• No results found

Beyond the Engineer of 2020 Whither Engineering Educa5on? Daniel Has*ngs Professor of Aeronau*cs & Astronau*cs and Engineering Systems October 2013

N/A
N/A
Protected

Academic year: 2021

Share "Beyond the Engineer of 2020 Whither Engineering Educa5on? Daniel Has*ngs Professor of Aeronau*cs & Astronau*cs and Engineering Systems October 2013"

Copied!
91
0
0

Loading.... (view fulltext now)

Full text

(1)

Beyond  the  Engineer  of  2020  

Whither  Engineering  Educa5on?  

Daniel  Has*ngs  

Professor  of  Aeronau*cs  &  

Astronau*cs  and  Engineering  

Systems  

October  2013  

 

(2)

The  Evolu*on  of  Engineering  Educa*on  in  the  United  

States  -­‐Conclusion  

Engineering  educa*on  con*nues  to  evolve  in  the  US  

–  More  focus  on  using  theories  of  learning  

–  More  focus  on  bringing  in  ac*ve  learning  

–  More  focus  on  integra*ng  design  early  into  the  educa*on  

–  Schools  are  using  a  variety  of  approaches  to  improve  engineering  

educa*on  

–  MOOCs  may  be  a  forcing  func*on    

–  Large  Challenges  in  demographics  

The  Result:  Islands  of  success  

–  Engineering  is  becoming  more  aLrac*ve  to  young  people  (but  with  

demographic  challenges)

 

(3)

The  Evolu5on  of  Engineering  Educa5on  in  the  

United  States  

Na5onal  Picture  

Innova*ve  Approaches  

Olin  College  

Purdue  

RPI  &  Georgia  Tech  

Arizona  State  University  

MIT  

The  Impact  of  Online  Educa*on  

(4)

NAE  Great  Engineering  Achievements  of  the  

20

th

 Century  -­‐  Unappreciated  by  the  Public  

1.  Electrifica*on  

2.  Automobile  

3.  Airplane  

4.  Water  Supply  &  Distribu*on  

5.  Electronics  

6.  Radio  and  Television  

7.  Agricultural  Mechaniza*on  

8.  Computers  

9.  Telephone  

10.  Air  Condi*oning  &  

Refrigera*on

   

   

 

11.  Highways   12.  Spacecra\   13.  Internet   14.  Imaging   15.  Household  Appliances   16.  Health  Technologies  

17.  Petroleum  &  Petrochemical  

Technologies  

18.  Laser  and  Fiber  Op*cs  

19.  Nuclear  Technologies  

(5)

AFtudes  

Skills  

Knowledge  

Pre  WW  II  

Today?  

Tomorrow?  

Evolu5on  of  Engineering  Educa5on  

(6)

US  View:  Call  for  Educa5onal  Reform  

The  Urgency  of  Engineering  Educa5on  Reform  and    

A  Makeover  for  Engineering  Educa5on  -­‐  2003  

William Wulf Ex-President, NAE

•  Change  needed:    

•  Curriculum  and  pedagogy  

•  Diversity    

•  Baccalaureate  as  first  professional  degree    

•  Faculty  reward  system  

•  Formalized  lifelong  learning    

•  Prepara*on  for  K-­‐12    

•  Technical  literacy  in  the  general  popula*on  

•  Two  fundamental  and  related  problems:    

•  Fewer  students  going  into  engineering  

•  Engineering  schools  increasingly  out  of  touch  

with  engineering  prac*ce  

•  Students  not  being  prepared  to  prac*ce  engineering  

(7)

An  Emerging  Global  Workforce  

•  “We  see  globaliza*on…as  an  overarching  “mega-­‐trend,”  a  force  so   ubiquitous  that  it  will  substan*ally  shape  all  other  major  trends  in  the   world  of  2020…”  

•  “Compe**ve  pressures  will  force  companies  based  in  the  advanced  

economies  to  ‘outsource’  many  blue-­‐  and  white-­‐color  jobs.”  

•  “With  the  gradual  integra*on  of  China,  India,  and  other  developing   countries…World  paLerns  of  produc*on,  trade,  employment,  and   wages  will  be  transformed.”  

–  Compe**ve  source  of  low-­‐cost  labor  

–  Necessitates  professional  retooling,  and  restrains  wage  growth  in  

some  occupa*ons.  

(8)

 

Embracing  Globaliza5on  of  S&T  

• 

Globaliza*on  of  S&T  is  an  

overarching  challenge  

• 

U.S.  no  longer  has  an  

unchallenged,  

preeminent  posi*on  

• 

U.S.  lead  has  dwindled  or  

vanished    

producing  researchers  in  

science  and  engineering  

technical  knowledge  

high  technology  exports  

Source: NSF – Science and Engineering Indicators 2010

(9)
(10)

the focus of the Engineer of 2020 report

Integrating what we want in

the “next generation engineer with

what we know about how people learn into a field of inquiry and practice

focused on

(11)

What  are  the  Desired  ASributes  of  

the  Engineer  of  2020?  

