Stocks and flows of natural and human-derived capital in ecosystem services

12 

Loading....

Loading....

Loading....

Loading....

Loading....

Full text

(1)

Contents lists available atScienceDirect

Land

Use

Policy

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / l a n d u s e p o l

Stocks

and

flows

of

natural

and

human-derived

capital

in

ecosystem

services

L.

Jones

a,∗

,

L.

Norton

b

,

Z.

Austin

c,p

,

A.L.

Browne

c,q

,

D.

Donovan

d

,

B.A.

Emmett

a

,

Z.J

Grabowski

e

,

D.C.

Howard

b

,

J.P.G.

Jones

f

,

J.O

Kenter

g,r

,

W.

Manley

h

,

C.

Morris

i

,

D.A.

Robinson

a

,

C.

Short

j

,

G.M.

Siriwardena

k

,

C.J.

Stevens

c,l

,

J.

Storkey

m

,

R.D.

Waters

n

,

G.F.

Willis

o

aCentreforEcologyandHydrology(CEH-Bangor),EnvironmentCentreWales,DeiniolRoad,BangorLL572UW,UK bCentreforEcologyandHydrology(CEH-Lancaster),LancasterEnvironmentCentre,LancasterUniversity,LA14YQ,UK cLancasterEnvironmentCentre,LancasterUniversity,LA14YQ,UK

dJointNatureConservationCommittee(JNCC),MonkstoneHouse,CityRoad,Peterborough,CambridgeshirePE11JY,UK ePureInteractionsUK,FirstFloor2,WoodberryGrove,LondonN120DR,UK

fSchoolofEnvironmentNaturalResourcesandGeography,BangorUniversity,ThodayBuilding,DeiniolRoad,BangorLL572UW,UK gUniversityofAberdeen,SchoolofBiologicalSciences,23St.MacharDrive,AberdeenAB243UU,UK

hTheRoyalAgriculturalUniversity,TetburyRoad,CirencesterGL76JS,UK iUniversityofNottingham,UniversityPark,NottinghamNG72RD,UK

jCountrysideandCommunityResearchInstitute,UniversityofGloucestershire,OxstallsLane,Longlevens,GloucesterGL29HW,UK kBritishTrustforOrnithology,TheNunnery,Thetford,NorfolkIP242PU,UK

lTheOpenUniversity,WaltonHall,MiltonKeynesMK76AA,UK mRothamstedResearch,Harpenden,HertfordshireAL52JQ,UK

nNaturalEngland,FossHouse,KingsPool,1-2PeasholmeGreen,YorkYO17PX,UK oCampaigntoProtectRuralEngland,5-11LavingtonStreet,LondonSE10NZ,UK pUniversityofYork,YorkYO105DD,UK

qGeography/SustainableConsumptionInstitute,TheUniversityofManchester,M139PL,UK rScottishAssociationforMarineScience(SAMS),Oban,ArgyllPA371QA,UK

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received9March2015

Receivedinrevisedform9December2015 Accepted14December2015 Keywords: Naturalcapital Humancapital Scale Sustainable Beneficiaries Potentialservice

a

b

s

t

r

a

c

t

Thereisgrowinginterestintherolethatnaturalcapitalplaysinunderpinningecosystemservices.Yet, thereremaindifferencesandinconsistenciesintheconceptualisationofcapitalandecosystemservices andtherolethathumansplayintheirdelivery.Usingworkedexamplesinastocksandflowssystems approach,weshowthatbothnaturalcapital(NC)andhuman-derived(produced,human,social,cultural, financial)capital(HDC)arenecessarytocreateecosystemservicesatmanylevels.HDCplaysaroleat threestagesofecosystemservicedelivery.Firstly,asessentialelementsofacombinedsocial-ecological systemtocreateapotentialecosystemservice.Secondly,throughthebeneficiariesinshapingthedemand forthatservice.Thirdly,intheformofadditionalcapitalrequiredtorealisetheecosystemserviceflow. Weshowthatitispossible,althoughnotalwayseasy,toseparatelyidentifyhowtheseformsofcapital contributetoecosystemserviceflow.Wediscusshowapplyingasystemsapproachcanhelpidentify criticalnaturalcapitalandcriticalhuman-derivedcapitaltoguidesustainablemanagementofthestocks andflowsofallformsofcapitalwhichunderpinprovisionofmultipleecosystemservices.Theamountof realisedecosystemservicecanbemanagedinseveralways:viatheNC&HDCwhichgovernthepotential service,andviafactorswhichgovernboththedemandfromthebeneficiaries,andtheefficiencyofuse ofthepotentialservicebythosebeneficiaries.

©2015PublishedbyElsevierLtd.

∗Correspondingauthor.

E-mailaddress:lj@ceh.ac.uk(L.Jones).

1. Introduction

Withintheecosystemservicesliteraturethereisanemerging focusonnaturalcapital(TEEB,2013),thecomponentsofnatural systemsthatunderpinthedeliveryofecosystemservices.Thisis http://dx.doi.org/10.1016/j.landusepol.2015.12.014

(2)

drivenpartlybyconcernatnationalandglobalscalesthatstocksof naturalcapitalarebeingusedatanunsustainablerate(Hailsand Ormerod,2013),andpartlybythedevelopmentofgreen account-ingframeworksorthedesiretoseparatetheaddedvalueprovided byhumaninputsfromthatcontributedbythenaturalenvironment (UKNEA,2011;Batemanetal.,2011;EuropeanCommission,2012; Remmeetal.,2014;Schröteretal.,2014a;UN,2014).Yet,despite thisfocus,definitionsofnaturalcapitalremainvaried(e.g.Dickie etal.,2014).Theroleofhumancapitalinthesupplyanddelivery ofecosystemservicesisincreasinglyrecognised(Tallisetal.,2012; Remmeetal.,2014;Burkhardetal.,2014),andwithinthe Ecosys-temApproachhumansareseenaspartofaninteractiveholistic (socio-economic)system,wherethewelfareofhumansandthe healthofthenaturalworldareco-dependent(RaffaelliandWhite, 2013).However,uncertaintyremains abouttheextenttowhich humancapitalcontributes,andatwhichstagesintheprocessof deliveringecosystemservicesitplaysarole.Iftheseconceptsare tobeusefulfordecisionmakers,theyneedtobetterintegrate evi-denceonnaturalresource availabilitywithanunderstandingof howsocietyinteractswiththoseresources(Olssonetal.,2004)in clearlydefinedways.

In this paperwe discuss two key issues in current thinking ontheroleofnaturalandhumancapitalindeliveringecosystem services,andtietogetheremergingliteratureontheseissues:(1) theconceptualisationofhowecosystemservicesaredelivered;(2) therelativecontributionofhumanandnaturalcapitalto ecosys-temservicesdelivery.Weuseexamplesofprovisioning,regulating andculturalservicesdeliveredinmulti-functionallandscapesto illustrateaclarifiedunderstandingofecosystemservicedelivery. Recognisingthatmanystocksofcapitalarenotbeingutilisedor managedsustainably,wediscusstheimplicationsforbetter long-termmanagementofstocksofnaturalandhumancapital.These ideashavearisenthroughdiscussionsamongamulti-disciplinary teaminvolvingnaturalscientists,socialscientists,economists,NGO representatives,governmentpolicymakersandlandmanagers.

2. Currentissues

MostESframeworksillustratealinear-cyclicviewwherethe environmentprovidesarangeofecosystemservices,fromwhich humansobtaingoodsorbenefitstowhichavaluecanbeattached (e.g.MA,2005;TEEB, 2010;Maesetal., 2013), withtherole of naturalcapitalmorerecentlydefinedasunderpinningecosystem servicedelivery(TEEB,2013).Thecycletypicallygoesontodescribe managementfeedbacksinresponsetohumanandotherdrivers ofthesystemwhichinturnaffectthenaturalenvironment(van Oudenhovenetal.,2012).In thispaper,weexploreparticularly thepartof this cycleconcernedwith generationor production ofecosystemservicesandtheroleofpeopleinthisprocess.We arguethatportrayinghumanssimplyasusersofnaturalcapitalor ecosystemservicesisanover-simplificationimpedingour concep-tualunderstandingofhowecosystemservicesaredeliveredand, asaconsequence,themanagementofecosystemservicedelivery andassociatedstocksofnaturalcapital.Twoissuesemergefrom thisdiscussion:

1)Althoughconsensusisstartingtoemergeamongtheecosystem servicesresearchcommunity,thereisalackofclarityamong manyenvironmentalscientistsandpolicymakersinthe concep-tualisationofhowecosystemservicesaredelivered.Thisapplies tothemajorityofservices,butperhapsmoresointhecaseof culturalservicesforwhichtypologiesarestillevolving(Daniel etal.,2012;Chanetal.,2012a,b;Brown,2013;Churchetal., 2014;Kenteretal.,2014).Manyenvironmentalscientistssee ecosystemservicespurelyfromanecosystemperspective,and

failtoappreciatethatservicesaredefinedinthecontextoftheir usebyhumans.Meanwhile,thelinkageswhichestablishhow ecosystemsprovideaservicethatissubsequentlyusedby ben-eficiariesalsoremainpoorlydefinedforthemajorityofservices. Thislackofclarityhashinderedthedevelopmentofintegrated approachestoecosystemservicequantificationandmodelling. 2)Whileitisacceptedthathumansarepartoftheenvironment (RaffaelliandWhite,2013),itisnotalwaysrecognisedthatthey performmultiplerolesinanecosystemservicesframework,e.g. asco-producersofecosystemservices,asbeneficiariesofthose services,andthroughtheadditionofcapitaltorealisethose ser-vices.Thoserolesarecurrentlyill-defined.Thereisalsoadesire toseparateoutthenaturalcapitalandhumancapitalelements ofecosystemserviceprovision,drivenbytheneedsof environ-mentalassetaccountingwithitsfocusonnaturalcapital(TEEB, 2010;Remmeetal.,2014),andbyadesireforeconomic valua-tionofgoodsandbenefits(BoydandBanzhaf,2007).However, improvementisneededinidentifyingtherangeofcomponents thatgotomakeupaservice,anddistinguishingbetweenthe roleof humansas beneficiariesofservices,and theirrole in contributingtotheserviceitselfatmultiplepointsalongthe ecologicalproduction function and theeconomic production function.Usingasystemsapproach,weshowthatitis possi-bletoseparatelyidentifyhowbothnaturalandhuman-derived capitalcontributetoecosystemservicedeliveryforthethree categoriesoffinalecosystemservices(sensu.Fisheretal.,2008): provisioning,regulatingandcultural.

