• No results found

IRISH SOLAR ENERGY ASSOCIATION. Response to the Renewable Electricity Support Scheme, Technology Review, DCENR

N/A
N/A
Protected

Academic year: 2021

Share "IRISH SOLAR ENERGY ASSOCIATION. Response to the Renewable Electricity Support Scheme, Technology Review, DCENR"

Copied!
50
0
0

Loading.... (view fulltext now)

Full text

(1)

IRISH  SOLAR  ENERGY  

ASSOCIATION  

 

Response  to  the  Renewable  Electricity  Support  Scheme,                                                   Technology  Review,  DCENR  

(2)

Table  of  Contents  

Executive  Summary  ...  3

 

1.

 

Introduction  ...  5

 

1.1  Utility-­‐scale  Solar  Projects  ...  5

 

1.2  Domestic  Rooftop  (<  10  kW)  Solar  Installations  ...  6

 

1.3  Commercial  Rooftop  Solar  Projects  ...  6

 

2.  Benefits  of  Solar  ...  8

 

2.1  Climate  Change  and  Energy  Security  ...  8

 

2.2  Job  Creation  ...  8

 

2.3  Agriculture  and  Biodiversity  ...  10

 

2.4  Complement  to  Wind  ...  11

 

2.5  Economic  and  Social  Benefits  ...  12

 

3.  Costs  of  Solar  ...  13

 

3.1  Cost  Summary  for  Utility-­‐scale  Solar  Projects  ...  13

 

3.11  Utility-­‐scale  EPC  Costs  ...  13

 

3.12  Funding  Costs  ...  14

 

3.13  Case  Study:  5  MW  Solar  Farm  in  Kildare  ...  14

 

3.14  Operating  Costs  ...  15

 

3.15  Valuation  Model  ...  15

 

3.16  Forecast  of  Competitively  Outcome  from  Auction  ...  16

 

3.2  Cost  summary  for  Domestic  and  Commercial  Rooftop  solar  PV  projects  ...  17

 

3.21  Domestic  Rooftop  PV  Cost  Summary  ...  18

 

3.22  Commercial  Rooftop  Scale  EPC  Costs  ...  19

 

4.

 

Deployment  ...  21

 

4.1  Costs  of  Deployment  –  Utility  Scale  ...  21

 

4.2  Costs  of  Deployment  –  Rooftop  ...  23

 

5.

 

Support  Scheme  –  Subsidy  ...  25

 

5.1  Utility-­‐scale  Solar  Projects  ...  25

 

5.11  Auction  Mechanism  ...  25

 

5.12  Structure  of  Support  ...  26

 

5.13  “Market  Premium”  and  Market  Reference  Prices,  Including  Balancing  Costs  ...  26

 

5.14  Duration  of  Support  ...  26

 

5.15  Support  Counterparties  ...  26

 

5.16  REFIT  R-­‐Factor  Reconciliation,  Setting  of  PSO  Levy  ...  27

 

5.17  Separate  Competition  and  Budget  ...  27

 

Case  Study:    Contracts  for  Difference  (CfD)  in  the  UK  ...  28

 

5.2  Commercial  Rooftop  and  Domestic  Rooftop  (<  6  kw)  ...  28

 

5.21  Feed-­‐In-­‐Tariff  Mechanism  ...  28

 

5.22  Structure  of  Support  –  Rooftop  ...  30

 

5.23  Duration  of  Support  ...  30

 

Case  Study:      FiT  in  Germany  ...  31

 

(3)

Appendix:  Answers  to  Consultation  Questions  ...  32

 

Process  Layout  and  Approach  ...  32

 

Policy  Context  ...  33

 

Technology  related  ...  34

 

Eligibility  ...  37

 

Support  mechanism  ...  37

 

Allocation  ...  37

 

Scheme  Limits  /  Cost  controls  ...  38

 

Tariffs  ...  39

 

Tariff  from  Auction  –  Utility  Scale  ...  40

 

Generation  tariff  -­‐  Roof  top  ...  41

 

Appendix  I:  Solar  PV  Jobs  in  Ireland  ...  42

 

Employment  Generated  ...  42

 

