• No results found

EFFICIENT REALIZATION OF BOOLEAN FUNCTIONS BY MEANS OF DIODE CONJUNCTION MATRICES AND MINIMAL COST ASSEMBLING PROBLEMS EUR 600 e,f

N/A
N/A
Protected

Academic year: 2020

Share "EFFICIENT REALIZATION OF BOOLEAN FUNCTIONS BY MEANS OF DIODE CONJUNCTION MATRICES AND MINIMAL COST ASSEMBLING PROBLEMS EUR 600 e,f"

Copied!
18
0
0

Loading.... (view fulltext now)

Full text

(1)

EUROPEAN ATOMIC ENERGY COMMUNITY — EURATOM

BlHtìIs»*«

> ■'·?■

mk

i'v'fe

EFFICIENT REALIZATION OF BOOLEAN FUNCTIONS

BY MEANS OF DIODE CONJUNCTION MATRICES

AND MINIMAL COST ASSEMBLING PROBLEMS

* * 2

1 ' t l . l i ·

! 'i,.Ull'.

¡ipil spy

P. CAMION and L. VERBEEK

'III B M J n i i

IISI

υ vópfcaï

ffîfll

imi

tint Nuclear Research Center

Ispra Establishment — Italy

(2)

¡ÄH* 3*ι*»? 7*4*^1

This document was prepared u n d e r t h e sponsorship of t h e Commission

Atomic E n e r g y Community ( E U R A T O M ) . Η,\ϊρ

Neither the EURATOM Commission, its contractors nor any person

behalf :

\o

— Make any warranty or representation, express or implied, with respect

completeness, or usefulness of t h e information contained in this document, or t h a t t h e

use of any information, apparatus, method or process disclosed in this document m a y

P f I»

ot infringe privateiy owned rights ; o r

;jIlli^^

2° — Assume any liability with respect t o the use of, or for damages resulting from the use

any information, apparatus, method or process disclosed in this document.

This report can be obtained, at the price of Belgian

from : P R E S S E S ACADEMIQUES E U R O P E E N N E S 98, Chaussée de Charleroi, Brussels 6.

Please remit payments to :

— B A N Q U E D E LA SOCIETE G E N E R A L E Campagne) — Brussels — account N o 964.558,

— B E L G I A N AMERICAN B A N K and T R U S T COMPANY -N e w York — account -N o 22.186,

— LLOYDS B A N K (Europe) Ltd. London E.C.2,

dug the reference : « E U R 600. e, f — E F F I C I E N T R E A L I -ZATION OF B O O L E A N F U N C T I O N S B Y M E A N S O F D I O D E CONJUNCTION MATRICES A N D MINIMAL COST ASSEMBLING P R O B L E M S » .

10 Moorgate

Printed by Vaillant-Carmanne, Liège. Brussels, July 1964.

tøfl føfotiiha^ffipfiife

ii

PrøKg

1

fl

(3)

E U R 600.e,f

EFFICIENT REALIZATION OF BOOLEAN FUNCTIONS BY MEANS OF DIODE CONJUNCTION MATRICES AND MINIMAL COST ASSEMBLING PROBLEMS by P. CAMION and L. V E R B E E K

European Atomic Energy Community — EURATOM Joint Nuclear Research Center

Ispra Establishment (Italy)

Scientific Data Processing Center (CETIS) Brussels, July 1964 — 10 pages

In part I the realization of the 2n Boolean functions of n binary variables given together with their negation by means of diode conjunction matrices is investigated. The different possible schemes of realization are compared in terms of the number of diodes involved. It is proved that partitioning of the n variables in two equal (if π is even) or almost equal (if η is odd) sets and continued partitioning of these sets according to the same rule until the sets obtained contain less than four variables results in the scheme involving the least number of diodes. This minimal number of diodes is given for η from 1 up to 20.

E U R 600.e,f

EFFICIENT REALIZATION OF BOOLEAN FUNCTIONS BY MEANS OF DIODE CONJUNCTION MATRICES AND MINIMAL COST ASSEMBLING PROBLEMS by P. CAMION and L. V E R B E E K

European Atomic Energy Community — EURATOM Joint Nuclear Research Center

Ispra Establishment (Italy)

Scientific Data Processing Center (CETIS) Brussels, July 1964 — 10 pages

(4)

In part II a general assembling problem, containing the problem posed in section 1.1 and 1.2, is formalized in terms of schemes and following this parti-cular example. This formalization leads to a solution recurrent on the number of inputs of a scheme. It is shown how a minimal cost disassembly problem can be treated in the same way. In this problem the cost function is such that the solution is not given by a foreseeable law.