Thereisincreasingrecognitionthatmanystocksofnatural cap-italarenotbeingutilisedormanagedeffectively,andtheirrateof useisnotsustainable.Ataglobalscalethisrateofresourceusemay leadtoexceedanceofplanetaryboundaries(Steffenetal.,2015).At localscaleunsustainableresourceusehasmoreimmediate conse-quencesforhumanwellbeing,alongwithequityissuesintermsof accesstoecosystemservices,andmaybeakeyconsiderationin evaluatingtrade-offsamongecosystemservicesinland manage-mentorpolicydecisions.Therefore,weexplorehowanimproved understandingofhowecosystemservicesareproduced,andthe roleofhumansinthatprocesscanhelpguidesustainable manage-mentofthesestocksintothefuture.

3. Issue1.Howareecosystemservicesdelivered:potential andrealisedservices,theroleofpeopleasusersof

ecosystemservices

Theconceptofecosystemservicesisanacknowledged anthro-pocentricconstructandtheirverydefinitioncentresonwhatthe environmentprovidesforhumans(MA,2005).Withoutusersor beneficiaries(subsequentlytermed‘beneficiaries’)theservicedoes notexist.Thewaythatthisrelationshipbetweensociety, econ-omyandnatureisexpressedintheecosystemservicesconstruct issignificant—forexampleriparianwoodlandmayslowoverland flowofwaterintostreams,attenuatingafloodpeak,butifthereis nocommunitydownstreamwhichbenefitsfromreducedflooding thenthatfunctiondoesnotconstituteaflooding-regulationservice withinanecosystemservicesframework.Schröteretal.(2014a) andBagstadetal.(2014)providegoodexamplesofthis.

Foraservicetoberealisedtherefore,thereneedstobenotonly asetofproducts,functionsorprocessesprovidedbytheecosystem butacorrespondingsetofbeneficiarieswhichderiveaservicefrom them,illustratedsimplyinFig.1.Thismakesclearthedistinction betweenwhatwecallthe‘potentialecosystemservice’providedby theecosystem,similartowhatTallisetal.(2012)describeas ser-vice‘supply’andSchröteretal.(2014a)andVillamagnaetal.(2014) term‘capacity’,andtheservicethatisactuallyusedbyhumans,that

(3)

Realised Ecosystem Services (Provisioning, Regulang, Cultural)

Ecosystem funcons & processes (Potenal services) Users / Beneficiaries

Fig.1.Potentialservicesupplyandbeneficiariesarebothnecessarytodefinethe realisedecosystemservice.

Fig.2. Conceptualisationofhowpotentialservice(supply)anduserdemand com-binetodeterminethequantityofrealisedserviceflow.(a)Changesintheamount orefficiencyofbothsupplyanddemandaffectthemagnitudeofserviceflow:(b) Serviceflowisconstrainedbyinadequatesupply,i.e.thereisunmetdemand;(c) Serviceflowisconstrainedbyinsufficientuserdemand,i.e.thereisunused sup-ply;(d)efficiencyofuseisincreasedthereforeserviceflowincreasesdespitesupply remainingconstant.

isthe‘realisedecosystemservice’,akinto‘serviceflow’.Itis gen-erallyacceptednowthattoaccuratelycharacteriseandquantifya particularservice,thebeneficiariesneedtobepreciselydefined (Bagstadet al.,2013).Forexample, alakeorreservoircan pro-videwatersupplyforbothirrigationandfordrinking.However, thosetwousesofwatersupplyhavediscretesubsetsof beneficia-rieswithdifferentcharacteristicsintermsofspatiallocationand waterqualityrequirements.Takenfurther,thequantityofservice thatisrealisedmustalsobedeterminedbythebeneficiaries.For agivenattenuationofafloodpeakprovidedbythelanduseina catchment,iftheurbanpopulationexpandsintheflood-pronearea, ornewcriticalinfrastructuresuchasanelectricitysub-stationis built,thenthelevelofrealisedserviceincreases.

Thisclarificationhelpstodefinewhatismeantbytheflowofan ecosystemservice,whichistheamountofservicerealisedby ben-eficiaries(Schröteretal.,2014a;Villamagnaetal.,2014).Wemake adistinctionherebetweentherealisedecosystemserviceflowand theflowsofcapital(materialorinformation)whichcontributeto thepotentialservice,discussedindetailinSection4.Theamount ofrealisedecosystemserviceflowisafunctionoftheamountof potentialservicethatcanbeprovided(potentialsupply),the num-berofbeneficiariesand theirserviceneeds(userdemand), and theirefficiencyofuseoftheservice(Fig.2a).Therealisedservice flowcanbeconstrainedbyinadequatesupply,i.e.therearemore

potentialbeneficiariesthanthepotentialservicecansupportand thereisunmetdemand(Fig.2b),orconstrainedbyinsufficient ben-eficiaries,i.e.thereisunusedpotentialservice(Fig.2c).Theamount ofrealisedserviceflowcanalsobeincreasedwithoutchangingthe amountofpotentialservicebycarefulmanagementor improve-ment of theway theservice is delivered(Fig.2d). Thiscan be achievedbyalteringthepropertiesorcharacteristicsofthe poten-tialservice,thebeneficiaries,orthewayinwhichtheyinteract,and isdiscussedfurtherinSection5.

Thishasimplicationsforhowwequantifyormeasureservice delivery, particularlyinthecontextof sustainablemanagement of ecosystem services into the future (Eigenbrod et al., 2011; Villamagnaetal.,2014).Toillustratewithanexample,theresidents ofatownsituatedinalow-intensitymixedagriculturallandscape useaculturalservicewhichwecall‘visualappreciationof land-scape’.Asthepopulationincreasesandthetownslowlyexpands intothatlandscape,thepotentialservice declinessincethereis lessvisually-appealingagriculturallandscapeoverall.However,the numberofbeneficiariesofcoursegoesupmeaningthatthetotal realisedservicemightincrease.Ifwefurtherseektovaluethat ser-vice(usingmonetaryornon-monetarymeasures)thevaluemay goupordownforarangeofreasons,includingthesocio-economic statusandvaluesystemsofthebeneficiaries.Inordertomanage thisservicesustainablyintothefutureitisnecessarytocaptureall threeelementsofchangeintheservice:

•Amountofpotentialservice,inthiscasetheareaofagricultural landscapeandthequalityofitscharacteristicswhichtogether definethelevelofpotentialservice.

•Beneficiariesoftheservice,mosteasilyquantifiedasthenumber ofpeople,butmoresophisticatedmetricsmaybeapplied. •Valueoftheservice.Thismaybedescribedinmonetaryor

non-monetaryterms, and will bedependenton theway that the beneficiariesoftheservicearedefinedandquantified.

Thisexampleillustratesthatcalculatingthevalueofecosystem servicesalone,whetherthroughmarketsornon-marketvaluation isnotsufficienttoassesswhethercapitalisbeingused sustain-ablyanddoesnotsupportanEcosystemApproach(Norgaard,2010; Scottetal.,2014).Marketscaptureonlydemandinrelationto sup-ply,notthelongtermfuture ofthecapital,andothermeasures ofvaluerarelycaptureissuesofsustainability.Allthreeelements areneededinordertounderstandwhataspectofecosystem ser-vicedeliveryischangingandwhy.Capturingmultipleaspectsof ecosystemservicedeliveryforeachservicewillmakeanalysisof trade-offsamongservicesmorecomplex,butisnecessaryfor sus-tainablemanagement.

Insummary,wedefinethepotentialecosystemserviceasthat provided bytheecosystembeforeitisused bybeneficiaries,at whichpointitbecomesarealisedecosystemservice.Therealised serviceequatestotheecosystemserviceflow,whosequantityisa functionoftheamountofpotentialservice,thenumberand char-acteristicsofbeneficiaries,andtheefficiencywithwhichtheyuse theservice.Quantifyingecosystemservicestoinformsustainable managementandtradeoffanalysisshouldthereforeaimtocapture informationonthepotentialservice,therealisedserviceusedby beneficiaries,aswellastheeconomicvalueofthatservice.

4. Issue2.Theroleofnaturalandhuman-derivedcapitalin thedeliveryofecosystemservices

4.1. Context

Definitions of ecosystem services initially framed humans purelyasusersofthebenefitsprovidedbytheenvironment.Recent

(4)

frameworks (e.g. TEEB, 2010, 2013; UKNEA, 2011) incorporate humanswithinorinteractingwitha combinedsocial-ecological system,butwithoutspecifyingtheirrespectiveroles.Others(Tallis etal.,2012;Spangenbergetal.,2014;Fisheretal.,2013;Burkhard et al., 2014; Remme et al., 2014) go further tohighlight both theuseofservicesfromtheenvironment,and someinteraction betweenhumansandtheenvironmenttodeliverecosystem ser-vices, although this is often confined to the cultural services. However,therealityisarguablymorecomplex,andthereisdebate aboutboththeanthropocentricframingoftheecosystemservices conceptandtheroleofhumanswithinit(Spash,2009).Increasingly acrosstheglobe,landscapesillustratetheconnectionand inter-dependencebetweenhumansocietyandnature,andhavebeen co-producedthrougharelationshipbetweenthetwo(Gorg,2007; MatthewsandSelman,2006).Thiscombinednaturalandhuman settingismoreaccuratelydescribedasasocial-ecologicalsystem (Berkesetal.,2002;Olssenetal.,2004;OstromandCox,2010). Toagreatextent,allthreetypesoffinalecosystemservice: pro-visioning,regulatingandculturalservicesare‘co-produced’bythe environmentandpeople,evenatthestageofpotentialservice sup-ply.Thisisbecause,overmuchoftheglobe,thelandscapeisso modifiedbyhumansintermsofalterednaturalprocesses, agricul-turalpracticesandwithlarge-scaleinfrastructure,thatcontinued humaninterventionandmanagementofnaturalcapitalare nec-essaryforthedeliveryofmanyecosystemservices.Thechallenge fromanecosystemservicesperspectiveistocapturethiselement ofco-production. Contrastingwiththisidea ofco-production is theincreasingdesiretoseparatelyidentifytheelementsofnatural andhuman-derivedinputsforgreenaccountingorforvaluation. Weseektoaddressthischallengebyclearlyidentifyingtheroles ofnaturalandhuman-derivedcapitalstocksandflowswithina consistentframework,buildingontheclarifiedunderstandingof theelementsrequiredforanecosystemservicetooccur,outlined previously.