Strong  analy*cal  skills  

Prac*cal  ingenuity  and  crea*vity  

Good  communica*on  skills  

Business,  management,  and  leadership  skills  

High  ethical  standards,  professionalism  

Dynamic,  agile,  resilient,  flexible  

Lifelong  learner  

Able  to  put  problems  in  their  socio-­‐technical  and  

(12)

Whatever  other  crea*ve  approaches  are  

taken  in  the  4-­‐year  engineering  curriculum,  

the  essence  of  engineering    -­‐  the  itera*ve  

process  of  designing,  building,  and  tes*ng  -­‐  

should  be  taught  from  the  earliest  stages  of  

the  curriculum,  including  the  first  year.    

(13)

Recommenda5on  of  2020  study  

Colleges  and  universi*es  should  develop  new  

standards  for  faculty  qualifica*ons,  

appointments  and  expecta*ons,  for  example,  

to  require  experience  as  a  prac*cing  engineer,  

and  should  create  or  adapt  development  

programs  to  support  the  professional  growth  

of  engineering  faculty.  

(14)

Recommenda5on  of  2020  study  

The  engineering  educa*on  establishment  

should  embrace  research  in  engineering  

educa*on  as  a  valued  ac*vity  for  engineering  

faculty  as  a  means  to  enhance  and  personalize  

the  connec*on  to  undergraduate  students,  to  

understand  how  they  learn  and  to  appreciate  

the  pedagogical  approaches  that  excite  them.    

(15)

Recommenda5ons  of  2020  study  

• 

The  baccalaureate  degree  should  be  recognized  

as  the  

preengineering

 degree  or  bachelor  of  

arts  in  engineering  degree,  depending  on  the  

course  content  and  reflec*ng  the  career  

aspira*ons  of  the  student.  

(16)

Trends  in  Response  to  Calls  for  Change  

•  New  design-­‐oriented  model  for  engineering  educa*on  

"   Olin  College,  Singapore  University  of  Technology  &  Design  

•  Return  to  more  holis*c  view  of  engineering  educa*on  

"   MIT  CDIO  Ini*a*ve  (Conceive  –  Design  –  Implement  –  Operate),  Gordon  

Leadership  Program  

"   Holis*c  Engineering  –  Smith,  Dartmouth  

•  Allow  for  more  flexible  paths  in  engineering  educa*on   "   Stanford,  MIT  

•  Development  of  Departments  of  Engineering  Educa*on    

in  Engineering  Schools  

"   Purdue,  Virginia  Tech  

•  Development  of  global  experiences  as  key  part  of  Engineering  Educa*on   "   RPI,  Georgia  Tech  

•  Reorganize  around  the  NAE  grand  challenges   "   Arizona  State  University  

(17)

The  Evolu5on  of  Engineering  Educa5on  in  the  

United  States  

Na*onal  Picture  

• 

Innova5ve  Approaches  

Olin  College  

Purdue  

RPI  &  Georgia  Tech  

Arizona  State  University  

MIT  

The  Impact  of  Online  Educa*on  

(18)

Olin  College:  An  Experiment  in  Design  

Engineering  design  vs.  applied  science  

Design  of  device,  system,  or  process  under  constraint  

Engineering  science  at  core,  design  at  periphery  

How  many  faculty  members  have  real  design  experience?  

Approach  at  Olin:  

Design  at  the  core,  engineering  science  in  support  of  design  

Design  as  a  process,  more  than  inven*on  of  new  technology  

Design  as  a  point  of  entry  to  the  field  

(19)

Some  Features  of  the  Olin  Curriculum  

•  Required  Design  core  

•  Team  design  projects  in  6+  semesters  

•  SCOPE  senior  project:  corporate  sponsored,  year-­‐long  ($50k/project)  

•  EXPO  at  end  of  each  semester:  “stand  and  deliver”  

•  Integrated  Course  Blocks  in  Science,  Math,  and  Engineering  

•  Study  Away  in  Junior  year    

•  Summer  internships:  REU  and  corporate  experience  

•  Business  and  entrepreneurship:  all  students  must  start  and  run  a  business   for  a  semester  

•  Nine  competencies  across  all  four  years:  quan*ta*ve  analysis,  qualita*ve   analysis,  teamwork,  communica*on,  life-­‐long  learning,  context,  design,   diagnosis,  opportunity  assessment  

•  Con*nuous  improvement:  expira5on  date  on  curriculum  

(20)

Purdue:  Department  of  Engineering  Educa5on  

Vision:  

A  more  inclusive,  socially  connected,  and  scholarly  

engineering  educa>on  

Mission:  

Transforming  engineering  educa>on  based  on  

scholarship  and  research  

 Mission  rests  on  three  pillars:  

Re-­‐imagine  Engineering  and  Engineering  Educa*on  

Create  Field-­‐shaping  Knowledge    

(21)