(5)

EUR 600 e, f

EUROPEAN ATOMIC ENERGY COMMUNITY — EURATOM

EFFICIENT REALIZATION OF BOOLEAN FUNCTIONS

BY MEANS OF DIODE CONJUNCTION MATRICES

AND MINIMAL COST ASSEMBLING PROBLEMS

by

P. CAMION and L. VERBEEK

1964

Joint Nuclear Research Center

Ispra Establishment — Italy

(6)
(7)

EFFICIENT REALIZATION OF BOOLEAN FUNCTIONS

BY MEANS OF DIODE CONJUNCTION MATRICES

AND MINIMAL COST ASSEMBLING PROBLEMS

1 T H E SITUATION

Given are n Boolean variables and their negations, xv xt, x2, x2, . . ., xn, Xn, in the form

of n pairs of electric leads. The 2n Boolean functions can be realized b y a scheme as given

in figure 1, where each pair of horizontal lines represents a variable and its negation ; each vertical line represents one of t h e functions, and each circle on t h e crossing of two leads indicates a diode connecting these leads. W e will refer to such a scheme as a diode conjunction m a t r i x . A complete scheme for n = 2 is given in figure 2, here the functions realized on the vertical lines are as follows :

Line

1 2 :? 4

Function

•ri X1

X, x2

xlXl

X\ X2

T h e realization of t h e 2n Boolean functions of re variables by means of such a

conjunc-tion m a t r i x involves for each funcconjunc-tion (i.e. each vertical line) re diodes, one for each variable or its negation (i.e. one for each pair of horizontal lines). The total n u m b e r of diodes used is t h u s :

(1) N(re;re) = re.2«

Another m e t h o d to realize the 2n functions consists in dividing t h e re variables in two

p a r t s of m1 and m2 variables, respectively, where m1 -f- m2 = re. Then constructing two

conjunction matrices analogous to t h e scheme of figure 1, one realizing the 2mi functions of

the mx variables, t h e other realizing the 2m¡¡ functions of the m2 variables, and combining

these two sets of functions in pairs of one of each set so as to form the 2mi . 2m2 = 2n functions

of t h e re variables. Figure 3 gives an example of this method for m1 = 2 and m2 = 2.

This last m e t h o d can be generalized by dividing the re variables in two or more t h a n two p a r t s . The realization of t h e 2n functions consists then in the following three steps :

1) P a r t i t i o n the n variables in k p a r t s (k > 2) of mx, m2, . . . , m¡c variables, respectively,

with m1 -\- m2 -\- . . . m¡c = re.

2) For each i (i = 1, 2, . . ., k) form the 2'"; Boolean functions by means of a diode conjunction m a t r i x . Clearly this involves m,.2'"i -f- m2.2mn -\- . . . -\- mi-.2mk diodes.

(8)

This final m a t r i x h a s on each of its 2n v e r t i c a l lines k diodes, each of t h e s e on t h e

intersection w i t h one h o r i z o n t a l line of each of t h e k b a t c h e s coming from t h e k m a t r i c e s formed u n d e r 2). H e n c e this final m a t r i x involves k.2n diodes. T h e t o t a l n u m b e r of diodes involved

in t h i s scheme is :

ft ft

(2) N(re ; reil5 m2, .. . , mk) = ^ [mi-2"H] + k.2"., w i t h ^ mi

i - ι

2 T H E PROBLEMS

T h e different schemes for t h e realization of t h e Boolean functions suggest p r a c t i c a l questions a b o u t t h e n u m b e r of diodes involved. More precisely, if re is given one can ask : o) Does p a r t i t i o n i n g of t h e re variables give rise t o schemes using less diodes t h a n in case of

no p a r t i t i o n i n g ?