4.2. Typesofcapital

Hereweadapttheclassificationassociatedwiththe Sustain-ableLivelihoodsApproach(SLA)(Carney,1998;Solesbury,2003), whichconsidersfivetypesofcapital:natural,human,produced, socialandfinancial.Weaddasixth‘cultural’capital,andprovide somedefinitionsbelow.Weusetheterm‘human-derivedcapital’to encapsulateproduced,human,social,culturalandfinancialcapital, asdistinctfromnaturalcapital.

Naturalcapitalhasbeenvariouslydefinedasthestockof phys-icalassetsintheenvironment(water,trees,minerals,species,etc.), butalsotheprocesses(e.g.waterpurification,climateregulation) fromwhichweobtainbenefits(e.g.NCC,2013).Widerdefinitions (e.g.Dailyetal.,2000),whichincludewholeecosystems,cause dif-ficultieswhentryingtounderstandhowthenaturalcomponents combinewithother,human-derivedinputstoproduceecosystem services,andfailtorecognisehowthequalityofcapitalalsoaffects theecosystemservicesproduced. In thispaper wedefine capi-tal‘stocks’asbeingassetsintheenvironmentandcapital‘flows’ astransformations or movement of those stocks.We adopt an encompassingdefinitionofnaturalcapitalas“Aconfiguration(over timeandspace)ofnaturalresourcesandecologicalprocessesthat contributesthroughitsexistenceand/orinsomecombination,to humanwelfare”(Dickieetal.,2014).Wediscussbelowhow knowl-edgeoftheircharacteristicsandtheinteractionsbetweennatural capitalstocksandflowsisessentialinordertounderstandnotonly howservicesaredeliveredbuthowtheymightbemanaged sustain-ably.Thedistinctionbetweennaturalandhuman-derivedcapital isnotclearinthecontextofdomesticatedplantsandanimals.We usethetermcultivatednaturalcapital(Daly,2005)toincludecrop

cultivarsandlivestockbreeds,atermwhichhasalsobeenapplied togreeninfrastructuresuchascityparks.

Human-derivedcapital,isanumbrellatermencapsulatingthe followingformsofcapital:

Produced capital, also called built, manufactured or repro-ducible capital consistsof manufactured assets, such as roads, vehicles,houses,machinery,etc.Humancapital,defined asthe productivecapacityofhumanbeingsandencompassesthestock ofcapabilitiesheldbyindividualssuchasknowledge,education, training,skillsaswellasphysicalandmentalcharacteristicslike behaviouralhabits and physicaland mental health. Social cap-italwhich referstothestockof contacts,trust,reciprocity and mutualunderstandingassociatedwithsocialnetworks.Itincludes both‘bonding’socialcapitalwhichconsistsofaccumulatedsocial relationshipsandbondsoftrustswithinatight-knit,closedsocial group, and ‘bridging’ social capital which consists of relation-shipsoftrustinheterogeneous,opengroupsandbetweengroups (SvendsenandSvendsen,2009).Culturalcapitalwhichrefersto thebroaderfactorsthatallowustointeractwitheachotherandthe environment,includingvaluesandbeliefs,sociallyheldknowledge aswellassocio-politicalinstitutions(Bourdieu,1986;Berkesand Folke,1994;Cochrane,2006).Financialcapital,whichismoney thatfacilitatestheinteractionofotherformsofcapitalbyfunding theactivitiesthatmightberequiredfortheservicestoberealised, managed,orimproved.

Allthesedifferent‘capitals’–natural,produced, human, cul-tural,socialandfinancial–combinetogetherinawaythatinthe socialsciencesistermed‘co-production’.Thatis,theyare inter-dependentandchangesinthepropertiesofonecananddoelicit changesintheothers.Conceptually,thesecanbebroughttogether asshowninFig.3,wherepotentialservicesupplyisdependenton interactionsbetweenformsofnaturalcapitalandformsof human-derived capital as defined above, prior to becoming a realised ecosystemservicethroughitsusebybeneficiaries.Thequantity of service flow for some servicesis dependenton interactions betweenbeneficiariesandthepotentialservice,representedbythe double-headedarrow.

Thisapproachdistinguishesclearlythreeplaceswherehuman inputsintheformofhuman-derivedcapitalarenecessaryfora service tooccurin managedlandscapes. (i)Asdirect inputs to thesocial-ecologicalsystemwhich arenecessaryforapotential ecosystemservicetooccur(equivalenttotheecological produc-tionfunction),(ii)Onthedemandside(Tallisetal.,2012)inthe roleofhumansasbeneficiariesshapingdemandfortheresulting service,and(iii)Asfurtherinputsofhuman-derivedcapital nec-essarytorealisetheflowoftheecosystemservice(aspartofthe economicproductionfunction),e.g.throughthepipelinerequired togetdrinkingwatertothebeneficiaries.Itthereforemakesclear thatsomeformsofhumancapitalinputarerequiredforthe poten-tialecosystemservicetoexist,aswellasonthedemand-side.This conceptisdiscussedinmoredetailusingexamplesinSection4.4, inwhichthenaturalandhuman-derivedelementsareseparately identifiedforthreetypesoffinalecosystemservice.

4.3. Thebuildingblocksrequiredforasystemsapproach

Having set thecontext, we now explore in more detail the relationship between stocks and flows of natural capital and human-derivedcapitalandtheproductionofecosystemservices. Todothis,wedefineasetofbasicbuildingblocksorelementswhich canbeusedincombination torepresentanytypeofecosystem service,andunderstanditsproperties.Subsequently wediscuss howtheseelementscanbecombinedtoproducemodelsofhow ecosystemservicesaredeliveredusingthreedifferentexamples: oneeachfromprovisioning(maizeproduction),regulating(flood control)andcultural(recreationalwalking)services.Notethatthe

(5)

Atmosph

eric

Hydrological

Pedological

Geological

Biological

Nat

u

ral

C

a

p

ita

l

Human

Cultural

Financial

Social

Quanfied

service

flow

Realised Ecosystem

Service Flow Potenal Ecosystem Service

Combined

social-eco

logical system

Users/

Beneficiaries

Human-derived capital required to reali

se the service flow

Provisioning Regulang Cultural Potenal Supply User Demand Interacons

Produced

Hum a n -d er ive d Cap ital

Fig.3.Differentformsofhuman-derivedcapitalandnaturalcapital(subdividedafterRobinsonetal.(2013))co-producepotentialecosystemservices,whichincombination withdemandfromusers/beneficiariesthenproduceaflowof‘realised’ecosystemservices.

examplesused here relate to final ecosystem services, but are equallyimportantinunderpinningsupportingservices,whichalso dependtoanextentonbothnaturalandhuman-derivedcapital. Thebasicbuildingblocksaredefinedbelow:

Stocksare aquantifiableamountof materialorinformation, withunitsfornaturalcapitalstocksoftendefinedinaspatial con-text.Examples ofstocksof natural capital include:soil organic matterquantifiedingramspermetresquare;volumeofwaterina reservoirquantifiedincubicmetres.Somestocksofhuman-derived capitalcanbehardertoquantifythanothers,butexamplesinclude: a socialnetwork of peoplewholike todorecreationalwalking (hiking) quantifiedin number of individuals and theirnetwork connections(socialcapital);knowledgeheldbyfarmersaboutthe fertiliserrequirementsofdifferentcropvarieties(humancapital).

Compositestockscanbemeasured(e.g.astockofsoil,quantified intonnes,or centimetres soilthickness)butcan alsobe subdi-videdandquantifiedasseparateconstituentstocks(e.g.forsoil: particulatematter,air,water).

Flowsintoorfromstocksrepresentanamountofmatteror informationdefinedinaspatialandtemporalcontext,i.e.a quan-tityperunitareaperunittime.Aswithstocks,therearenatural flows(e.g.weatheringraterepresentingaflowofmineralsfrom bed-rocktosoilquantifiedinMolespersquarecentimetreper sec-ond;rainfallamountasmillimetresperyear)andhuman-derived flows(e.g.flowsofinformationfromfarmertofarmeronthebest formofpesticidetodealwithaphids).Theseflowsofcapitalare dis-tinctfromtheconceptofrealisedecosystemserviceflowsoffinal ecosystemservices,definedinSection3above.

Inadditiontothequantityofstocksandtheirflows,we fur-therdefinesystemproperties,whichconsistoftheattributesor characteristicsofthesystem.Theycanbepropertiesofthestocks themselves,orrelatetotheirspatialandtemporalarrangement

inthesystem,whichinvariouscombinationsdeterminethe qual-ityofthestock,andtherebyitscapacitytoprovideaservice-see alsodefinitionsofstructuremetricsinSyrbeandWalz(2012).The specificattributeswhichdefinethequalityofthestockwillvary

dependingonthecontextandtheusethatthestockisbeingputto. Thesecanalsobequantified,butsincetheyaremorecomplex,their descriptionwillbeelaboratedbelowinthecontextofthe individ-ualserviceexamplespresented.Somerelationshipsarenoteasily categorisedasstocks,flowsorproperties.Wecallthese depen-dencies,representedbyarrows,showingwherepartofthesystem influencesanother,withoutaflowofcapitalnecessarilyoccurring.