RPI  &  Georgia  Tech:  Global  Experiences  

RPI  

Rensselaer  Educa*on  Across  Cultural  Horizons  

(REACH)  

Strongly  encouraged  for  all  engineering  students  

Semester  long  exchange  (or  more)  with  several  

universi*es  (NTU,  CUHK,  etc)  

Georgia  Tech  

Interna*onal  Plan  -­‐  integrated  study  abroad  

(22)

Co-­‐Curricular  Global  Experiences  

Empower  Students  to  Become…  

Confident,  ar*culate  leaders  

Collaborators  with  the  ability  to  recognize  and  

solve  complex  problems    

Percep*ve  scholars  who  effec*vely  func*on  in  

a  global  society  

Ci*zens  who  are  passionate  about  making  the  

world  a  beLer  place  

Qualified  professionals  with  an  understanding  

(23)

Arizona  State  University:    

Reorganize  Around  NAE  Grand  Challenges  

Explicitly  recognizes  that  the  Grand  Challenges  interest  young  

people  and  mo*vate  them  to  learn  

College  of  Engineering  

School  of  Biological  and  Health  Systems  Engineering  

School  of  Compu*ng,  Informa*cs  and  Decision  Systems  

Engineering  

School  of  Electrical,  Compu*ng  and  Energy  Engineering  

School  for  Engineering  of  MaLer,  Transport  and  Energy  

School  of  Sustainable  Engineering  and  the  Built  Environment  

School  of  Arts,  Media  and  Engineering  

(24)

MIT  Aero-­‐Astro  Flexible  Engineering  Degree  

Unified  Engineering   GIRs   Aerospace   Experimental  Projects   Lab/Hands-­‐on,   Aerospace  Capstone   Design  Subjects  

Unified  Engineering   Unified  Engineering   4  second-­‐level  core  

subjects   4  second-­‐level  core  subjects   2  second-­‐level  core   subjects  

Choose  4  out  of  9   subjects,  with  2  having  

vehicles  focus  

Choose  4  out  of  9   subjects,  with  3  having  

informa*on  focus  

Choose  6  subjects   from  one  of  8   Concentra*ons,  each  

containing  dozens  of   subjects   Aerospace   Experimental  Projects   Lab/Hands-­‐on,   Aerospace  Capstone   Design  Subjects   Aerospace   Experimental  Projects   Lab/Hands-­‐on,   Aerospace  Capstone   Design  Subjects   16-1 Aerospace Engineering 16-2 Aerospace Engineering with Information Technology 16-ENG SB in Engineering As Recommended by the Department of Aeronautics and

(25)

MIT  Ra5onale  for  a  Flexible  Engineering  Degree:  

External  Sources  

NAE  2020  Report  [2005]  and  others  

The  changing  prac*ce  of  engineering  

Increasingly  mul*disciplinary,  mul*cultural,  global,  focused  on  

large  socio-­‐technical  problems  

Educa*onal  specialists  

ABET  Criterion  3  a-­‐k  not  enough  

Peer  schools  

Growth  of  explicit  focus  on  socio-­‐technical  themes  within  

engineering  degree  programs  and  the  development  of  

knowledge,  skills  and  autudes  to  address  these  problems  

(26)

MIT  CDIO  Ini5a5ve  

•  CDIO  is  an  innova*ve  educa*onal  framework  for  producing  the  next  

genera*on  of  engineers    

•  CDIO  provides  students  with  an  educa*on  stressing  engineering  

fundamentals  set  in  the  context  of    

–  Conceiving  

–  Designing    

–  Implemen*ng    

–  Opera*ng    

real-­‐world  systems  and  products  

•  Schools  throughout  the  world  have  adopted  CDIO  as  the  framework  of  

their  curricular  planning  and  outcome–based  assessment    

(27)

The  Evolu5on  of  Engineering  Educa5on  in  the  

United  States  

Na*onal  Picture  

Innova*ve  Approaches  

Olin  College  

Purdue  

RPI  &  Georgia  Tech  

Arizona  State  University  

MIT  

• 

Impact  of  Online  Educa5on  

(28)

WHY  ONLINE  EDUCATION  AND  WHY  

NOW?  

Online  Educa*on  

Opportunity  to  rethink  the  pedagogy  of  (engineering)  educa*on  

–  a  huge  source  of  data  

Opportunity  to  share  (engineering)  educa*on  with  the  world  

•  E.g  BLOSSOMS  

Opportunity  to  change  the  cost  paradigm  for  (engineering)  

educa*on  

Why  now  –  Technology  has  advanced  enough  to  make  

high  quality  delivery  available  at  scale  

The  convergence  of  

•  Video  on  demand  (and  the  ability  to  make  it  cheaply)  

•  Widespread  connec*vity  

•  Automated  assessment/feedback  (Radically  scalable)  

•  Social  media  

•  Semi-­‐synchronous  delivery  

(29)

Through  educa5onal  technology,  universi5es  can…  

Address  the  varied  abili*es  (capacity,  prepara*on,  

interests,  mo*va*on)  of  its  students  by  providing  

alterna*ve  pathways  to  learning,  delivery  and  

resources  including  leveraging  resources  elsewhere  

Redefine  the  model  of  a  semester  from  being  a  fixed-­‐

*me  or  fixed-­‐content  construct  to  being  one  in  which  

learning  occurs  in  modules  of  varying  dura*ons  with  

opportuni*es  for  varied  experiences.  