6) If so, which p a r t i t i o n i n g involves t h e least n u m b e r of diodes ? If p a r t i t i o n i n g reduces t h e n u m b e r of diodes necessary for t h e realization, hence c o n t i n u e d p a r t i t i o n i n g of t h e sets obtained u p o n t h e first p a r t i t i o n i n g is favorable, t h e n one is led t o ask :

c) W h i c h t y p e of c o n t i n u e d p a r t i t i o n i n g leads t o t h e least n u m b e r of diodes necessary t o realize t h e t o t a l scheme.

d) W h a t is t h e n u m b e r of diodes i n v o l v e d in t h i s scheme.

3 — T H E SOLUTIONS

T h e answers t o t h e questions posed in section 2 can be o b t a i n e d b y s e t t i n g u p a specific case of p a r t i t i o n i n g re in t w o sets a n d c o m p a r i n g t h e n u m b e r of diodes necessary t o realize t h e 2n Boolean functions in t h i s p a r t i c u l a r case w i t h t h e n u m b e r necessary in o t h e r cases.

T h e specific p a r t i t i o n i n g is suggested b y inspection of t h e n u m b e r of diodes necessary in t h e different possible cases for re = 1, 2, 3, 4, 5, a n d 6 calculated a n d listed in A p p e n d i x 1.

If re is even, t a k e m1 = m2 = —. S u b s t i t u t i o n in (2) yields t h e n u m b e r of diodes used

¿à

t o realize t h e functions w i t h this m e t h o d :

N ( n ; | , ^ ) = n. 2 ï + 2 . 2 »

I n case no p a r t i t i o n i n g is used t h e n u m b e r of diodes involved is given b y : (1) N(re;re) = re.2

N o w for re > 4 it is clear t h a t

II

n

< 2l

a n d t h i s yields

71 — 2

re.2

a

+ 2.2» < re.2».

If n is odd, t a k e m^ = — ­ — , and m2 = — ­ — . S u b s t i t u t i o n in (2) gives

N J n ; ^ , ^ ­

1

) = (3re + 1 ) . 2 ^ + 2.2«.

(9)

For re > 5 it is clear that

re — 2

and this results in

*JL±l

<2

H*

t

n - 3

(3re+l).2

2

+ 2.2» < re.2»

These calculations justify an affirmative answer to question o of section 2, i.e. the

partitioning of re in two equal, or almost equal, sets of variables yields a scheme using less

diodes than in the case of no partitioning.

In order to answer question

b

of section 2, two situations have to be considered, one

in which the partitioning is in two sets such that

m

1

and

m

2

are not equal to — (if re even) or to

— - — and — - — (if re odd), the other in which the partitioning is in more than two sets.

If re is even take

m

L

= — -4- r, m

2

= — —r with 1 < r < —. Substitution in (2) yields :

N(„;-»

+

,,-»-,) = (2

+

,)J

+

'

+

(|-,).

2

?-'+2.

2

..

n n

= £.22[2»· +

2-r]

+ r.22[2»· —2-»·] + 2 . 2 »

>

2

+ 2

.

2

.=Ν(„

;

ΐϊ).

Ν

This last inequality follows from the fact that

2r _|_ 2-r > 2 and 2' —

2~*

> 0 if r > 1.

x r - i i i re+1 , re—1 re — 1

li

η

is odd take

m

1

= —

\-

r,

m

2

= — r with 1 < r < —=—.

Substitution in (2) yields :

M - 1 » - 1 ff - 1

.2 2 [2

1

+ r + 2-»·] + 2

2

.2

1

+ » - + r . 2

2

[2

1

+ r — 2~r]

+ 2 . 2 '

2

re — 1

—-Í — . !

>——-

-.2

2

.3 + 2.2

2

+ 2 . 2 »

— 1

(^P+l)2

2

.2+^.2

2

+2.2»

ί

.2~*~+ ——-.2

2

+ 2 . 2 »

2

= Ν (re

re+1 re —

l ì

" T

-

'

-

2 ~ J

The inequality here follows from the fact that

2i +

r

_|_ 2"'· > 3 and 2

1

+

r

> 2 if r > 1.

(10)

W e can conclude t h a t p a r t i t i o n i n g of re in t w o p a r t s , such t h a t mt = m2 = — if re

is even, a n d m1 = — ­ — , m2 = —κ ~ if re is odd, leads t o realizations w i t h less diodes

t h a n a n y o t h e r p a r t i t i o n i n g in t w o p a r t s .