Potential  Employment  Projections  for  Ireland:  ...  43

 

Appendix  II:  ISEA  Members  ...  44

 

 
(4)

Executive  Summary  

 

In  July  2014,  the  Irish  Solar  Energy  Association  (‘ISEA’),  through  its  submission  for  the  Green  Paper  on  Energy   Policy  in  Ireland,  made  the  case  for  solar  energy  in  Ireland.  A  combination  of  falling  costs,  improved  technology   levels  and  increased  availability  of  finance  means  that,  with  the  right  level  of  government  support,  solar  PV   could   be   rapidly   deployed   in   Ireland   with   the   potential   to   provide   between   10%   and   20%   of   Ireland’s   renewable   energy   requirements   by   2020.   Combined   with   the   ongoing   rollout   of   onshore   wind,   this   would   ensure   that   the   Ireland   would   easily   exceed   the   projected   target   of   4,000   Megawatts   (‘MW’)   of   renewable   energy  capacity  by  2020.  

The  purpose  of  this  submission  by  ISEA  to  the  Department  of  Communications,  Energy  and  Natural  Resources’  

(‘DCENR’)   Renewable   Energy   Support   Scheme,   Technology   Review   Consultation   is   to   refresh   the  

recommendations  made  in  the  Green  Paper  submission  based  on  a  greater  understanding  of  the  opportunities   in   the   Irish   market   built   up   by   ISEA   members   over   the   last   12   months,   and   to   provide   supporting   data   to   support  the  principal  policy  recommendations.        

The  key  points  in  this  submission  are  as  follows:  

1) The  projected  deployment  rate  for  solar  is  faster  than  originally  estimated.      ISEA  now  believes  that  

between  800  MW  and  1,150  MW  of  installed  capacity  is  realistic  by  2020  and  1,900  MW  by    the  end   of  2022.  

2) The  average  cost  over  25  years  to  provide  a  support  mechanism  for  the  deployment  of  1,900  MW  of  

solar   by   2023   is   estimated   to   be   €24m   per   annum,   or   €0.023/kwh,   representing   1%   of   a   typical   consumer’s  electricity  bill.  

3) Installation  costs  for  solar  farms  will  fall  by  21%  between  2015  and  2018,  assuming  the  lifting  of  the  

Minimum  Import  Price  on  Chinese  solar  modules  that  was  introduced  by  the  European  Commission  in   2013.  

4) Utility   scale   (>1   MW)   ground-­‐mounted   solar   farms   deployed   in   2017   will   require   revenue/kwh   of  

€0.14  -­‐  €0.16,  reflecting  a  level  of  support  equivalent  to  €0.07-­‐€0.09/kwh.  Lower  levels  of  support  will   be  required  for  projects  deployed  in  subsequent  years  as  costs  decline,  with  solar  energy  expected  to   be  grid-­‐competitive  by  2023.        

5) To  ensure  that  the  level  of  support  provided  to  solar  accurately  reflects  conditions  in  the  market,  and  

to  avoid  the  boom  and  bust  scenarios  experienced  in  other  European  countries  such  as  Spain,  Italy   and  the  UK,  a  competitive  auction  for  utility-­‐scale  solar  is  recommended  from  day  one.        

6) A   Contracts   for   Difference   based   support   mechanism   is   recommended   with   a   dedicated   budget  

reserved  for  Solar  until  2020.    This  will  allow  the  solar  industry  to  build  the  necessary  scale  to  be  able   to  compete  in  a  technology-­‐neutral  auction  from  that  date.          

7) Roof-­‐mounted  schemes  should  be  eligible  for  a  generation  tariff  based  support  mechanism  (ReFiT  or  

equivalent).      The  required  generation  tariff  ranges  from  €0.095/kwh  for  large  commercial  rooftops  to   €0.15/kwh   for   domestic   rooftop   schemes   for   an   installation   in   2017,   declining   over   time   for   installations  in  subsequent  years.    