Increase  the  quan*ty  and  quality  of  interac*on  

between  all  of  a  universi*es’  cons*tuents—students,  

faculty,  staff  and  alumni.  

(30)

A POSSIBLE TWENTY YEAR VISION FOR A

VASTLY IMPROVED RESIDENTIAL EDUCATION

Blended  educa*on  

Intelligent  combina*ons  of  the  physical  and  virtual  

Intelligent  combina*ons  of  formal  and  non-­‐formal  

Seamless  integra*on  of  learning  for  UGs  to  Alums  

UGs  in  residence,  Alums  periodically  sample  via  

cyberspace  with  customizable  learning  modules  

Shi\  frames  of  reference  

Scarcity    to  Abundance  (of  easily  available  knowledge)  

(31)

Unlocking Knowledge

Inspiring a Movement

• ~250 institutions

• 100 live OCW sites

http://ocwconsortium.org The OpenCourseWare Consortium

(32)

BLOSSOMS provides a free online

repository of “interactive” video

lessons for high school math and

(33)

Seems like all MOOCs all the

time

(34)

at a glance

Began May 2012 by MIT and Harvard

27 institutions

60 courses

1 million course enrollments

with students from 192 countries

Source; edX Media Kit https://www.edx.org/ sites/default/files/mediakit/2013/06/03/ edX_Media_Kit_June.pdf

http://web.mit.edu/newsoffice/2013/6002x-data-offer-insights-into-online-learning-0611.html

(35)

Circuits  and  Electronics  (6.002x)  

(36)
(37)

Sources  of  data  for  TLL  study  

Clickstream data

230 million

interactions

*

IP addresses, interactions with course

components, assignments and exams

Threads on discussion forum

12,696

threads

/

96,696

posts

Questions, answers, or comments

End-of-course survey

7,000+

[matrix sample]

Other  

I  worked  with  another   I  worked  completely  

(38)

Research  ques5ons  

1.

Who are the students in 6.002x?

2.

What relationships can be seen between

background achievement?

3.

What relationships can be seen between

use of resources achievement?

use of resources persistence?

(39)

Some  insights  from  the  data  

•  Collaboration matters.

•  Prerequisite knowledge is key.

•  Time on task is related to success.

•  Students will make use of multiple forms

(40)

Goals  (from  Princeton)  

• Gain  first-­‐hand  knowledge  

• Encourage  innova*on  in  teaching  at  Princeton  

• Advance  our  mission  “in  the  na*on’s  service,  and  in  the  service  of  all  na*ons”  

 

To  date,  seven  offerings  across  five  disciplines  

Introduc*on  to  Sociology    

Networks:  Friends,  Money,  and  Bytes     Computer  Architecture    

A  History  of  the  World  since  1300     Sta*s*cs  One    

Algorithms    

Analy*c  Combinatorics      

 

(41)

Early  Observa*ons  

Early  Observa*ons  

• Collabora*on  (McGraw  Center  for  Teaching  and  Learning)  

• Produc*on  values  and  costs  (Broadcast  Center)  

• Public  benefit  (“in  the  service  of  all  na*ons”)  

• Poten*al  to  enhance  teaching  on  campus  

–  flipping  the  student  and  the  professor  

–  impor*ng  the  global  perspec*ve  

• Research  

• Provoca*on  

 

 

41

I had begun worrying about how I could bring the New Jersey campus experience to [the world]; I ended by thinking about how to bring the world back to the classroom in Princeton.

(42)

Course Design

(43)

The  Evolu5on  of  Engineering  Educa5on  in  the  

United  States  

Na*onal  Picture  

Innova*ve  Approaches  

Olin  College  

Purdue  

RPI  &  Georgia  Tech  

Arizona  State  University  

MIT  

Impact  of  Online  Educa*on  

(44)

Challenges  

Further  need  to  redo  engineering  curricula  

around  what  is  known  about  effec*ve  learning  

Demographic  challenges  of  women  and  

underrepresented  minori*es  entering  

engineering  

Unknown  impact  of  MOOCs  especially  on  the  

(45)

Undergraduate  Engineering  Curriculum  –  The  

Ul5mate  Design  Challenge  by  Susan  Ambrose  (2013)  

Findings  from  learning  research  on  the  

educa*onal  value  of  building  curricula  that  

provide  

Context  and  integra*on  across  *me  and  courses  

that  transfer  knowledge  and  skills  to  new  contexts  

Early  exposure  to  engineering  and  engineers  

(thinking  like  an  engineer)  