N o w we h a v e t o consider t h e case of p a r t i t i o n i n g in m o r e t h a n t w o p a r t s , say in k p a r t s w i t h k > 3. T h e n u m b e r of diodes involved in such a case is given b y (2) :

N(n;mv m2, . . ., mk) = ^[mt.2mi] + fc.2» > 3 . 2 » = 2» + 2 . 2 »

i = i

If re is even :

N l n ; | , ­ = re.22 + 2 . 2 » < 2 » + 2 . 2 » for n > 4 .

If re is odd :

N (re;

^

,

^

= ^ . 2 ^ + ^ . 2 ^ + 2 . 2 »

= 2

1

­3n + 1

ran

+ 1 _|_ 2.2

TC

< 2

2

.2

2

+ 2.2» = 2» + 2.2»

for re ~> 5.

H e n c e Ave can conclude t h a t t h e p a r t i t i o n i n g in t w o equal (if re is even) or almost e q u a l (if re is odd) p a r t s yields a scheme using less diodes t h a n a scheme w i t h p a r t i t i o n i n g in m o r e t h a n t w o p a r t s .

I n t h e proof of this l a s t conclusion no use is m a d e of t h e n u m b e r of diodes involved in realizing t h e functions of t h e sets of /rej v a r i a b l e s . T h e fact t h a t k > 3 a n d a t least one diode is involved in realizing t h e functions of t h e sets of nil variables is sufficient t o w r i t e

N(re ; ΒΙ15 m2, . . . , rei¿) > 3 . 2 » for k > 3.

This consideration enables u s t o s t a t e t h a t w h a t e v e r f u r t h e r subdivision is used in realizing t h e sets of m¿ variables always m o r e diodes are involved t h a n in case t h e p a r t i t i o n i n g is in t w o equal or a l m o s t e q u a l sets. H e n c e also in case of further subdivision this last m e t h o d leads t o t h e use of t h e least n u m b e r of diodes. This conclusion answers question c of section 2 a n d can be s t a t e d as follows :

T h e realization of t h e 2» Boolean functions of re variables which are given t o g e t h e r w i t h t h e i r n e g a t i o n , b y m e a n s of diode conjunction m a t r i c e s involves t h e least n u m b e r of diodes if t h e re variables are p a r t i t i o n e d in t w o sets containing — and ­ variables if re is even, and — ­ — a n d — ­ — variables if n is odd, a n d each of these sets likewise is p a r t i ­

tioned in t w o sets, a n d so on, u n t i l t h e n u m b e r of variables in each set is smaller t h a n four. I n answer t o question d of section 2, we r e m a r k t h a t a closed formula expressing t h e n u m b e r of diodes necessary t o realize t h e Boolean functions of re variables c a n n o t be given in an easy calculable form. T h e reason being t h a t t h e n u m b e r s depend on h o w m a n y factors 2 are c o n t a i n e d in n. Moreover, for given re t h e p r o c e d u r e is v e r y easy as is i n d i c a t e d in t h e following e x a m p l e . T a k e re = 18, t h i s n u m b e r can be p a r t i t i o n e d in s t e p s :

(11)

The number of diodes necessary to realize this scheme is :

N

mIn

(18) = (24 + 8 + 2.25)

+ ( 8 + 8 + 2

.

2

*) + (24 + 8 + 2.2«) + (8 + 8 + 2.2*)

+ 2.2

9

+ 2.2» + 2.2

18

= 526.624

In Appendix 2 these numbers of diodes involved in the realization with the most efficient

scheme is listed for re = 1 through 20.

4 — REMARK

(12)

<h

-ih

<h

X.,

Xn

<Mh

-(H)-<y

<y

4h

<h

-o—

ih

<h

-ih

­G

Ο­

ι 2

Fig. 1. — Diode conjunction matrix realizing 2» Boolean functions of π variables

Fig. 2. — Diode conjunction matrix for η = 2

<h

o—

o

<h

ih

G—O

ih

ih

<h

ih

O

O

<h

G

G

■o­

<>­

G — o

ih

<h

16

[image:12.595.87.543.62.712.2]
(13)

N ( l ; 1) N(2 ; 2) N(2 : 1, 1)

N(3 ; 3) N(3 ; 2, 1,) N(3 ; 1, 1,1)