Section   1   of   this   submission   will   focus   on   the   different   applications   of   solar   and   demonstrate   that   a   mix   of   utility  scale  and  rooftop  is  required  in  order  to  maximise  the  benefits  of  developing  a  solar  industry.        Section  2   will   explore   the   benefits   of   solar   beyond   those   related   to   achieving   Ireland’s   renewable   energy   targets.         Section   3   will   go   into   detail   on   the   current   and   projected   costs   of   deploying   solar   schemes   to   justify   the   recommended  support  levels,  while  Section  4  analyses  the  total  projected  cost  of  the  support  mechanism  over   20   years.   Finally   section   5   goes   into   detail   on   the   recommended   support   mechanism   for   utility   scale   and   rooftop  solar  schemes.        

(5)

Figure  1.  Cumulative  installed  capacity  2017-­‐2022        

 

100   350   600   850   1100   1350   50   150   250   350   450   550   0   500   1000   1500   2000   2017   2018   2019   2020   2021   2022   Me ga   W ag s   Year  

Cumulaive  Installed  Capacity  

(6)

1.

Introduction  

 

Solar  energy  is  a  rapidly  developing  technology  that  has  minimal  impact  on  the  environment  with  maximum   benefits.   With   the   correct   support   it   has   the   potential   to   become   one   of   the   most   economically   viable   renewable  energy  source  in  the  world.    

To   date,   solar   energy   has   been   overlooked   in   Ireland   with   the   focus   on   other   renewable   energy   sources,   particularly  wind.  However,  as  many  other  Northern  European  countries  have  recognised,  solar  is  an  important   component  of  the  renewable  energy  mix  and  provides  a  significant  opportunity  for  Ireland  to  accelerate  the   rollout  of  renewable  energy  at  an  affordable  cost,  while  creating  new  employment  opportunities.    

The  Irish  Solar  Energy  Association  (ISEA)  represents  over  50  companies  that  constitute  a  dynamic  and  growing   solar  sector  in  this  country.  We  recognise  the  potential  for  solar  in  Ireland,  not  only  as  a  means  for  meeting   Ireland’s   renewable   energy   and   electricity   targets,   but   as   a   long-­‐term   sustainable   and   clean   option   with   numerous  benefits  for  Ireland  economically,  socially  and  environmentally.    

We   believe   that,   with   the   right   policy   framework,   solar   energy   could   account   for   between   10%   and   20%   of   renewable   energy   generation   capacity   by   2020,   representing   800MW   –   1,150   MW   of   installed   generation   capacity.   This   will   make   a   significant   contribution   to   Ireland’s   2020   carbon   reduction   targets,   create   a   minimum  of  4,000  direct  jobs  and  solidify  Ireland’s  position  as  a  Centre  of  Excellence  for  Renewable  Energy,   which  has  recently  been  reinforced  by  the  selection  of  Dublin  as  the  location  for  the  2014  Renewable  Energy   Finance  Forum.  

The  Department  of  Energy,  Communication  and  Natural  Resource’s  (DCENR)  technology  review  consultation   on   the   Renewable   Electricity   Support   Scheme   (“the   Consultation”)   therefore   represents   an   important   opportunity   to   maximise   renewable   energy   delivery   through   further   diversification   of   renewable   energy   sources  in  Ireland.      

The   Irish   Solar   Energy   Association   (ISEA)   argues   in   this   paper   that   solar   photovoltaic   (PV)   projects   can   and   should   be   a   part   of   that   renewable   energy   mix.     ISEA,   through   this   submission,   outlines   3   elements   for   the   deployment  of  solar  in  Ireland:  

• Utility-­‐scale  ground  mounted  solar.  

• Commercial  rooftop.  

• Domestic  rooftop  (<  6kW)  solar  installations.  

A  mixture  of  different  incentives  is  needed  for  each  of  the  elements  due  to  their  scale,  cost-­‐base  and  ability  as   individual   projects   to   interact   with   the   wholesale   market.   Through   this   submission   ISEA   will   present:   the   benefits   of   solar   in   Ireland,   an   evaluation   of   the   costs   of   solar   (providing   a   detailed   review   of   capital   expenditure),  potential  deployment  scenarios,  and  a  support  scheme  mechanism  for  solar  in  the  form  of  an   auction.     Estimates   will   also   be   made   on   what   a   suitable   potential   is   for   the   deployment   of   commercial   rooftop,  domestic  and  ground  mounted  solar  in  Ireland  by  2023  to  achieve  appropriate  economies  of  scale.        