Meaningful  classroom  engagement  leads  to  deep  

learning  (deliberate  prac*ce  coupled  with  

targeted  feedback)  

(46)

Undergraduate  Engineering  Curriculum  –  The  

Ul5mate  Design  Challenge  by  Susan  Ambrose  (2013)  

• 

Findings  from  learning  research  on  the  

educa*onal  value  of  building  curricula  that  

provide  

Opportuni*es  for  reflec*on  to  connect  thinking  and  

doing  (e.g  wri*ng  to  learn,  e-­‐porzolios)  

Development  of  metacogni*ve  skills  to  foster  self-­‐

directed,  lifelong  learning  skills  (assess,  evaluate,  plan,  

apply,  reflect)  

Authen*c  experien*al  learning  opportuni*es  to  put  

theory  into  prac*ce  in  the  real  world  (co-­‐ops,  service  

learning,  internships)  

(47)

Much  concern  over  STEM  shortage:  BS  

Degrees  Engineering-­‐last  decade  (ASEE)  

Year Bachelor’s Degrees

2010-2011 83,001 2009-2010 78,347 2008-2009 74,387 2007-2008 74,170 2006-2007 73,315 2005-2006 74,186 2004-2005 73,602 2003-2004 72,893 2002-2003 71,165 2001-2002 66,781 2000-2001 64,200

(48)
(49)
(50)
(51)

Women  and  Minority  Engineering  

Faculty  

Best way to handle gaps in Engineering education is •  Role Models •  Summer Programs •  Research Experiences •  Professional Development Activities

•  Academic Support & Social

Integration

(52)

The  Evolu*on  of  Engineering  Educa*on  in  the  

United  States  and  at  MIT  

Na*onal  Picture  

Innova*ve  Approaches  

Olin  College  

Purdue  

RPI  &  Georgia  Tech  

MIT  

Arizona  State  University  

The  Impact  of  Online  Educa*on  

(53)

The  Evolu*on  of  Engineering  Educa*on  in  the  United  

States  -­‐Conclusion  

Engineering  educa*on  con*nues  to  evolve  in  the  US  

–  More  focus  on  using  theories  of  learning  

–  More  focus  on  bringing  in  ac*ve  learning  

–  More  focus  on  integra*ng  design  early  into  the  educa*on  

–  Schools  are  using  a  variety  of  approaches  to  improve  engineering  

educa*on  

–  MOOCs  may  be  a  forcing  func*on    

–  Large  Challenges  in  demographics  

The  Result:  Islands  of  success  

–  Engineering  is  becoming  more  aLrac*ve  to  young  people  (but  with  

demographic  challenges)

 

(54)
(55)
(56)

Context  for  Engineering  

Breakthroughs  in  technology  

Demographics  

Challenges  

(57)
(58)
(59)

2.8M

1.5M

1.3M

0.4M

1.7M

Engineering  Graduates  &  Occupa*ons  (1999)  

Engineering

Graduates Principal Occupation Engineering

Engineering graduates not employed as

engineers employed as engineers Engineering graduates

Non-engineering graduates

(60)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 0 10 20 30 40 50 60 70 80 Japan Asia-8 United States China EU Percent

Share  of  selected  region

s/country

s  cita5ons  to    

interna5onal  literature:  2000–10  

Asia-­‐8  =  India,  Indonesia,  Malaysia,  Philippines,  Singapore,  South  Korea,  Taiwan,  Thailand;  EU  =   European  Union  

(61)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Me a n S c o re ( in S td D e v f ro m N S S E Me a n ) Level of Academic Challenge Active and Collaborative Student-Faculty Interaction Enriching Educational Supportive Campus

Senior-year Student Engagement

Olin College Engineering Liberal Arts NSSE 2009

Student Engagement Results for Olin College

(62)

Olin  College  Overview  

•  Undergraduate  residen*al  engineering  educa*on    

•  Total  enrollment  of  about  300    

•  Nearly  50%  women  

•  BS  degrees  in  ECE,  ME,  Engr  

•  9-­‐to-­‐1  student/faculty  ra*o  

•  Founded  in  1997,  first  graduates  in  2006  

•  Endowment  ~  $350  million  

•  Research  expenditures  ~  $1  million/yr  

•  Adjacent  to  Babson  College,  Wellesley  College  

•  75  acres  and  400,000+  sq.  \.  new  buildings  

•  No  academic  departments  

•  No  tenure  

•  Low  tui*on  

(63)
(64)

Our  Focus  is  on  Developing…  

Leadership  and  communica*on  skills  

Understanding  of  global  and  cultural  

differences  

Comfort  and  experience  applying  modern    

and  tradi*onal  technologies  

Confidence  

Judgment  

Decisiveness  

(65)

The  Evolu*on  of  Engineering  Educa*on  in  the  

United  States  and  at  MIT  

Na*onal  Picture  

Innova*ve  Approaches  

Purdue  

RPI  &  Georgia  Tech  

Arizona  State  University  

Olin  College  

(66)