N(4 ; 4) N ( 4 ; 3 , 1) N(4 ; 2, 2) N(4 ; 2, 1, 1) N(4 ; 1, 1, 1, 1)

N(5 ; 5) N(5 ; 4, 1) N(5 ; 3, 2)

= = — = = = = = = = = = = ΑΡΡΕΓ« 2 8 12 24 36 30 64 SK 48 60 72 160 130 96

ÍD1X 1

N ( 5 ; 3 , 1 , 1 ) N(5 ; 2, 2, 1) N ( 5 ; 2 , 1 , 1 , 1 ) N ( 5 ; l , 1 , 1 , 1 , 1)

N(6 ; 6) N ( 6 ; 5 , 1) N(6 ; 4, 2) N ( 6 ; 4 , 1 , 1 ) N(6 ; 3, 3) N(6 ; 3, 2, 1) N(6 ; 3 , 1 , 1, 1) N(6 ; 2, 2, 2) N(6 ; 2, 2 , 1 , 1) N ( 6 ; 2 , 1 , 1 , 1 , 1) N ( 6 ; l , 1,1, 1, 1, 1)

= 124 = 114 = 142 = 170

= 384 = 290 = 200 = 260

= 176

= 226 = 286 = 216 = 276 = 336 = 396

APPENDIX 2

n 1 2 3 4 5 6 7 8 9 10

Nmi »

(14)

ASSEMBLAGES DE MOINDRES COUTS

1 — A chaque entier positif re (nombre d'éléments d'input), correspond un ensemble

S

n

de schémas réalisés selon toutes les méthodes données en 1.1 et 1.2. Le coût

j(s)

d'un

schéma s de

S

n

est le nombre de diodes utilisées dans ce schéma. Nous pouvons ordonner les

schémas de

S

n

selon leur coût, de sorte que à chaque entier positif α corresponde un schéma

s tel que à chaque schéma corresponde au moins un entier et que

(1) ax > ax x^ f(s x) >{{s x x ) .

α α

Puisque | S.

n

| (le nombre d'éléments de

S

n

)

est fini, il existe un entier

m

tel que

(2)

α

>m~j{s

)=j(s

m

)

α

De cette façon, à l'ensemble des couples d'entiers (a,

n)

correspond biunivoquement

l'ensemble des schémas définis en 1 et 2. Nous désignerons donc un schéma par le couple (a, re).

2 — On appelle

partition

(au sens de la théorie des nombres) une application univoque

σ d'un ensemble I = ¡

λ

ΐ5

λ

2

, . . . , λ

8

[

d'entiers > 0 dans l'ensemble des entiers > 0 ; il est

d'usage de noter la partition qui fait correspondre

à

λ

ΐ5

λ

2

, . . ., X

s

les nombres γ

χ

, γ

2

, . . ., γ

β

,

par :

(3) σ

Ι

= (λ

1Ύι

, λ

2 Ύ ι

,...,λ7«).

On appelle

poids

de la partition σ l'entier

(4)

p(aj)

=

Tl

X

x

+ . . . + γ

6

·λ,

La

dimension

de la partition

a

est l'entier

(5) d(ai) = γα + . . - +

ïs-Soit

J'

n

la famille de tous les ensembles

ï

n

d'entiers positifs tels que il existe une

partition

ai

u

de

ï

n

de poids

n.

Un schéma (a, re) est réalisé par assemblage de

d(ai

n

)

sous­

schémas. Soit :

(6)

{(%h

n

(i))\l<i<d(o

In

)}

un tel ensemble de sous­schémas. Remarquons que α peut être exprimée comme une fonction

θ(β

15

. . . , β

Λ ( β ΐ Β

„ Λ

β

( 1 ) ,

■■;Jl

n

(d(o

ln

)))

ßn · · ·

ι

β(ί(σ )

sont des

variables positives

entières indépendantes.

Soit φ(α, re) le coût du schéma (oc, re), il est

clair que si

(7)

φ(α, re) = T ( ß

l 5

. . ., β ^ , , ^ Ι ) , . . .,

h

n

{d{a

ln

)))

est monotone non décroissante en ß

15

. . . , β

(

£

. ), donc si

(8)

ßf > ß | <

x

­ Ψ(β

15

. . . , β?, . . . , ß

d(<JIn

„ j

I n

( l ) , . . . , . 7 ι

η

( Φ ι „ ) ) ) >

Ψ(β

15

. . . , β?