1.1  Utility-­‐scale  Solar  Projects  

 

Utility-­‐scale  solar  projects  are  defined  as  those  projects  that  are  >1MW  in  capacity  and  are  typically  installed   on   greenfield   or   brownfield   sites.   Generated   electricity   is   exported   directly   to   the   grid   with   revenue   being   received  through  a  bilateral  Purchase  Power  Agreement  (PPA)  that  comprises  a  market  component,  based  on   the  wholesale  price  of  electricity  and  a  subsidy  component.  The  principal  advantages  of  utility  scale  projects   are  that  deployment  costs  are  cheaper,  due  to  economies  of  scale  and  there  are  ready  sources  of  finance  in   the   form   of   infrastructure   funds   and   project   debt.     Experience   in   other   European   countries   has   shown   that   deployment  of  utility  scale  solar  can  be  extremely  rapid,  with  the  UK  deploying  over  7,000  MW  between  2010  

(7)

and  2015.    As  such,  utility-­‐scale  solar  is  a  useful  tool  for  governments  that  need  to  rapidly  address  a  shortfall  in   achieving  renewable  energy  targets.    

While   the   deployment   costs   of   solar   continue   to   fall,   the   rate   of   decline   has   slowed   since   2013   due   to   the   introduction  by  the  European  Commission  of  the  Minimum  Import  Price  on  imported  solar  modules  and  the   impact  of  the  weaker  euro.  Nevertheless,  ISEA  projects  that  installation  costs  will  fall  by  21%  between  2015   and  2018,  making  solar  projects  viable  at  a  tariff  of  between  €0.14  and  €0.16/kwh.  This  will  decline  over  time   to  €0.14/kwh  in  2018  and  €0.13  in  2019.    Grid  parity  is  projected  by  2023.  

Assuming  a  deployment  of  1,350MW  of  utility-­‐scale  solar  between  2017  and  2022,  the  average  annual  cost  to  

the  PSO  customer  over  a  251  year  subsidy  timeframe  is  €24  million.  Deployment  at  this  level  will  contribute  

significantly  towards  Ireland’s  2020  and  2030  targets,  and  will  cost  €0.023/kwh  over  the  lifetime  of  the  subsidy   scheme.    Support  calculations  for  these  figures  are  provided  in  the  main  body  of  our  response.    

Consistent  with  State  Aid  Guidelines,  this  document  will  recommend  an  auction  process  for  utility-­‐scale  solar   projects  and  address  why  a  specific  budget  should  be  ring  fenced  for  solar  until  2020.  This  will  be  based  on  a   two-­‐way  contract  for  difference  mechanism.                

 

1.2  Domestic  Rooftop  (<  10  kW)  Solar  Installations  

 

Domestic  Rooftop  refers  to  solar  PV  on  homes.  The  benefit  of  domestic  rooftop  solar  is  that  it  facilitates  the   Irish  consumer  to  offset  costly  retail  electricity  with  energy  generated  from  the  roof  of  their  home.  The  move   towards   domestic   solar   will   reduce   the   risk   of   electricity   price   volatility   and   enhance   energy   security   for   consumers.   As   the   cost   of   solar   PV   at   a   domestic   scale   continues   to   fall,   ultimately   towards   grid   parity,   the   benefits  to  consumers  will  be  proportionately  greater.    

It  is  proposed  that  a  domestic  generation  tariff  for  rooftop  should  be  introduced,  in  addition  to  the  consumer   receiving  revenue  from  the  estimated  50%  of  electricity  that  is  exported  to  the  grid.    This  will  ensure  greater   deployment  of  solar  PV  at  a  domestic  scale,  which  will  provide  homeowners  with  the  opportunity  to  reduce   their  electricity  bills  and  recoup  the  costs  of  installation.    

Energy  storage  solutions  are  also  an  important  factor,  with  large  scale  adoption  expected  by  2020  as  costs  fall.   This   will   increase   the   amount   of   self-­‐generated   power   consumed   domestically,   further   improving   the   attractiveness  of  solar  PV  systems.    