Content  Evolu*on:  MIT  Engineering  

In  1950…  

•  Civil  Engineering   •  Mechanical  Engineering   •  Metallurgy   •  Electrical  Engineering   •  Chemical  Engineering   •  General  Engineering   •  Sanitary  Engineering  

•  Naval  Architecture  and  Marine  

Engineering  

•  Economics  and  Engineering  

•  Business  and  Engineering  

Administra*on  

•  Aeronau*cal  Engineering  

In  2000…  

•  Civil  and  Environment  

Engineering  

•  Mechanical  Engineering  

•  Material  Science  and  Engineering  

•  Electrical  Engineering  and  

Computer  Science  

•  Chemical  Engineering  

•  Ocean  Engineering  

•  Nuclear  Engineering  

•  Aeronau*cal  and  Astronau*cal  

Engineering  

•  Biological  Engineering  

(67)

                   Undergraduates  Entering  MIT  

40%  are  valedictorians  

89%  are  in  the  top  5%  of  their  class  

21%  are  recognized  Academic  Stars  

20%  are  accomplished  Art,  Music  or  Athle*c  

Stars  

71%  held  leadership  posi*ons  in  high  school  

 

24%  underrepresented  minori*es  

19%  first  genera*on  to  college  

(68)

Task  Force  Goals  for  an    

MIT  Educa*on  

An  MIT  educa*on  is  one  grounded  in    

science  and  technology  that:  

l 

ignites  a  passion  for  learning,  

l 

provides  the  intellectual  and  personal  

founda*ons  for  future  development,  and    

l 

illuminates  the  breadth,  depth  and  diversity  of  

human  knowledge  and  experience,    

in  order  to  enable  each  student  to  develop  a  personal  

coherent  intellectual  iden*ty.  

(69)

What  Should  an  Educated  Individual  Know?  

Fundamental  studies  in  HASS:   Human  cultures  

History   Literature   Economics   Government  

Social  structures  &  organiza*ons   Foreign  language  

Philosophy   Wri*ng  skills   Speaking  skills  

Ability  to  analyze  complex  texts   Sensi*vity  to  ar*s*c  expression   Understanding  of  global  systems  

…  

           

Rigorous  fundamentals  of  science  and   math:   Physics   Chemistry   Math   Biology   Computa*on  

Engineering  ideas  and  methods   Probability  and  sta*s*cs  

Complex  systems   Neuroscience   Earth  science   Environmental  studies   Differen*al  equa*ons   Linear  algebra   …   Science,  Technology  &  Society  

Ethics   Diversity   Management   Design                   Departmental  Program  

(70)

MIT  SB  Degree  Programs:  Rules  

General  Ins*tute  

Requirements  (GIRs)  

•  17  subjects  

•  8  Humani*es,  Arts  and  

Social  Sciences  subjects  

•  6  Science  and  Math  

•  Ins*tute  Lab  

•  2  Restricted  Elec*ves  in  

Science  and  Technology   subjects  

 

Departmental  Programs  

•  11  subjects  (132  units)  

•  3-­‐subject  overlap  with  GIRs  

allows  up  to  maximum  of  15.5   subjects  

•  180-­‐198  units,  including  48  

unrestricted  elec*ves  

(71)

Third Task Force Goal and Outcomes

Educa5onal  Goal  #3*  

Every  MIT  undergraduate  should  be  knowledgeable  enough  about  the   “humane  culture  of  society”  and  adept  enough  in  social  interac*ons  to   par*cipate  as  an  effec*ve  ci*zen  and  innovator  

 

Selected  Outcome  Metrics

 

• Successful  comple*on  of  the  humani*es  and  communica*on  requirements  

• Frequency  of  opportuni*es  for  developing  leadership  and  team-­‐work  

• Student-­‐reported  change  in  ability  to  func*on  effec*vely  as  a  team  member  

• Student-­‐reported  change  in  ability  to  relate  well  to  people  of  different  races,                            

na*ons  and  religions  

• Student-­‐reported  change  in  ability  to  lead  others  

• Alumni  entrepreneurship  and  innova*on  

(72)

Be Knowledgeable About the “Humane Culture of

Society” and Adept in Social Interactions

Source: 2002-2010 Senior Survey

MIT’s humanities and communications requirements are designed to meet this goal. % of Seniors reporting “stronger” or “much stronger” ability since starting college

66%   53%  

81%   73%  

0%   20%   40%   60%   80%   100%  

Lead  and  supervise  tasks  and   groups  of  people  

Relate  well  to  people  of  different  

races,  na*ons,  and  religions   2010  

2008   2006   2004   2002  

(73)

Alumni Entrepreneurship and Innovation

17% of MIT undergraduate students patent an invention within 15 years of graduation; On average, MIT alumni inventors produce six patents each

MIT engineers are 5x more inventive than the average engineer: MIT produces .25% of U.S. engineering grads and they produce 1.2% of all U.S. engineering patents

Source: Phan Shu, PhD Research on Innovation presented at MIT 11/22/11

11%   24%   34%   7%   20%   31%   5%   10%   15%   20%   25%   30%   35%   40%  

As  an  early  employee   As  a  founder  

Note:  An  alum  can  be  both  a   founder  and  an  early  employee.  