4.4. Exploringtheissuesinthecontextofexamples

Weusethreeexamplestovisualisetheseconceptsandtodraw outsomeofthenuancesofapplyingthisframeworktoparticular contexts:maizeproduction(Fig.4),riverfloodregulation(Fig.5), andrecreationalwalking(Fig.6).Theexamplesaresetwithina hypotheticalmixedagriculturallandscape,buttheprinciplesapply tomanyothersocial-ecologicalsettings,andotherecosystem ser-vices.

4.4.1. Distinguishingnaturalcapitalandhuman-derivedcapital

contributionstothedeliveryofpotentialecosystemservices

Inallthreeexamples,theessentialroleofhuman-derivedcapital inthecreationofpotentialecosystemservicesbecomesclearusing thisapproach.Formaizeproduction(Fig.4),theelementsof natu-ralcapitalincludestocksofsoilwaterandsoilnutrients,withinput flowsofothernaturalelementsofrainfallandsolarenergy. How-ever,theseareaugmentedbyhuman-derivedcapitalatallstagesin theproductionofacrop.Producedcapitalisnecessarytocultivate thelandinthefirstplaceintheformoffield-drains,ormachinery tocleartheland,plough,sowandmanagethecrop.Formostcrops, stocksofsoilnutrientsaresupplementedbyinputsofproduced capitalintheformofinorganicfertiliser.Insomemaize-growing areassoilmoisturestocksaresupplementedbyirrigation,which couldbedefinedasaflowofthenaturalcapitalofriverwateror groundwatermadepossiblebytheproducedcapitalofthe irriga-tioninfrastructure.Otherformsofhuman-derivedcapitalinclude culturalcapitalsuchastheknowledgeheldbyfarmersabouthow

(6)

Fig.4. Simplifieddiagramshowingnaturalandhumancapitalinputstoaprovisioningservice:maizeproduction.Thepotentialserviceisproductionofastandingcropof maize,therealisedserviceisharvestedmaizeforhumanconsumption.Key:rectangularboxes=stocks,ovals=othersystemcomponents/properties,solidarrows=flowsof capital;thinarrows=otherdependencies;naturalelementsinblue,human-derivedelementsinyellow.(Forinterpretationofthereferencestocolourinthisfigurelegend, thereaderisreferredtothewebversionofthisarticle.)

togrowacrop;socialcapitalsuchasthesharingofinformationand co-operationthroughformal(e.g.extensionworkers,agribusiness sectorworkers)andinformal(e.g.,family,otherfarmers)networks; and,notleast,thedevelopedcropseedvarietiessowninthefield, whichcomprise‘cultivatednaturalcapital’.Byanalogywith stand-ingtimberinaforestorplantation,thespecifiedpotentialservicein thiscaseistheproductionofastandingcropofmaize,therealised serviceisharvestedmaizeforhumanconsumption.

Inthefloodregulationexample(Fig.5),inadditiontothe natu-ralcapitalelementsofrainfall,soils,fieldsandriverchannelsand wetlands,produced capitalhasabearing onflood regulationin theformoffielddrains,wallsandditches.Human-controlledflows suchaswaterabstractionfromgroundwaterorriversandirrigation offieldsalsoimpactonstocksandflowsofwaterinthelandscape. Intheexampleofrecreationalwalking(Fig.6),thenaturalcapital elementsincludethelandscapeitself,anditscomponentstocks oftrees,fields, waterbodies etc.Theseare complementedby a substantialcontributionfromhuman-derivedcapitalwhichmay, inmanycases, benecessary fortheservicetooccur.This com-prisesproducedcapitalsuchasfootpaths,carparkingandaccess points,andelementsofculturalandsocialcapitalwhichcontribute towalkingsuchassocialacceptanceofrecreationalwalkingasa meaningfulandenjoyableactivity,asafeenvironmentinwhichto doso,theexistenceofclubsorsocietiesforlike-mindedpeopleto

join,availabilityofliterature,arts,andmediaaroundwalking,and culturalinstitutionssuchasrightsofway.

Delvingdeeperintotherecreationalwalkingexamplereveals thatidentifyingthenaturalandhuman-derivedcapitalelements whichgotoprovidea serviceisnon-trivial,neitherisiteasyto separatethosefactorsthatarenecessaryforthepotentialservice tooccurfromthosethatdeterminetheamountofrealisedservice. Itcouldbearguedthatnohumancapitalisactuallyrequiredfor recreationalwalkinginremotewildernessareas,butinpractice thevastmajorityofrecreationalwalkingtakesplaceinacontext whichincludesfootpathnetworkswhicharemanagedand main-tained,withsupportinginfrastructure thatincludes carparking areas,routeinformation, andmayalsoinclude facilitiessuchas toilets,andrefreshmentareas.Wesuggestthattheseelementsare necessarytofullydefinethepotentialservice,sincetheyare pre-requisitesformostpeopletodecidewhethertogowalking,and where.

The descriptions abovehave focused on thehuman-derived capitalrequired forthepotentialservicetoexist,but asshown by the yellow arrows to theusers/beneficiaries, some human-derivedcapitalplaysaroleinregulatingdemandfortheservice and,asshownbythelargeyellowarrowcomingattheendofthe chain,largeamountsofhuman-derivedcapitalareoftenrequired torealisetheecosystemserviceflow.Itisthiscomponentwhichis

(7)

Fig.5.Simplifieddiagramshowingnaturalandhumancapitalinputstoaregulatingservice:floodregulation.Thepotentialserviceisregulationofflooding,therealised serviceisreducedfloodriskforpeopleandinfrastructureinthecatchment.KeyasforFig.4.Dualblue/yellowshadingindicatescombinationofnaturalandhumanelements. (Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

typicallyreferredtoasthehumancapitalinputsinmost frame-worksofecosystemservicedelivery.Examplesaremachineryto harvestthecrops,flooddefencestofurtheralleviateflooding,or transportinfrastructurewhichfacilitatesaccesstorecreationareas.

4.4.2. Feedbacks&interactionsbetweenusersandthelevelof realisedecosystemservice

Although we attempt here to make a distinction between human-derivedcapitalrequiredforthepotentialservicetoexist, theroleofhumansasbeneficiariesoftheservice,andtheadditional capitalnecessarytorealisetheserviceflow,thisseparationisnot alwaysstraightforwardtoachieve.Recentauthorshaveincluded somecomponentsofhuman-derivedcapitalwithinecosystem ser-vicecapacity.Forexample,Burkhardetal.(2014)includefacilities suchascabins andhotels withinecosystemservice stocks,and Remmeet al. (2014)acknowledge thedifficultiesin separating humanandnaturalcapitalinputsinagro-ecosystems.Villamagna etal.(2014)includesocialcapacityasanelementwithinecosystem servicecapacity,butonlywithinculturalservices.Toaddfurther complexity,foraservicetoberealised,thereareofteninteractions betweenthebeneficiariesandboththenaturalandhumancapital elementsthatmakeupthepotentialservice.Inparticular,therole oftheusersinshapingthenatureandquantityofrealisedservice ismostapparentforculturalservices.Sinceculturalservicesrely toagreatextentonhumaninteractionswiththelandscape,how theserviceisrealiseddependsonhowvariouscategoriesof bene-ficiariesperceiveit.Intherecreationalwalkingexample,although naturallandscapeelementsareusuallyregardedaspositive(e.g.,

waterandtrees),andhumanelementsasnegative(e.g.,buildings, electricitypylons,windturbines)(ResearchBox/LUC&Minter,R. 2011;Nortonetal.,2011),theperceptionofthesefeaturesas ‘posi-tive’or‘negative’isdependentonthebeneficiaryandontheirsocial andculturalinfluences(MilliganandBingley, 2007).Many peo-plepreferahumandimensiontothelandscape,forexamplethe agriculturallandscapesoflavenderfieldsintheProvenceregionin southernFranceareamajortouristattraction.Similarly,isolation andremotenessofalandscapeforrecreationalwalkingareseenas apositivefeatureforsomepeople(forwhomisolation=solitude, peacefulness,tranquility)butasanegativefeatureforothers(for whom isolation=remoteness, danger,insecurity) (Suckall etal., 2009).Elicitingcommunityvalues(geographicalcommunitiesas well as interest-based communities) is therefore important for measuringthevalueoflandscapesinprovidingculturalservices (e.g.,Raymondetal.,2009;Kenteretal.,2015).

Thereisacomplexinteractionofthebeneficiarywiththe social-ecologicalsystemindefiningthequantityofrealisedservice.An individualwillmakepersonaldecisionsaboutwheretowalkbased onarangeofvariables.Forexample,theirreasonforgoingonthe walk(e.g.towalkthedog,ortoclimbahill),theirphysicalfitness, theirpersonalassociationsormemoriesoftheareaorwalk, cul-turalviewsonthedesirabilityofthelocation.Atapopulationlevel itistheinteractionbetweentheattributesheldbyagroupof bene-ficiariesandthevariableswhichcharacterisethepotentialservice atanylocationwhichgovernthelevelofrealisedservice(Kenter etal.,2013;Senetal.,2014).

(8)

Fig.6.Simplifieddiagramshowingnaturalandhumancapitalinputstoaculturalservice:recreationalwalking.Thepotentialserviceisroutesavailableforwalking,the realisedserviceisrecreationalwalkingbyaspecifiedsetofbeneficiaries.KeyasforFig.4.