 

1.3  Commercial  Rooftop  Solar  Projects  

 

Commercial  rooftop  solar  PV  refers  to  rooftop  PV  installations  on  retail,  industrial,  agricultural  buildings,  state   and  semi-­‐state  organizations.  Solar  PV  systems  for  commercial  and  industrial  use  have  similar  benefits  to  those   of   domestic   systems   –   lower   electricity   bills,   protection   against   future   electricity   price   rises,   and   a   smaller   carbon   footprint   -­‐   but   with   the   added   advantage   of   generating   larger   amounts   of   electricity   and   generally   being  able  to  better  match  on-­‐site  generation  with  on-­‐site  demand.    

This   decentralised   application   of   solar   PV   technology   is   particularly   promising   for   the   Irish   businesses   as   it   generates  renewable  electricity  during  the  day,  at  the  time  when  the  building  owner  is  consuming  it  (when   ‘brown’  electricity  is  often  at  its  peak  prices)  and,  unlike  centralised  generation,  it  avoids  grid  transmission  and   distribution  costs  by  supplying  directly  into  the  distribution  board  of  the  business  under  the  roof.  It  is  often   during   daylight   hours   when   these   businesses   have   a   demand   for   that   electricity   and   rooftop   solar   PV                                                                                                                                          

1  While  each  individual  project  is  recommended  to  receive  government  support  for  20  years,  projects  deployed  between  2017  and  2022  

(8)

encourages  business  owners  and  developers  to  size  systems  to  their  base  load  to  minimise  export  to  the  grid   and  maximise  savings  from  offsetting  day  time  ‘brown’  electricity.  

The   Department   of   Energy   and   Climate   Change   (DECC)   in   the   UK   recognised   the   potential   of   this   solar   PV   application,  arguing  that  deployment  in  the  commercial  and  industrial  sector  needed  to  be  much  stronger  if  it   was  to  match  what  has  been  seen  in  others  parts  of  Europe  (DECC,  2014).  DECC  have  also  worked  at  removing   barriers  to  adoption  such  as,  increasing  permitted  development  rights  for  rooftop  installations  up  to  1MWp.      

(9)

2.  Benefits  of  Solar  

 

The  benefits  of  solar  extend  beyond  the  provision  of  clean  energy  and  electricity.  In  the  context  of  Ireland’s   renewable   energy   mix,   solar   PV   is   a   complementary   source   of   energy   to   wind,   and   other   renewable   technologies.  Thus  it  contributes  to  the  creation  of  a  diverse,  resilient  and  secure  electricity  supply.    This  in   turn  creates  additional  benefits  for  Ireland  such  as:  enabling  Ireland  to  achieve  its  EU  targets  for  climate  and   energy  in  2020,  and  the  EU  2030  Climate  and  Energy  Framework,  creating  jobs,  generating  income  for  farmers,   and  supporting  economic  and  social  growth.    

Further  with  constant  innovations,  stemming  from  decreasing  costs  of  technology  and  increasing  interest,  the   applications  of  solar  are  constantly  expanding,  ranging  from  solar  panels  in  electric  vehicles,  to  solar  walls  on   buildings.    Solar  PV  will  only  continue  add  value  to  economic,  environmental  and  social  policy  objectives  of  the   Irish  Government.    

 

2.1  Climate  Change  and  Energy  Security  

 

Addressing  the  impacts  of  climate  change  is  intertwined  with  energy  security.  It  is  well  documented  that  fossil   fuels  contribute  to  greenhouse  gas  (GHG)  emissions,  leading  to  increased  air  pollution,  rising  temperatures  and   rising  sea  levels,  key  climate  change  impacts  facing  Ireland.  Mitigating  these  impacts  and  reducing  fossil  fuel   consumption  while  stimulating  economic  growth  and  creating  energy  security  is  an  immediate  and  long-­‐term   policy  challenge.    