κ

, ß

d ( 0 l r e

„7

I r e

(l), .

..,j

ln

(d(a

In

))).

(15)

On aura

(9)

ßx,

-*-π

ψ ( β

χ

, . . . , p

Æ (

I n

,.y

I n

(i),.. . , j i „ ( d K ) ) ) =

Ψ(1, . . . , l , y

I n

( l ) , ...,;

I n

(d(a

l B

))).

Pour trouver (1, re), donc le schéma de S

ffl

de coût minimum, il suffira poux toute par­

tition σι„ de

I

n

<z,ß

n

d'envisager le seul assemblage de l'ensemble de sous­schémas qui sont

le moins coûteux :

(10)

{ ( l , J i „ ( i ) ) l l

<i<d(o

In

)}

et de retenir celui du coût minimum. Dans le problème posé, on a

(H)

φ(α,Β)=

J

tø(^/l

ra

(0)[

+<%!„)■ 2»

1 <

i

<

d{a

Jn

)

φ(α, re) satisfait les conditions (7) et (8) à cause de la manière par laquelle les

βί sont

définis

dans la section I L I , et on peut calculer φ(1, re) par récurrence sur re. On a pu calculer à la main

en un temps raisonnable cp(l, re) pour re = 1, . . . , 6 qui sont donnés dans l'Appendix 1 de la

partie I.

3 — Un problème d'assemblage qui sera résolu par la même méthode est celui du

démontage d'un ponton. Il existe des chantiers sur la rive qui désassemblent les bateaux et

les tronçons de ponts sur bateau. Une opération de désassemblage consiste à désunir deux

tronçons, le coût de désassemblage peut être calculé et on suppose qu'il dépend seulement

des longueurs des deux tronçons à séparer, c'est /(rej, ra

2

).

On voit que, quelle que soit cette fonction, le problème est du type traité ci­dessus,

re est le nombre de tronçons élémentaires, donc le nombre de bateaux. I sera ici un ensemble

de deux entiers positifs de somme égale à n, ou d'un seul entier égal à ­ .

(12)

min φ (re) =

min

[min φ (re

x

) + min φ (re

2

) +

f(n

v

re

2

)]

rej + re

2

= re ß

t

%

h

Le tableau suivant donne pour 1 <!

η

< 10 la longueur optimale des tronçons

n

x

et re

2

avec

n

x

+ re

2

= re lorsque le coût de désassemblage est

j(n

v

re

2

) =

\/ηχ

+

Λ/η^·

η 2 3 4 5 6 7 8 9 10 "ι i 1 2 2 3 4 4 4 5 6

η . .

0 1 1 2 2 2 3 4 4 4

Coût total d'assemblage minimum ou min φ

α

(η)

α

0 2

3

+ V

2

4 + 2­V/2

5 + 2V2 ­f

Λ/Ϊ

8 + 3^2

9 + 3^2 + V3

12 +

4Λ/2

11 + 4 ^ 2 + ·\/3 + V

5

14 + 5-ν/2 + V

6

(16)

l'arbre

On voit que le schéma optimum de désassemblage pour re = 10 est donné par

(17)
(18)

Figure

Fig. 1. — Diode conjunction matrix realizing 2»

References

Related documents

An employee may file a complaint with the U.S. Department of Labor or may bring a private lawsuit against an employer. FMLA does not affect any Federal or State law

Any angle formula, even odd properties functions secant are various equivalent ways to evaluate trigonometric functions, a function treats a function is easier to the

Empowered By Bumble Powered By ZEE5 Premium Powered By Tata Sky Binge+. Powered By Tata

Considering the mounting wastes from electronic products nowadays, the potential of remanufacturing practices in reducing waste sent to the landfill, as well as in reducing

1. Discuss the types of unexpected external challenges a business faces today. Using the table below, identify the type of disaster and the impact it has had on each of the five

equipment used by this section shall be driven should limit any other statute violations within one is to motor vehicle operation in department of.. Did hill receive a

I tillegg til å legge til rette for at tilbyder fremmer en best mulig pris i sitt tilbud, bør styret også sørge for at avtalen med denne heller ikke sperrer for at det

(a) Laurette said, “I want to watch a movie.”. (b) LeRoy said, “I want to