4.4.3. Flowsofcapital

Wediscusshereflowsofcapital(whichareofteninternaltothe processeswhichunderliethepotentialservice),asdistinctfrom flowsofservice(Issue1,seeSection3).Fromasystems perspec-tive,it becomesclearthat itisnot sufficientmerely toidentify thestocksofnatural orhumancapital thatsupporta potential ecosystemservice,butalsotheflowswhichregulatethelevelof thestocks.Formoststocks,thelevelofthestockatanyonetimeis afunctionofthepreviouslevelandthebalancebetweentherates ofinputandoutputflows.Inthemaizeproductionexample,the stockofsoilnutrientsisdepletedbyflowstothegrowingcrop,but isreplenishedbyinwardflowsofnutrientsfrommineral weath-eringofbedrock(anotherstock)andbyhumaninputsofchemical fertiliserormanures.Flowscanapplytohuman-derivedcapital also,forexample,thestockofculturalknowledgeaboutthebest waytominimisesoilerosioncanbeincreasedbyfarmerstalking toeachotherandbyseekingadviceonissuessuchaswherebestto locateaccesspointstofields.However,therearesomeflowswhich derivefromstockswithoutappreciablydiminishingthequantity orthequalityofthestock,e.g.thenumberofpeoplelookingat andappreciatingapatchworkoflavenderfieldsdoesnot dimin-ishthestockofthefieldsthemselves.1Thisinter-dependenceof

1 Arguably,highvisitordensitiescanreducethequalityofsuchaestheticstocks, i.e.theyarecongestible,butthismayonlyapplytocertainclassesofusers,while thepopularityofsomeaestheticstocksmayactuallyattractotherusers.

multiplestocksandflowsissubtlydifferentfromwhatSchröter etal.(2014a)term‘capacity’whichlooksonlyatthelastpointin theecologicalproductionfunction,anddoesnotnecessarilytake accountofthestocksandflowsearlierinthechain,onwhich sus-tainableusedepends.

Certainservicesaredependentonthemagnitudeofflowsof capitalratherthanthequantityofstockperse,particularlythe reg-ulatingservices.Forexample,floodregulationdependsontheflow ofwatermovingdownariversystemrelativetothecapacityofthe channeltoaccommodatethatflow.Inamorecomplexexample, thepurificationorwasteregulationabilityofaconstructed wet-landdependsbothontherateofflowofwasteintoit,whichmight temporarilyexceedthebindingcapacityofsoilexchangesitesor ratesofplantandmicrobialuptake,aswellasthetotalcapacityto absorbphosphorus(thestockcapacity).

4.4.4. Stockproperties

Thereareattributesorcharacteristicsofstockswhichweterm propertieswhicharenotstocksinthemselvesbutdeterminethe qualityofthestockandaffectitscontributiontotheecosystem ser-vice.Examplesofsuchpropertiesfornaturalcapitalstocksinclude soiltype,angleofslopeandslopeaspect.Theseattributescan usu-allybequantifiedandcanbeincorporatedinmodels.Examplesof propertiesofhuman-derivedcapitalstocksincludemethodof irri-gation,orthetypeofsurfaceoffootpathsandtheirsteepness.We canalsodefineattributesofbeneficiaries,suchassocio-economic group,age-grouporlevelofhouseholdincome,whichaffecttheir

(9)

interactionwiththepotentialserviceandthusgovernthetypeand quantityofservicetheyconsume(Rounsevelletal.,2010).

4.4.5. Spatialandtemporalstructure

Spatialstructure,i.e.thephysicalarrangementofstocksinspace isa systemproperty whichis relevanttothedeliveryof many services(SyrbeandWalz,2012).Forexample,soilcanbeseenas acompositestockcomposedofstocksofminerals,organic mat-ter,waterandair;however,itishowthesestocksarephysically arranged thatdetermines soilproperties likebulk density, per-meabilityorinfiltrationrates,whichcontrolthelevelofservice delivered.Compactedsoilshavepoordrainageandalterthetype andyieldofcropsthatcanbegrown.Aparticularsoilairvolume arrangedaswell-connectedporesallowsrapidinfiltrationofwater throughthesoil,whilethesamesoilairvolumearrangedinpoorly connectedpores,mayslowinfiltrationratesbyanorderof magni-tude,withimplicationsforratesofrunoffandthereforeflooding.At alargerscale,inagriculturallandscapesthearrangementof compo-nentssuchashedgerowsorditchesinthelandscapeorthedirection offurrowsinploughedfieldsaffecttherateandquantityofwater movementacrossthelandandintostreams.Thesameareaoftree shelterbeltcanhaveverydifferenteffectsoninfiltrationand on overlandflowifitisarrangedperpendicularratherthanparallel totheslopecontours(Carrolletal.,2004)oratthetopofaslope comparedwiththebottom(Jacksonetal.,2013).Thustheamount ofservicedeliveredbyagri-environmentschemesshouldtakeinto accountnotonlytheintervention,butalsowherethatintervention occurs(Emmett,2013).Forculturalservices,studieshaveshown thatpeopleattachdifferentaestheticvaluestolandscapes depend-ingonthepreciseconfiguration oftreeswithinit, forexample, whethertheyaregroupedinoneblock,ordistributedacrossthe landscape(Burgessetal.,2009),andthespatialconfigurationof afootpathrelativetopointsofinterestaffectsitsdesirabilityasa route(SyrbeandWalz2012;Burkhardetal.,2014;Schröteretal., 2014b).

Temporalstructureinthetimingofflowsisalsorelevanttothe capacityofanecosystemtodeliverservices,andhasimplications forhowwequantifytheseflows.Foragriculturalproduction, rain-fallneedstooccurintheseasonwhenagrowingcroprequiresit. Thetimingoffertiliserorfungicideapplicationsalsoneedtobe tai-loredtotherequirementsofagrowingcrop.Floodregulationalso illustratestheimportanceoftemporalstructure.Thetimingand frequency,aswellastheintensity,ofrainaremajordeterminants ofwhetherfloodingislikelytooccur.Anillustrationofthe inter-playbetweenspatialandtemporalelementsistherelativetiming offloodpeaksoftributariesinacatchment.Ifallfloodpeaksarrive atonceinthemainchannelthenfloodingismorelikely;however, ifpeaksareseparatedintimeand/orspace,theresultingmoreeven flowovertimeinthemainchannelmeansfloodingislesslikely.

4.4.6. Theroleofsupportingservices

Supportingservicesarealsodependentonnaturaland human-derivedcapital,andarefoundwithinthepotentialservicesupply sideofthediagraminthisconceptualapproach.Forexample,in themaizeproductionexample,photosynthesisandnutrientcycling clearlyunderpincropgrowthandaredependentonthesame cap-italelementsidentifiedinFig.4.Supportingservicesareoftenthe processesandfunctionswhichlinkortransformelementsof nat-uralandhuman-derivedcapitalinternallywithintheecosystem, andarethereforeessentialtoprovidingthepotentialservice.

4.4.7. Qualityofcapital

Theamountofserviceprovidedbythedifferentformsof capi-talthereforeisafunctionofthemagnitudeofstocksofeachtype ofcapital,butalsotheirspatialandtemporalpropertiesandthe interlinkagesbetweenthem.Itistheinter-connectedwholewhich

providestheservice,andtheamountofservicecanbedegradedby impactsonanypartofthewholee.g.throughpollutionor inappro-priatemanagementlikeovergrazing(Jonesetal.,2014).Conversely thisalsogivesmultipleopportunitiestomanagethesustainability ofthecapitaltoprovidetheservice.

4.4.8. Acasestudyexample

Becausedrillingdownintothecapitalframeworkinthiswayis relativelynew,demonstratingtheseideaswithquantified exam-ples forboth natural and human-derivedcapital ischallenging. However,one casestudy canhelpillustratecomponentsof the thinking.TheGlastiragri-environmentschemeinWales,UK,has beendesignedtomeetapolicyframeworkbroadlybasedonthe EcosystemApproach(see Box1).Thesevenintended outcomes thattheschemeaimstodeliverare: combatingclimatechange; improvingwaterquality andmanagingwaterresourcestohelp reduceflood risks;protecting soil resourcesandimprovingsoil condition;maintainingandenhancingbiodiversity;managingand protectinglandscapesandthehistoricenvironment;creatingnew opportunitiestoimproveaccessandunderstandingofthe coun-tryside;andwoodlandcreationandmanagement.Theextensive monitoringscheme collectsdata withina spatial and temporal context(Emmett,2013,2015)onelementswhichcanreadilybe identifiedtocategoriesofnaturalcapitalandhuman-derived cap-ital,andwhichcanbeupscaledtocalculatechangesinecosystem servicedeliveryasaresultofagri-environmentinterventions.

Insummary,usingaconsistentframeworkincorporatingstocks, flowsandothersystempropertiespertainingtobothnaturaland human-derivedcapital,wehaveillustratedthatco-productionis inherentwithinthreeverydifferentecosystemservices,atthestage ofdefiningthepotentialecosystemservice.Weillustratethatitis possible,butnotalwayseasy,toseparatelyidentifyhow human-derivedstocksandflowscontributetoeachservice,atthestagesof potentialservice,inshapingdemand,andasadditionalcapitalto realisetheecosystemserviceflow.

5. Implicationsforsustainablemanagementofnaturaland human-derivedcapitalstocksandflows

Thesystematicapproachoutlinedabovehelpsidentifythe criti-calelementswhichultimatelygoverntheamountofanecosystem servicethatcanbeprovided,andtoidentifywhich components ofthesystemtomanagesuchthatthedeliveryofthoseecosystem servicesissustainable.Thegoalsofsustainablemanagementinthis contextencompassthefollowing:Useofstocksofnaturalcapital andhuman-derivedcapitalshouldnotexceedcriticallevels,and replenishmentofstocksshouldbegreaterthanrateofuseifsome formofrecoveryofstocklevelisrequired.Flowsofnaturaland human-derivedcapitalshouldnotexceedorfallbelowcriticalrates. Managementshouldaimtomaintainstocksandflowswithin‘safe’ levelsaccountingfornaturalvariabilitycausedbyexternalfactors, thusincorporatingideasofresilience(Biggsetal.,2012).Schröter et al.(2014a) showhow comparisonof thedifferencebetween ecosystemserviceflowandcapacitygoessomewaytowards mea-suringthesustainabilityofecosystemservices.But,thisdoesnot addressthehiddendependenciesontheunderlyingnaturalcapital andhuman-derivedcapitalstocksonwhichtheydepend.We reit-eratethatthisincludessustainableuseoftheunderlyingstocks,not justthefinalpartoftheecologicalproductionfunctionfrequently definedas‘capacity’.