Energy  security  has  been  highlighted  by  the  SEAI,  ESRI  and  IEA  as  a  critical  energy  policy  issue.    Ensuring  that   Ireland   has   a   secure   energy   supply   now   and   in   the   future   is   critical   to   the   growth   of   the   Irish   economy.     Currently  Ireland  is  heavily  dependent  on  fossil  fuels,  to  meet  energy  demand.    Critically  Ireland  supports  100%  

of   its   oil   demand   through   imports,   while   its   natural   gas   demand   import   dependency   is   at   95.3%2.     Local  

production  of  natural  gas  is  anticipated  to  be  increased  with  the  development  of  the  Corrib  project,  which  is,   however,  expected  to  peak  within  6  years.    As  such,  Ireland  is  heavily  dependent  on  energy  imports  to  meet  its   energy  demands  and,  with  the  volatility  of  oil  prices  energy  costs  will  rise  thereby  creating  multiple  threats  to   energy  security  and  economic  security.      

Solar   PV   can   be   quickly   deployed   and   has   the   potential   to   comprise   between   10%   and   20%   of   Ireland’s   renewable   energy   generation   by   2020.     It   can   therefore,   contribute   to   the   security   of   supply   by   providing   predictable  and  reliable  indigenous  electricity  generation  thereby,  increasing  the  resilience  of  Ireland’s  energy   supply.    

 

2.2  Job  Creation

3

 

 

Beyond  EU  policies  and  targets,  solar  PV  contributes  additional  benefits  to  Ireland’s  economy  and  society.  The   International  Renewable  Energy  Agency  (IRENA)  estimates  that  11.3  direct  jobs  are  created  for  every  MW  of   solar  capacity  installed,  11  in  construction  and  0.3  in  operations  and  management.    Therefore,  the  rollout  of   1,350MW  of  solar  capacity  will  create  approximately  4,500  direct  jobs  in  Ireland  supporting  utility-­‐scale  solar   alone.      As  we  expect  the  rollout  of  solar  to  continue  after  grid  parity  is  achieved  in  2023,  the  construction  jobs   can  be  considered  sustainable  in  the  long  term.    Figure  3,  presents  the  number  of  jobs  that  potentially  could  be   created  annually,  based  on  ISEA’s  projections  for  the  solar  market.  The  number  of  indirect  jobs  and  induced                                                                                                                                          

2  IEA  (2014).  Energy  Supply  Security  2014  

3  The  creation  of  employment  and  education  opportunities  is  a  significant  benefit  that  is  discussed  in  detail  in  

(10)

employment  generated  from  the  solar  market  is  approximately  14,000  jobs4.  Based  on  the  projected  costs  of   the  proposed  solar  support  outlined  in  section  4,  table  11,  the  projected  annual  cost  per  job  is  €4,000  in  2017.       This  increases  to    €12,000  per  job  between  2017  and  2023  as  more  solar  capacity  is  deployed,  then  begins  to   decrease  as  the  overall  cost  of  the  support  mechanism  decreases,  reaching  zero  in  2038  

It   should   be   noted   that   this   analysis   focuses   purely   on   jobs   created   to   directly   service   the   domestic   Irish   market.  It  is  likely  that  further  jobs  will  be  created  as  international  solar  companies,  seeing  the  opportunities  in   the  Irish  market,  choose  to  establish  their  European  operations  here.  In  particular,  given  the  current  wave  of   EU  protectionism,  it  is  believed  that  a  number  of  Chinese  solar  module  manufacturers  are  considering  setting   up  a  base  in  Ireland.    Further  jobs  will  be  created  indirectly,  particularly  in  sectors  that  support  solar  such  as   financial  services.    Lastly,  there  will  be  induced  employment  stemming  from  the  increased  purchasing  power  of   people  involved  in  the  sector  and  cost  savings  that  trickle  down  to  Irish  citizens.  