   

(74)

Educational Researchers Direct Measures Indirect Measures Faculty Freshman surveys Alumni surveys Graduation rates

Number of students progressing to advanced degrees

Standardized tests of general education skills

Think-aloud protocols

Grades

Standardized tests of disciplinary knowledge

Grades

Concept questions, mud cards

Course evaluations (early semester and end-of-semester)

Survey of students attitudes and/or reflections on their learning

Exit interviews

Pre-test/post-tests

Analysis of student work products

ABET accreditation data

Observations of students performing a task

Portfolios compiled over course of undergraduate study

(75)
(76)

Knowledge  and  Skills  –  MIT  Alumni  

Mean  Frequency  of  Use  

(77)

Changes  at  MIT    

(s*ll  wrapped  around  tradi*onal  core)  

• 

Ac*ve  technology  enabled  learning  

TEAL  Classroom    

• 

Focus  on  developing  engineering  leaders  

Gordon  Engineering  Leadership  Program  

Focus  on  holis*c  development  

CDIO  Ini*a*ve  

Development  of  flexible  engineering  degrees  

• 

Focus  on  undergraduate  prac*ce  opportuni*es  

(78)

Evalua*on  of  TEAL  Learning  Outcomes:  Increases  Seen  

Long  Term  (6  months)  

0 10 20 30 40 50 60 70

Pre Test Post Test Retention Gains

Control

Experimental

n=52  control  

n=120  experimental  

Source: Dori, Y.J., E. Hult, L. Breslow, & J. W. Belcher (2005). “The Retention of Concepts from a Freshmen

Sc

o

re

(79)

Gordon  Leadership  Engineering  Program  

Program  Goals  

1.  To  prepare  all  MIT  engineering  students  to  be  more  effec*ve  

contributors  to  engineering  innova*on,  inven*on,  and  implementa*on   efforts  

2.  To  educate  and  prepare  the  poten*al  future  leaders  of  engineering  

innova*on,  inven*on,  and  implementa*on  efforts  

3.  To  increase  the  focus  of  na*onal  engineering  educa*on  on  the  

development  of  leaders  of  engineering  innova*on,  inven*on,  and   implementa*on  

Mission: To educate and develop the character of outstanding MIT students as potential future leaders in the world of engineering

practice and development, and to endeavor to transform engineering leadership in the nation, thereby significantly increasing its product development capability

(80)

Gordon  Leadership  Program

s  Strategic  Approach  

•  Designed  to  demonstrate  an  impact  on:  

–  All  MIT  engineering  students  through  systema*c  enrichment  of  

departmental  programs  

–  Many  MIT  engineering  students  through  a  set  of  augmen*ng  elec*ve  

modules,  subjects  and  learning  experiences,  which  taken  together,   might  be  at  the  level  of  an  MIT  concentra*on  

–  A  rela*vely  few  MIT  engineering  students  through  focused  mentored  

leadership  development  experiences,  internships,  seminars  and  

subjects,  which  taken  together,  might  be  at  the  level  of  an  MIT  minor  

•  These  areas  are  synergis*cally  linked  in  that  the  “few”  will  help  to  lead  the   “many,”  who  in  turn  will  contribute  to  the  “all”  

•  The  Program  also  engages  a  network  of  alumni  and  industrial  par*cipants  

(81)
(82)

CDIO  Standards  

1.  CDIO  as  Context  for  Engineering  

Educa*on  

2.  Syllabus  Outcomes  -­‐  Specific,  

Detailed  Learning  Outcomes     3.  Integrated  Curriculum  

4.  Introduc*on  to  Engineering  

5.  Design-­‐Build  Experiences  

6.  Workspaces  that  encourage  

hands-­‐on  learning    

7.  Integrated  Learning  Experiences  

8.  Ac*ve  Learning  

9.  Enhancement  of  Faculty  CDIO  

Skills  

10.  Enhancement  of  Faculty  

Teaching  Skills  

11.  Skills  Assessment  of  Student  

Learning  

(83)

Features  of  the  Flexible  Engineering  Degree  

•  Flexibility  grounded  in  engineering  fundamentals  of  a  given  discipline  

•  Improves  students’  ability  to  move  from  disciplinary  founda*ons  of   their  engineering  major  to  mul*disciplinary  prac*ce.    