Landmanagersanddecisionmakerscanmanagetheamount ofrealisedecosystemserviceinanumberofways.Theycan man-agetheamountofpotentialservice,whichhashistoricallybeen themainfocusoflandusemanagemente.g.inagri-environment schemes, and theycan manage thelevel of realised serviceby

(10)

consideringfactorswhichgovernboththedemandfromthe bene-ficiaries,andtheefficiencyofuseofthepotentialservicebythose beneficiaries.

Whetherthepotentialservicesaredefinedprimarilyinterms ofstocks(provisioning,cultural)orflows(regulating),their com-ponents need to be managed in combination, focusing on the particularstocks,flowsor theirattributesrelevant toeach ser-vice.Forexample,inordertoincreasethestockofavailabletimber forharvestfroma plantation,therateofreplenishmentcanbe enhancedbystimulatingtreegrowththroughapplicationof fer-tiliser,plantingfastergrowingtreespecies,orincreasingtheareaof treesplanted(attheexpenseofotherlanduses).Forregulating ser-vices,soilstructureandvegetationfeaturesinthelandscapecanbe managedinordertoslowdownorminimiseoverlandflow,thereby bothreducingfloodingandincreasingsedimentretention.For cul-turalservices,landscapecomponents whichalter theperceived qualityofthelandscapecanbemanaged,forexamplevia plan-ningregulationstoensureuniformandaestheticbuildingdesign withinNationalParks.Thespatialadjacenciescanalsobe man-agedbydesigningtheroutingandthecharacteristicsoffootpaths oraccessroutesrelativetospecificareastoincreaseorreduce vis-itorflowasdesired.Applicabletoallservicesisthatmanagement ofstocksshouldconsiderthepropertiesandattributeswhich gov-ernstockqualityaswellasstockquantity,whichalsocontrolthe capitalflowsfromthosestocks.

Addressingthebeneficiarysideoftherelationship,managers haveaninfluenceondemandandonefficiencyofuse. Demand foraservicecanbeincreased,forexamplebyadvertisementsor mediaarticlespromotinganareaasadesirablewalkinglocation. Efficiencyofusecanbemanagede.g.byprovidinginfrastructure toaccommodatemore visitorsin thecase ofsomerecreational culturalservices.The level of realised service canalso be con-trolledmore directlyforsustainable managementpurposes, for exampleviaregulationsonthenumberofboatsallowedinthe vicinityofwhalesonwhale-watchingtripstominimisedisturbance totheanimals. Anothermechanism forcontrolling thelevel of realisedserviceisviaincentiveschemestoencouragesympathetic landmanagement,viaagri-environmentschemesorpaymentsfor ecosystemservices(PES)schemes(Engeletal.,2008;Mauerhofer etal.,2013).Manyoftheseschemesshowthatitisoftenmore effi-cient,andmoredesirablefromecologicalandsocialperspectives, tomanagethenaturalcapitalinanappropriatemanner,thanto substitutehuman-derivedcapital.

Central to sustainable management is to identify the flows whicharerate-limitingfortheserviceorthestockswiththe slow-estreplenishmentrateandwheresubstitutionbyotherformsof capitalisnotpossibleoracceptable.Thesearethecriticalstocks andthecriticalflows.Extendingtheideasofcriticalnaturalcapital (Ekinsetal.,2003)wesuggestthereisalsocriticalhuman-derived capital,e.g.knowledgeheldbyindigenouscommunities.Oncethe criticalstocksandflowshavebeenidentified,therateofuseof thosestocksinconjunction withtheratesof natural replenish-ment,orthemagnitudeofflowshouldalsobequantified,tosee ifcurrentuselevelsaresustainable.Insomecases,natural capi-talcanatthemarginbesubstitutedtoadegreebyothernatural capitalorhuman-derivedcapital,orthecontributiontoa poten-tialecosystemservicecanbeenhancedbyadditionofotherforms ofcapital. However,theextenttowhich thosestock levelscan bereplenishedorenhancedbyotherforms ofcapitalshouldbe takenintoaccount,andneedstoconsiderwhetherthose alterna-tiveformsofcapitalarethemselvesbeingusedsustainably.There isascalecontexttothisassessment,sinceresourcesarenotused inisolation.Forexample,soilphosphoruscanbesupplementedby mineralfertiliser,butthephosphaterequiredtomakethatfertiliser mustbeminedfromsomewhereelseintheworld.Calculatingthe

Box 1. Natural capital and human-derived capital within the Glastir agri-environment scheme, Wales, UK. Overview: The Glastir Monitoring and Evaluation Programme is a targeted monitoring scheme to evaluate the benefits pro-vided by the Glastir agri-environment scheme across the whole of Wales through an ecosystem services (ES) perspective. The benefits of the agri-environment interventions are moni-tored at stratified survey locations across Wales on a four-year rolling programme. The statistical design allows evaluation of the interventions in the context of other drivers of change including climate change and air pollution. Projected improve-ments to ES as a result of interventions are modelled spatially using the LUCI tool, which calculates a range of ES taking into account the structural composition of the landscape and its component land use. SeeEmmett (2013, 2015).

Policy context: The Environment (Wales) Bill provides a statutory process to plan and manage Wales’ natural resources in a joined up and sustainable way, and the Well-being of Future Generations (Wales) Act places seven well-being goals into law, and requires public bodies to apply the sustainable development principles.

Data: The data collection focuses on components of nat-ural capital but includes social and economic components, which are being expanded as the scheme evolves, provid-ing an integrated assessment from an ES perspective. These detailed measures include vegetation, soil, water, pollinators, birds, greenhouse gases (GHG), landscape structure and qual-ity, historic features, access, and socio-economics. Temporal (rolling long-term monitoring) and spatial (point to landscape to national) aspects are embedded in the programme.

Selected examples interpreted as stocks and flows:

While the monitoring scheme does not explicitly take a stocks andflows approach, or separately identify natural capital (NC) and human-derived capital (HDC), it has considerable potential to do so. Illustrative examples include:

-GHG emissionsare modelled at farm scale based not just on livestock numbers andfield area (NC), but also how livestock are housed and managed (HDC), and inputs of fertilisers and other products (HDC).

-Landscape characteris summarised in a Visual Quality Index which considers negative aspects from built infrastructure (HDC), positive aspects from topography, woodland and water (NC), valued cultural/historic components such as mon-uments and buildings (HDC).

-Visual accessibilitymetrics incorporate spatial configuration using 3D landscape viewsheds at 5 m resolution, which are a function of topography (NC) and small-scale landscape features (trees, buildings—NC/HDC) which constrain visibil-ity of the landscape. They cover both inward-looking and outward-looking views from each central 1 km square to its surrounding 3 km square.

-Public accessibility is calculated from a complete Public Rights of Way network (HDC) for different classes of user (walker, cyclist, horse-rider, small vehicle, large vehicle).

sustainableuseofcapitalshouldconsiderthedemandsofallthe serviceswhichdependonthatcapital,notjustindividualservices. Insummary,landmanagersandpolicymakerscanmanagethe quantityofrealisedecosystemserviceviathenaturalandhuman capital which governsthe potentialservice,and via thecapital whichgovernsdemandfromthebeneficiariesandtheefficiency withwhichtheyusethepotentialservice.Sustainablemanagement requiresidentificationofthecriticalnaturalandhuman-derived capitalunderpinningservicedelivery.Calculatingthesustainable useofcapitalshouldconsiderthedemandsofalltheserviceswhich dependonthatcapital,andnotindividualservicesinisolation.

(11)

6. Conclusions

Inthecontextofever-increasingutilisationoffiniteresources, thispaperseekstoaddresssomeofthecomplexitiesinecosystem servicesthinkingandtheroleofnaturalandhuman-derivedcapital withinit.Keycontributionsoftheworkpresentedherearethat:

Wehighlightanoftenoverlookedpointamongenvironmental scientiststhatanecosystemserviceisonlydefinedinthecontext ofitsbeneficiaries.Thus,thequantityofrealisedecosystemservice dependsontheamountofpotentialecosystemservice,thosewho usethatserviceandtheefficiencywithwhichtheyuseit.Thevalue theyattachtoitisalsorelevantbutshouldnotbetheonlycriterion appliedtodecision-makinginasustainabilitycontext.

Wealsoshowhowthehuman-derivedcapital,thatisan essen-tial component of many ecosystem services alongside natural capital,canbeseparatelyidentifiedandquantified.Itisimportant thatpolicymakersandlandmanagersunderstandtheircombined roleinthehuman-modifiedlandscapeswhichnowdominatethe globeandwhichprovidealargeproportionoftheecosystem ser-viceswereceive,aswellastheservicesprovidedbythedwindling remnantsofnaturalecosystemswhichusedtobewidespread.

Lastly,usingexamplesweshowthatasystemsapproachcanbe appliedtodepictingandthereforemodellingthesocial-ecological systemthatprovidesrealisedecosystem services.Thisisuseful becauseit(a)helpsvisualisethecapitalstocksandflowswhich underpinecosystemservices,(b)canguideidentificationofthe crit-icalnaturalandhuman-derivedcapitalwhicharekeytosustainable useoftheservices,and(c)ifappliedinamodellingframework allowspredictionofhowthequantityofrealisedecosystem ser-vices might change under different conditions of natural and human-derivedcapitalstocksandflows.

Acknowledgements

ThisworkarosefromaValuingNatureNetworkproject,funded bytheUKNaturalEnvironmentResearchCouncil,withadditional fundingfromUK Department for Environment,Food and Rural Affairs.www.valuing-nature.net

References

Bagstad,K.J.,Johnson,G.W.,Voigt,B.,Villa,F.,2013.Spatialdynamicsofecosystem serviceflows:acomprehensiveapproachtoquantifyingactualservices. Ecosyst.Serv.4,117–125.

Bagstad,K.J.,Villa,F.,Batker,D.,Harrison-Cox,J.,Voigt,B.,Johnson,G.W.,2014. Fromtheoreticaltoactualecosystemservices:mappingbeneficiariesand spatialflowsinecosystemserviceassessments.Ecol.Soc.19(2),64.