 

Figure  2.    Annual  cost  per  job  created  

                                                                                                                                                       

4  Indirect  jobs  is  calculated  assuming  a  multiplier  of  3.4    

-­‐€  4,000.00     -­‐€  2,000.00      €  -­‐          €  2,000.00      €  4,000.00      €  6,000.00      €  8,000.00      €  10,000.00      €  12,000.00      €  14,000.00     2017   2022   2027   2032   2037   Ax is  T itl e  

(11)

Figure  3.  Number  of  jobs  created  per  year5  

   

2.3  Agriculture  and  Biodiversity  

 

As   utility   scale   Solar   PV   farms   require   large   land   area,   the   most   common   source   of   land   to   be   used   is   barren/degraded  agricultural  land  in  rural  locations.    The  costs  of  using  land  for  activity  other  than  agricultural   activities   is   often   cited   in   the   arguments   against   the   installation   of   solar   PV   farms.     However,   research   has   demonstrated   that   there   are   benefits.     During   the   lifetime   or   a   solar   PV   farm,   the   land   can   be   used   simultaneously  for  a  range  of  profitable  activities  such  as  sheep  grazing,  bee-­‐keeping,  and  the  production  of   high  value  crops  such  as  pumpkins,  asparagus  and  cut-­‐flowers.    

Solar   farms   also   Solar   PV   projects   provide   an   increased,   diversified   and   stable   source   of   income   for   landowners,  encouraging  the  next  generation  to  keep  farming  the  land:    

• Rental  payments  over  25  years  (RPI  indexed)    

• Cheaper  electricity    

• Effective  hedge  against  variability  in  annual  farm  income  and  energy  price  

Solar  PV  has  the  potential  to  benefit  and  enhance  biodiversity,  in  the  context  of  agricultural  land  regeneration   (and   in   peat-­‐land   regeneration).     Simple   measures,   and   an   appropriate   ecological   or   biodiversity   plan,   can   ensure  that  the  biodiversity  of  a  site  is  enhanced  over  the  lifetime  of  the  project.    

 

Planned   and   constructed   correctly,   solar   has   a   very   light   touch   on   the   land   with   little   or   no   concrete   being   used.  Mounting  systems  are  friction  piled  using  a  simple  process  that  is  100%  reversible.  With  correct  system   design  around  95%  of  the  land  used  remains  under  grass  sward  and  is  available  for  agricultural  production  or   biodiversity  management.  This  sward  can  be  managed  in  a  manner  that  permits  differing  heights,  and  benefits   from  microclimate  conditions  that  enhances  biodiversity.  

 

Solar   farms   provide   an   opportunity   for   ground   nesting   birds,   as   within   sites   wildflowers   meadow   and   grasslands   can   provide   valuable   nesting   sites   for   species   like   the   curlew   and   corncrake,   two   species   who’s   nesting   habitats   have   been   degraded   due   to   land   changes.   These   ground   nesting   birds   are   protected   from   predation  within  a  solar  farm  as  the  site  is  likely  to  be  fenced.  

                                                                                                                                       

5  Direct  jobs  employment  factor  11  for  construction  for  1  year,  0.3  for  operations  and  management  life  time  of  project,  indirect  jobs  multiplier  of  3.4  (Rutovitz  and  Harris  (2012).  

“Calculating  Global  Energy  Sector  Jobs:  2012  Methodology”.  Institute  for  Sustainable  Futures.    

1650   3850   3850   3850   3850   3850   3850   45   150   255   360   465   570   675   1695   4000   4105   4210   4315   4420   4525   0   1000   2000   3000   4000   5000   2017   2018   2019   2020   2021   2022   2023   Nu mb er   of  jo bs   Year  

Jobs  in  Solar  PV  

(12)

Lastly,  studies  of  the  benefits  land  regeneration  have  shown  knock-­‐on  effects  in  the  tourism  and  recreation   sector  due  to  the  increased  biodiversity.    As  such  there  is  potential  for  rural  economies  to  experience  growth   and  new  opportunities  with  the  installation  of  solar  PV  farms.  

 

2.4  Complement  to  Wind  

 

A   challenge   with   renewable   energy   technologies   is   the   dependence   on   the   source   from   which   energy   is   derived.     Generation   of   wind   energy   is   dependent   on   the   presence   of   wind,   and   solar   is   dependent   on   radiation  from  the  sun.    As  stand-­‐alone  technologies,  their  reliability  is  not  a  guarantee.    However,  as  a  “basket   of  goods”  renewable  energy  technologies  complement  each  other  and  increase  overall  predictability.  In  the   case  of  Ireland,    with  rapidly  changing  weather  patterns,  solar  is  highly  complementary  to  wind.    