•  Responds  to  changes  in  the  professional  world  our  graduates  

•  Each  degree  would  (could)  meet  ABET  accredita*on  requirements  for  

engineering  degrees    

•  Graduates  would  be  prepared  for  graduate  school  in  engineering  

disciplines  and  other  disciplines  

•  Implementable  in  current  organiza*onal  framework  (where  

(84)

Ra*onale  for  a  Flexible  Engineering  Degree:  SOE  

Students  and  Alumni  

In  surveys,  students  and  alums  say  they  desire  

improvements  in  the  MIT  SOE  program  in  the  

areas  of:  

Development  of  engineering  leadership  abili*es  

Prepara*on  for  work  in  global,  mul*cultural  

organiza*on  

Opportuni*es  for  interdisciplinary  study  

(85)

SOE  students  pursuing  broader  programs  of  study  

via  minors  and  double  degrees  (50%  with  most  

outside  of  engineering)  

(86)

The world is always changing

And as a result

institutions of

higher educations

must constantly

reinvent

themselves. But

amidst this endless

change, the

founding values

(87)

Bottom line on current thinking

Physical  proximity  most  valuable  for  UGs  

–  “bumping”  into  other  smart  people  efficiently  

Speed,  density  of  network  connec*ons  is  increasing  

–  Click  and  brick  are  now  more  important  then  ever  

Core  strategy:  Must  maintain  our  focus  on  innova*on  

and  transforma*on  

Core  strategy:  Must  con*nue  to  aLract  the  very  best  

students.  More  and  more  important  to  draw  globally  

MIT  should  be  a  place  where  great  things  happen  

easily.  Propor*on  of  people  who  make  great  things  is  

high  at  MIT  -­‐  need  to  keep  this  

(88)

Faculty  Engagement  

Faculty-­‐Centered  Approach  

•  Scaffold  the  development  of  teaching  prac*ces  

•  Take  a  long-­‐term  view  of  our  rela*onships  with  our  faculty  partners  

–  Consultant  role  

–  Our  efforts  are  guided  by  faculty  needs/requests  

•  Help  faculty  to  iden*fy  other  support  needs  

–  Workload  management  for  faculty  and  AIs  

–  Simplifying  course  logis*cs  

 

The feedback cards, plus some other intangibles, have made the students very interactive -- far more than last year at this time.

(89)

NAE  Grand  Challenges  for  21

st

 Century  

•  Make  solar  energy  economical  

•  Provide  energy  from  fusion  

•  Develop  carbon  sequestra*on  methods  

•  Manage  the  nitrogen  cycle  

•  Provide  access  to  clean  water  

•  Restore  and  improve  urban  infrastructure  

•  Advance  health  informa*cs  

•  Engineer  beLer  medicines  

•  Reverse  engineer  the  brain  

•  Prevent  nuclear  terror  

•  Secure  cyberspace  

•  Enhance  virtual  reality  

•  Advance  personalized  learning  

(90)

!"#$" %!&#""'( !"#)&(%!&#*&' !"#*+ %!&#+,' !-#&*(%!"#+,' !"#**(%!$#-,'( !,#**(%!$#./' !+#$"(%!"#/&' !-&#$)(%!"/#*-' !&#-/(%!&#"-' !$*#"/(%!"&#-.'

Current U.S. dollars (billions)

!"#&/(%!&#"*' ((((!&#&/(%!&#&*'(

R&D  performed  in  the  United  States  by  U.S.  affiliates  of  foreign  companies,   by  inves5ng  region,  and  R&D  performed  abroad    

by  foreign  affiliates  of  U.S.  mul5na5onal  corpora5ons,     by  host  region:  1998  and  2008  

(91)

Beyond  The  Curriculum  at  Olin  

Making  universi*es  and  engineering  schools  exci*ng,  crea*ve,  

adventurous,  rigorous,  demanding,  and  empowering  milieus  is  more   important  than  specifying  curricular  details”  

                                                                                               Chuck  Vest,  MIT  President  Emeritus    

• Autudes  and  Behaviors  

•  “Can  Do”    

•  Teamwork    

•  Core  Values  and  Ethics  

•  Entrepreneurial  Thinking  

• Mo*va*ons  

•  An  insa*able  appe*te  for  learning  and  innova*on  

•  Drive  to  become  adap*ve,  independent,  life-­‐long  learners    

References

Related documents

 Human clinical trial using stem cells must strictly adhere to accepted principles as laid down in the Schedule Y of Drugs and Cosmetic Act, GCP Guidelines of CDSCO

We show that to propose the package for commodity and service is less costly for the consumer, the …rm has lower consumers’ rent than the situation where it sells their good

This section explores energy security conditions in the world with respect to vulnerabilities of primary energy sources at the national and, where appropriate, global level,

A company’s strategic competence is judged according to its ability to anticipate environmental changes and to challenge emerging new opportunities, and yet according to how capable

(1994) Molecular cloning, functional expression and localization of a novel inward rectifier potassium channel in the rat brain.. Koyrakh L, Luján R, Colón J, Karschin C, Kurachi

Semiconductor-based flash memory is now widely used in applications ranging from BIOS code on motherboards to image storage in digital cameras, and volume production is driv- ing

We hypothesize that due to social capital, emotional dissonance, and conservation of resource theories, work SNS use will decrease work isolation, which will decrease

■ Redundant safety features includes automatic discharge of test item, test inhibition in presence of external voltage, and design to