)are defined in Theorem..

Proof The proof of this theorem can easily be given like in Theorem ..

Theorem . Let f,f: [a,a]⊂R+−→Rα,a<a,be nonnegative,and generalized

(12)

 (( +α))

aa   f

γa+a

 + ( –γ)x

f

γa+a

 + ( –γ)x

(dγ)α(dx

)α

( + α) ( + α)

( +α)

a

a

f(x)f(x)(dx)α

+ 

α( +α)

( + α)α( + α)+

( +α)βα

(a–a)α T(a,a) +T(a,a)

,

where T(a,a)and T(a,a)are defined in Theorem.,but

βα=

 

γα( –γ)α(dγ)α= ( +α) ( + α)

( + α) ( + α).

Proof Sincefandfare generalized convex on [a,a],

f

γa+a

 + ( –γ)x

γαf

a+a

+ ( –γ)αf(x),

f

γa+a

 + ( –γ)x

γαf

a+a

+ ( –γ)αf

(x),

for allx∈[a,a],γ ∈[, ]. Sincefandfare nonnegative,

f

γa+a

 + ( –γ)x

f

γa+a

 + ( –γ)x

γαf

a+a

f

a+a

+ ( –γ)αf

(x)f(x)

+γα( –γ)αf

a+a

f(x) +γα( –γ)αf(x)f

a+a

.

Integrating both sides of the above inequality over [, ], we obtain

( +α)

 

f

γa+a

 + ( –γ)x

f

γa+a

 + ( –γ)x

(dγ)α

≤ 

( +α)f

a+a

f

a+a

 

γα(dγ)α

+ 

( +α)f(x)f(x) 

( –γ)α(dγ)α

+ 

( +α)f

a+a

f(x)

 

γα( –γ)α(dγ)α

+ 

( +α)f(x)f

a+a

 

γα( –γ)α(dγ)α

=( + α) ( + α)f

a+a

f

a+a

+( + α)

( + α)f(x)f(x)

+ 

( +α)βα

f

a+a

f(x) +f(x)f

a+a

(13)

If we integrate both sides of the above inequalities on [a,a], we obtain

 (( +α))

aa   f

γa+a

 + ( –γ)x

f

γa+a

 + ( –γ)x

(dγ)α(dx)α

( + α) ( + α)

( +α)(a–a)

α

f

a+a

f

a+a

+( + α) ( + α)

( +α)

a

a

f(x)f(x)(dx)α

+ 

(( +α))βα

f

a+a

a

a

f(x)(dx)α+f

a+a

a

a

f(x)(dx)α

( + α) ( + α)

( +α)(a–a)

αf(a) +f(a)

α

f(a) +f(a)

α

+( + α) ( + α)

( +α)

a

a

f(x)f(x)(dx)α

+ 

(( +α))βα

αf(a) +f(a)

α

f(a) +f(a)

α

(a–a)α

=( + α) ( + α)

( +α)

a

a

f(x)f(x)(dx)α+

 α( +α)

( + α)α( + α)

+ 

( +α)βα

(a–a)α T(a,a) +T(a,a)

.

The proof is complete.

Remark . Ifα= , then

aa   f

γa+a

 + ( –γ)x

f

γa+a

 + ( –γ)x

(dγ)(dx)

≤ 

a

a

f(x)f(x)(dx) +

(a–a) T(a,a) +T(a,a)

.

4 Applications

Example . Leta,a∈R+,a<a, anda–a≤, then

α

α

( +α)

( + α) ( + α)

+ α

( +α) ( + α)

( + α) ( + α)

( +α) ( + α)

K(a,a)

+

α

( +α)

( + α) ( + α)

+ α

( +α) ( + α)

( + α) ( + α)

( +α) ( + α)

G(a,a)

≤α

( + α) ( +α)( + α)

(aαaα) (a–a)α

+ 

α

(( +α))βαA(a

(14)

where

βα=

 

γα( –γ)α(dγ)α,

A(a,a) =

 +

α , a,a≥,

G(a,a) =

 , a

,a≥,

and

K(a,a) =

aα

 +aα

α

 

, a,a≥.

Proof Iff∈GKsandf∈GK

s on [a,a] for someγ ∈[, ] ands,s∈(, ], then, by

Theorem ., iff,f: [, ]−→[α, α],f(x) =xαs,f(x) =xαs, wherex∈[a,a],s=s=

 anda–a≤, then

 (( +α))

a

a

a

a

 

γx+ ( –γ)x

α

(dγ)α(dx)α(dx)α

≤α( + α) ( + α)

(( +α))(a–a)

α

a

a

xα(dx)α

+ 

α(( +α))βα aα

 +a

α

 + 

α

(a–a)α

(a–a)α

α

( +α)

( + α) ( + α)

+ α

( +α) ( + α)

( + α) ( + α)

( +α) ( + α)

aα+aα

+

α

( +α)

( + α) ( + α)

+ α

( +α) ( + α)

( + α) ( + α)

( +α) ( + α)

≤α

( + α) ( +α)( + α)

(a–a)α

aαaα

+ 

α(( +α))βα(a–a) α

+ ⇒

(a–a)α

α

α

( +α)

( + α) ( + α)

+ α

( +α) ( + α)

( + α) ( + α)

( +α) ( + α)

K(a,a)

+

α

( +α)

( + α) ( + α)

+ α

( +α) ( + α)

( + α) ( + α)

( +α) ( + α)

G(a,a)

(15)

≤α

( + α) ( +α)( + α)

(a–a)α

aαaα

+ 

α

(( +α))βα(a–a) αA(a

,a).