Bateman,I.J.,Mace,G.M.,Fezzi,C.,Atkinson,G.,Turner,K.,2011.Economicanalysis forecosystemserviceassessments.Environ.Res.Econ.48,177–218.

Berkes,F.,Folke,C.,etal.,1994.Investinginculturalcapitalforsustainableuseof naturalcapital.In:Jansson,A.(Ed.),InvestinginNaturalCapita.IslandPress, Washington,DC.

Berkes,F.,Colding,F.,Folke,C.(Eds.),2002.NavigatingSocial-EcologicalSystems: BuildingResilienceforComplexityandChangeCambridge.Cambridge UniversityPress.

Biggs,R.,Schlüter,M.,Biggs,D.,Bohensky,E.L.,BurnSilver,S.,Cundill,G.,Dakos,V., Daw,T.M.,Evans,L.S.,Kotschy,K.,Leitch,A.M.,Meek,C.,Quinlan,A., Raudsepp-Hearne,C.,Robards,M.D.,Schoon,M.L.,Schultz,L.,West,P.C.,2012. Towardprinciplesforenhancingtheresilienceofecosystemservices.Annu. Rev.Environ.Res.37,421–448.

Boyd,J.,Banzhaf,S.,2007.Whatareecosystemservices?Theneedforstandardized environmentalaccountingunits.Ecol.Econ.63,616–626.

Bourdieu,P.,1986.Theformsofcapital.In:Richardson,J.(Ed.),Handbookof TheoryandResearchfortheSociologyofEducation.GreenwoodPress, Westport,CT,pp.241–258.

Brown,G.,2013.Therelationshipbetweensocialvaluesforecosystemservicesand globallandcover:anempiricalanalysis.Ecosyst.Serv.5,58–68.

Burgess,D.,Patton,M.,Georgiou,S.,Matthews,D.,2009.Publicattitudesto changinglandscapes:implicationsforbiodiversity.In:PaperPresentedatthe 11thBIOECONConference,21–22ndSeptember2009,Venice,Italy. Burkhard,B.,Kandziora,M.,Hou,Y.,Müller,F.,2014.Ecosystemservicepotentials,

flowsanddemands—conceptsforspatiallocalizationindicationand quantification.LandscapeOnline34,1–32.

Carney,D.(Ed.),1998.SustainableRuralLivelihoods:WhatContributionCanWe Make?DepartmentforInternationalDevelopment,London.

Carroll,Z.L.,Bird,S.B.,Emmett,B.A.,Reynolds,B.,Sinclair,F.L.,2004.Cantreeshelter beltsonagriculturallandreducefloodrisk?SoilUseManage.20,357–359. Chan,K.M.A.,Satterfield,T.,Goldstein,J.,2012a.Rethinkingecosystemservicesto

betteraddressandnavigateculturalvalues.Ecol.Econ.74,8–18. Chan,K.M.A.,Guerry,A.D.,Balvanera,P.,Klain,S.,Satterfield,T.,Basurto,X.,

Bostrom,A.,Chuenpagdee,R.,Gould,R.,Halpern,B.S.,Hannahs,N.,Levine,J., Norton,B.,Ruckelshaus,M.,Russell,R.,Tam,J.,Woodside,U.,2012b.Whereare culturalandsocialinecosystemservices?aframeworkforconstructive engagement.Bioscience62(8),744–756.

Church,A.,Fish,R.,Haines-Young,R.,Mourator,S.,Tratalos,J.,Stapleton,L.,Willis, C.,Coates,P.,Gibbons,S.,Leyshon,C.,Potschin,M.,Ravenscroft,N.,

Sanchis-Guarner,R.,Winter,M.,Kenter,J.O.,2014.UKNationalEcosystem Assessmentfollow-onphase,workpackage5:CulturalEcosystemServicesand Indicators,UNEP-WCMC,Cambridge.

Cochrane,P.,2006.Exploringculturalcapitalanditsimportanceinsustainable development.Ecol.Econ.57,318–330.

Daily,G.C.,Söderqvist,T.,Aniyar,S.,Arrow,K.,Dasgupta,P.,Ehrlich,P.R.,Folke,C., Jansson,A.M.J.,Jansson,B.O.,Kautsky,N.,Levin,S.,Lubchenco,J.,Maler,K.G., David,S.,Starrett,D.,Tilman,D.,Walker,B.,2000.Thevalueofnatureandthe natureofvalue.Science289,395–396.

Daly,H.,2005.Operationalisingsustainabledevelopmentbyinvestinginnatural capital.In:Sahu,N.C.,Choudhury,A.K.(Eds.),DimensionsofEnvironmental andEcologicalEconomics.UniversitiesPress(India),Hyderabad,pp.481–494. Daniel,T.C.,Muhar,A.,Arnberger,A.,Aznar,O.,Boyd,J.W.,Chan,K.M.A.,Costanza, R.,Elmqvist,T.,Flint,C.G.,Gobster,P.H.,Grêt-Regamey,A.,Lave,R.,Muhar,S., Penker,M.,Ribe,R.G.,Schauppenlehner,T.,Sikor,T.,Soloviy,I.,Spierenburg, M.,Taczanowska,K.,Tam,J.,vonderDunk,A.,2012.Contributionsofcultural servicestotheecosystemservicesagenda.Proc.Natl.Acad.Sci.109(23), 8812–8819.

Dickie,I.,Cryle,P.,Maskell,L.,2014.UKNationalEcosystemAssessmentFollow-on. WorkPackageReport1:DevelopingtheevidencebaseforaNaturalCapital AssetCheck:Whatcharacteristicsshouldweunderstandinordertoimprove environmentalappraisalandnaturalincomeaccounts?UNEP-WCMC,LWEC, UK.

Eigenbrod,F.,Bell,V.A.,Davies,H.N.,Heinemeyer,A.,Armsworth,P.R.,Gaston,K.J., 2011.Theimpactofprojectedincreasesinurbanizationonecosystemservices. Proc.R.Soc.B278,3201–3208.

Ekins,P.,Folke,C.,deGroot,R.,2003.Identifyingcriticalnaturalcapital.Ecol.Econ. 44,159–163.

Emmett,B.A.,theWalesAXISIIMEPTeam,2013.Anintegratedecological,social andphysicalapproachtomonitoringenvironmentalchangeandland managementeffects:TheWalesAxisIImonitoringandevaluationprogramme, AspectsofAppliedBiology,118,EnvironmentalManagementonFarmland, 31–39.

Emmett,B.E.,theGMEPteam,2015.GlastirMonitoring&EvaluationProgramme. SecondYearAnnualReporttoWelshGovernment(Contractreference: C147/2010/11).NERC/CentreforEcology&Hydrology.(CEHProject: NEC04780).

Engel,S.,Pagiola,S.,Wunder,S.,2008.Designingpaymentsforenvironmental servicesintheoryandpractice—anoverviewoftheissues.Ecol.Econ.65, 663–674,http://dx.doi.org/10.1016/j.ecolecon.2008.03.011.

EuropeanCommission,OrganisationforEconomicCo-operationandDevelopment, UnitedNations,WorldBank,2013.SystemofEnvironmental-Economic Accounting2012.ExperimentalEcosystemAccounting.

Fisher,B.,Turner,R.K.,Zylstra,M.,Brouwer,R.,DeGroot,R.,Farber,S.,Ferraro,P., Green,R.,Hadley,D.,Harlow,J.,Jefferiss,P.,Kirkby,C.,Morling,P.,Mowatt,S., Naidoo,R.,Paavola,J.,Strassburg,B.,Yu,D.,Balmford,A.,2008.Ecosystem servicesandeconomictheory:integrationforpolicy-relevantresearch.Ecol. Appl.18(8),2050–2067.

Fisher,J.A.,Patenaude,G.,Meir,P.,Nightingale,A.J.,Rounsevell,M.D.A.,Williams, M.,Woodhouse,I.H.,2013.Strengtheningconceptualfoundations:analysing frameworksforecosystemservicesandpovertyalleviationresearch.Global Environ.Change23,1098–1111.

Gorg,C.,2007.Landscapegovernance:the‘politicsofscale’andthe‘natural’ conditionsofplaces.Geoforum38,954–966.

Hails,R.S.,Ormerod,S.J.,2013.Ecologicalscienceforecosystemservicesandthe stewardshipofNaturalCapital[Editorial].J.Appl.Ecol.50(4),807–810. Jackson,B.,Pagella,T.,Sinclair,F.,Orellana,B.,Henshaw,A.,McIntyre,N.,Reynolds,

B.,Wheater,H.,Eycott,A.,2013.Polyscape:aGISmappingtoolboxproviding efficientandspatiallyexplicitlandscape-scalevaluationofmultipleecosystem services.UrbanLandscapePlan.112,74–88.

Jones,L.,Provins,A.,Harper-Simmonds,L.,Holland,M.,Mills,G.,Hayes,F.,Emmett, B.A.,Hall,J.,Sheppard,L.J.,Smith,R.,Sutton,M.,Hicks,K.,Ashmore,M., Haines-Young,R.,2014.Areviewandapplicationoftheevidencefornitrogen impactsonecosystemservices.Ecosyst.Serv.7,76–88,http://dx.doi.org/10. 1016/j.ecoser.2013.09.001.

Kenter,J.O.,Bryce,R.,Davies,A.,Jobstvogt,N.,Watson,V.,Ranger,S.,Solandt,J.L., Duncan,C.,Christie,M.,Crump,H.,Irvine,K.N.,Pinard,M.,Reed,M.S.,2013. ThevalueofpotentialmarineprotectedareasintheUKtodiversandsea anglers,UKNationalEcosystemAssessmentinterimreport,UNEP-WCMC, Cambridge,UK.