The proof is complete.

Remark . Ifα= , then

 K

(a ,a) +

 G

(a ,a)≤

 

a

–a

a–a

+

A

(a ,a)

K(a,a) + G(a,a)≤

a+aa+a

+ A(a,a),

where

A(a,a) =

a+a

 , a,a≥, is the arithmetic mean, G(a,a) = (aa)

, a,a, is the geometric mean, and

K(a,a) =

a+a

 

, a,a≥, is the quadratic mean.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Both authors contributed equally in the design and progress of the study. Both authors read and approved the final manuscript.

Author details

1Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, Serdang, 43400,

Malaysia.2Department of Mathematics, University Putra Malaysia, Serdang, 43400, Malaysia.

Acknowledgements

The authors would like to thank the referees for valuable suggestions and comments, which helped the authors to improve this article substantially.

Received: 24 June 2015 Accepted: 15 September 2015

References

1. Mo, H, Sui, X, Yu, D: Generalized convex functions on fractal sets and two related inequalities. Abstr. Appl. Anal.2014, Article ID 636751 (2014)

2. Hörmander, L: Notions of Convexity. Springer Science & Business Media, vol. 127 (2007)

3. Kılıçman, A, Saleh, W: Some inequalities for generalizeds-convex functions. JP J. Geom. Topol.17, 63-82 (2015) 4. Grinblatt, M, Linnainmaa, JT: Jensen’s inequality, parameter uncertainty, and multiperiod investment. Rev. Asset

Pricing Stud.1(1), 1-34 (2011)

5. Ruel, JJ, Ayres, MP: Jensen’s inequality predicts effects of environmental variation. Trends Ecol. Evol.14(9), 361-366 (1999)

6. Edgar, GA: Integral, Probability, and Fractal Measures. Springer, New York (1998)

7. Kolwankar, KM, Gangal, AD: Local fractional calculus: a calculus for fractal space-time. In: Fractals: Theory and Applications in Engineering, pp. 171-181. Springer, London (1999)

8. Baleanu, D, Srivastava, HM, Yang, XJ: Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on Cantor sets. Prog. Fract. Differ. Appl.1(1), 1-11 (2015)

9. Carpinteri, A, Chiaia, B, Cornetti, P: Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput. Methods Appl. Mech. Eng.191(1-2), 3-19 (2001)

10. Yang, XJ, Baleanu, D, Srivastava, HM: Local fractional similarity solution for the diffusion equation defined on Cantor sets. Appl. Math. Lett.47, 54-60 (2015)

(16)

12. Zhao, Y, Cheng, DF, Yang, XJ: Approximation solutions for local fractional Schrödinger equation in the on-dimensional Cantorian system. Adv. Math. Phys.2013, Article ID 5 (2013)

13. Yang, XJ: Advanced Local Fractional Calculus and Its Applications. World Science Publisher, New York (2012) 14. Yang, XJ, Baleanu, D, Machado, JAT: Mathematical aspects of Heisenberg uncertainty principle within local fractional

Fourier analysis. Bound. Value Probl.2013, Article ID 131 (2013)

15. Yang, AM, Chen, ZS, Srivastava, HM, Yang, XJ: Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving local fractional derivative operators. Abstr. Appl. Anal.2013, Article ID 259125 (2013)

16. Yang, XJ, Baleanu, D, Khan, Y, Mohyud-Din, ST: Local fractional variational iteration method for diffusion and wave equations on Cantor sets. Rom. J. Phys.59(1-2), 36-48 (2014)

References

Related documents

The aim of the study was to assess the possibility of developing sheep breeding sector in the organic system, in the terms of the consumer’s behavior towards sheep meat obtained

Nucleotide sequences of the entire V3 region of 16S rDNA for the nine Lactobacillus strains obtained from normal vaginal flora in women undergoing IVF treatment..

Paper presented in the Two-Day State Level Seminar on Perspectives in Intellectual Property Rights, 13-14 August 2005, SDM Dental College, Dharwar. JSS Sakri Law College,

This prospective study aimed to evaluate the effect of HFD on anemia, and the potential of soluble transferrin receptor (sTfR) as a marker of iron status and erythropoiesis in

Darus, Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator, AIMS Math.. Shareef, Coefficients Bounds for

Model 1 reveal that all individual level predictors are statistically significant with the exception of ethnicity (t-value&lt;1.96).. GDP per Capita is

It presents the feasibility of the usage of by product materials like fly ash, query dust, marble powder granules, plastic waste and recycled concrete and masonry as aggregates

The aim of this study is to investigate the monthly ground water level (GWL) fluctuation estimation by using Multiple Linear Regression (MLR) and Adaptive network fuzzy