Kenter,J.O.,Reed,M.S.,Irvine,K.N.,O’Brien,E.,Brady,E.,Bryce,R.,Christie,M., Church,A.,Cooper,N.,Davies,A.,Hockley,N.,Fazey,I.,Jobstvogt,N.,Molloy,C., Orchard-Webb,J.,Ravenscroft,N.,Ryan,M.,Watson,V.,2014.UKNational

(12)

EcosystemAssessmentfollow-onphase,WorkPackageReport6:Shared, PluralandCulturalValuesofEcosystems,UNEP-WCMC,Cambridge. Kenter,J.O.,O’Brien,L.,Hockley,N.,Ravenscroft,N.,Fazey,I.,Irvine,K.N.,Reed,

M.S.,Christie,M.,Brady,E.,Bryce,R.,Church,A.,Cooper,N.,Davies,A.,Evely,A., Everard,M.,Fish,R.,Fisher,J.A.,Jobstvogt,N.,Molloy,C.,Orchard-Webb,J., Ranger,S.,Ryan,M.,Watson,V.,Williams,S.,2015.Whataresharedandsocial valuesofecosystems?Ecol.Econ.111,86–99.

MA,2005.EcosystemsandHumanWell-being:Synthesis.IslandPress, WashingtonDC.

Matthews,M.,Selman,P.,2006.Landscapeasafocusforintegratinghumanand environmentalprocesses.J.Agric.Econ.57(2),199–212.

Maes,J.,Teller,A.,Erhard,M.,Liquete,C.,Braat,L.,Berry,P.,Egoh,B.,Puydarrieux, P.,Fiorina,C.,Santos,F.,Paracchini,M.L.,Keune,H.,Wittmer,H.,Hauck,J.,Fiala, I.,Verburg,P.H.,Condé,S.,Schägner,J.P.,SanMiguel,J.,Estreguil,C.,

Ostermann,O.,Barredo,J.I.,Pereira,H.M.,Stott,A.,Laporte,V.,Meiner,A.,Olah, B.,RoyoGelabert,E.,Spyropoulou,R.,Petersen,J.E.,Maguire,C.,Zal,N., Achilleos,E.,Rubin,A.,Ledoux,L.,Brown,C.,Raes,C.,Jacobs,S.,Vandewalle,M., Connor,D.,Bidoglio,G.,2013.MappingandAssessmentofEcosystemsand TheirServices.AnAnalyticalFrameworkforEcosystemAssessmentsUnder Action5oftheEUBiodiversityStrategyto2020.Publicationsofficeofthe EuropeanUnion,Luxembourg.

Mauerhofer,V.,Hubacek,K.,Coleby,A.,2013.Frompolluterpaystoprovidergets: distributionofrightsandcostsunderpaymentsforecosystemservices.Ecol. Soc.18,41.

Milligan,C.,Bingley,A.,2007.Restorativeplacesorscaryspaces?Theimpactof woodlandonthementalwell-beingofyoungadults.HealthPlace13(4), 799–811.

NCC—TheNaturalCapitalCommittee2013.TheStateofNaturalCapital:Towardsa frameworkformeasurementandvaluation.<www.naturalcapitalcommittee. org>.

Norgaard,R.B.,2010.Ecosystemservices:fromeye-openingmetaphorto complexityblinder.Ecol.Econ.69,1219–1227.

Norton,L.R.,Inwood,H.,Crowe,A.,Baker,A.,2011.Triallingamethodtoquantify the‘culturalservices’oftheEnglishlandscapeusingCountrysideSurveydata. LandUsePolicy29,449–455.

Olsson,P.,Folke,C.,Berkes,F.,2004.Adaptiveco-managementforbuilding resilienceinsocio-ecologicalsystems.Environ.Manage.34(1),75–90. Ostrom,E.,Cox,M.,2010.Movingbeyondpanaceas:amulti-tiereddiagnostic

approachforsocial–ecologicalanalysis.Environ.Conserv.37,451–463. Raffaelli,D.,White,P.C.,2013.Ecosystemsandtheirservicesinachangingworld:

anecologicalperspective.Adv.Ecol.Res.48,1–70.

Raymond,C.M.,Bryan,B.A.,HattonMacDonald,D.,Cast,A.,Strathearn,S., Grandgirard,A.,Kalivas,T.,2009.Mappingcommunityvaluesfornatural capitalandecosystemservices.Ecol.Econ.68,1301–1315.

Remme,R.P.,Schröter,M.,Hein,L.,2014.Developingspatialbiophysical accountingformultipleecosystemservices.Ecosyst.Serv.10,6–18. TheResearchBoxwithLandUseConsultants&Minter,R.2011.Experiencing

Landscapes:Towardsajudgement-makingframeworkfor‘culturalservices’ and‘experientialqualities’.NaturalEngland.

Robinson,D.A.,Hockley,N.,Cooper,D.M.,Emmett,B.A.,Keith,A.M.,Lebron,I., Reynolds,B.,Tipping,E.,Tye,A.M.,Watts,C.W.,Whalley,W.R.,Black,H.I.J., Warren,G.P.,Robinson,J.S.,2013.Naturalcapitalandecosystemservices, developinganappropriatesoilsframeworkasabasisforvaluation.SoilBiol. Biochem.57,1023–1033.

Rounsevell,M.,Dawson,T.,Harrison,P.,2010.Aconceptualframeworktoassess theeffectsofenvironmentalchangeonecosystemservices.Biodivers.Conserv. 19,2823–2842.

Schröter,M.,Barton,D.N.,Remme,R.P.,Hein,L.,2014a.Accountingforthecapacity andflowofecosystemservices:aconceptualmodelandacasestudyfor Telemark,Norway.Ecol.Indic.36,539–551.

Schröter,M.,Remme,R.P.,Sumarga,E.,Barton,D.N.,Hein,L.,2014b.Lessons learnedforspatialmodellingofecosystemservicesinsupportofecosystem accounting.Ecosyst.Serv.,http://dx.doi.org/10.1016/j.ecoser.2014.07.003. Scott,A.,Carter,C.,Hölzinger,O.,Everard,M.,Rafaelli,D.,Hardman,M.,Baker,J.,

Glass,J.,Leach,K.,Wakeford,R.,Reed,M.,Grace,M.,Sunderland,T.,Waters,R., Corstanje,R.,Glass,R.,Grayson,N.,Harris,J.,Taft,A.,2014.UKNational EcosystemAssessmentFollow-on.WorkPackageReport10:

Tools–Applications,BenefitsandLinkagesforEcosystemScience(TABLES), UNEP-WCMC,LWEC,UK.

Sen,A.,Harwood,A.R.,Bateman,I.J.,Munday,P.,Crowe,A.,Brander,L.,

Raychaudhuri,J.,Lovett,A.A.,Foden,J.,Provins,A.,2014.Economicassessment oftherecreationalvalueofecosystems:methodologicaldevelopmentand nationalandlocalapplication.Environ.Res.Econ.57(2),233–249.

Solesbury,W.,2003.SustainableLivelihoods:ACaseStudyoftheEvolutionofDFID Policy.OverseasDevelopmentInstituteWorkingPaper217.

Spangenberg,J.H.,Görg,C.,ThanhTruong,D.,Tekken,V.,Bustamante,J.V.,Settele, J.,2014.Provisionofecosystemservicesisdeterminedbyhumanagency,not ecosystemfunctions.Fourcasestudies.Int.J.Biodivers.Sci.Ecosyst.Serv. Manage.10(1),40–53.

Spash,C.L.,2009.Theeconomyoftheearth:philosophy,law,andtheenvironment. Environ.Values18(4),536–538.

Steffen,W.,Richardson,K.,Rockström,J.,Cornell,S.E.,Fetzer,I.,Bennett,E.,Biggs, R.,Carpenter,S.R.,deVries,W.,deWit,C.,Folke,C.,Gerten,D.,Heinke,J.,Mace, G.M.,Persson,L.M.,Ramanathan,V.,Reyers,B.,Sörlin,S.,2015.Planetary boundaries:guidinghumandevelopmentonachangingplanet.Sci.Expr. (January),http://dx.doi.org/10.1126/science.1259855.

Suckall,N.,Fraser,E.D.G.,Cooper,T.,Quinn,C.,2009.Visitorperceptionsofrural landscapes:acasestudyinthePeakDistrictNationalPark,England.J.Environ. Manage.90,1195–1203.

Svendsen,G.T.,Svendsen,G.L.H.,2009.HandbookofSocialCapital.EdwardElgar Publishing.

Syrbe,R.-U.,Walz,U.,2012.Spatialindicatorsfortheassessmentofecosystem services:providing,benefitingandconnectingareasandlandscapemetrics. Ecol.Indic.21,80–88.

Tallis,H.,Mooney,H.,Andelman,S.,Balvanera,P.,Cramer,W.,Karp,D.,Polasky,S., Reyers,B.,Ricketts,R.,Running,S.,Thonicke,K.,Tietjen,B.,Walz,A.,2012.A globalsystemformonitoringecosystemservicechange.Bioscience62, 977–986,http://dx.doi.org/10.1525/bio.2012.62.11.7.

TEEB,2010.TheEconomicsofEcosystemsandBiodiversity:Mainstreamingthe EconomicsofNature:ASynthesisoftheApproach,Conclusionsand RecommendationsofTEEB.<http://www.teebweb.org>.

TEEB,2013.TheEconomicsofEcosystemsandBiodiversity:GuidanceManualfor TEEBCountryStudies.Version1.0.

UN,2014.SystemofEnvironmental-EconomicAccounting2012,Central Framework.Availablefrom<http://unstats.un.org/unsd/envaccounting/ seeaRev/SEEACFFinalen.pdf>(accessed14.08.14.).

UKNEA—UKNationalEcosystemAssessment,2011.TheUKNationalEcosystem Assessment,UNEP-WCMC,Cambridge.

vanOudenhoven,A.P.E.,Petz,K.,Alkemade,R.,Hein,L.,deGroot,R.S.,2012. Frameworkforsystematicindicatorselectiontoassesseffectsofland managementonecosystemservices.Ecol.Indic.21,110–122. Villamagna,A.M.,Angermeier,P.L.,Bennett,E.M.,2014.Capacity,pressure,

demand,andflow:aconceptualframeworkforanalyzingecosystemservice provisionanddelivery.Ecol.Complex.15,114–121.

Figure

Updating...

Related subjects :