As  the  output  of  a  solar  plant  is  seasonal,  it  can  be  predicted  very  accurately  on  a  monthly  basis.  Additionally,   by  its  nature,  its  output  is  predictable  on  an  intraday  basis,  with  peak  output  occurring  during  the  middle  of   the  day,  when  demand  is  relatively  high.    As  the  figures  below  show,  wind  output  picks  up  at  the  end  of  the   day,  as  solar  output  declines  and  electricity  demand  peaks.    Given  the  complementarities,  a  balanced  mix  of   solar  and  wind  technologies,  will  facilitate  a  reduction  in  the  amount  of  baseload  generation  required  from   fossil  fuel  sources.  

 

Figure  4.  Intraday  Solar  and  Wind  Generation  

                   Intraday  Solar  Generation       Intraday  Wind  Generation      

   

 

Figure  5.    Intraday  Demand  for  Electricity  

 

(13)

 

2.5  Economic  and  Social  Benefits  

 

The  economic  benefits  of  solar  extend  beyond  job  creation.    There  is  a  growing  demand,  especially  by  and  for   multinational  companies  (MNC),  to  engage  in  green  practices.    The  use  of  clean  energy  is  a  key  factor  in  this.   MNCs,  such  as  Google  and  Apple,  have  demonstrated  that  clean  energy  is  a  key  corporate  goal  and  therefore   have  shifted  towards  using  renewables  for  their  data  centres.    Critically,  MNCs  are  also  demanding  that  the   cities  in  which  they  locate  consistently  provide  high  quality  living  environments.    

There  are  social  benefits  associated  with  solar  PV  as  well.  For  example,  in  the  UK  the  Department  of  Energy   and   Climate   Change   (2014)   note   that   some   landlords   that   have   installed   solar   PV   on   their   housing   stock   already   and   have   passed   on   the   energy   cost   savings   to   the   tenants.   This   has   social   benefits   in   helping   to   alleviate  fuel  poverty  and  spreads  the  benefits  of  solar  PV  across  the  social  spectrum.  Domestic  rooftop  solar   PV  empowers  consumers  to  take  control  of  and  influence  their  energy  security,  which  would  be  welcomed  by  

the  wider  public6.    

For  Ireland,  solar  PV  can  be  applied  in  a  similar  manner,  and  enable  the  government  to  sustainably  meet  the   energy  and  heating  demands  of  vulnerable  populations.  Further,  community  ownership  of  solar  PV  projects   not  only  provides  energy  but  income;  as  well  as  a  profitable  means  of  incorporating  and  promoting  the  solar   PV   that   not   only   benefits   individuals,   but   communities   and   government,   by   reducing   costs   and   equitably   sharing  the  benefits.  Moreover,  the  shift  to  solar  PV  for  electricity  generation  is  strengthened  by  the  strong   public  acceptance  of  solar,  which  has  been  shown  to  have  80%  of  public    support  in  the  UK  due  to  its  minimal  

negative  impact.  

 

 

                                                                                                                                       

6  DECC  (2014)  UK  Solar  PV  Strategy  Part  2:  Delivering  a  Brighter  Future  

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/302049/uk_solar_PV_strate gy_part_2.pdf            

(14)

3.  Costs  of  Solar  

 

3.1  Cost  Summary  for  Utility-­‐scale  Solar  Projects    

 

ISEA  is  providing  this  information  to  show  overall  estimated  costs  for  the  inclusion  of  solar  PV  as  a  technology   in  the  next  renewable  scheme  in  Ireland.    The  resulting  Levelised  Cost  of  Electricity  (‘LCOE’)  presented  here  is   based  on  a  set  of  assumptions,  which  may  or  may  not  represent  the  commercial  realities  on  the  ground  when   it   comes   to   a   competitive   auction.     We   therefore   suggest   using   this   LCOE   analysis,   updating   as   needed,   to   provide  for  a  cap  in  the  allowable  cleared  price  for  any  competitive  auction.    This  is  discussed  further  in  the   section  discussing  the  proposed  renewable  scheme  design.  

Table  1  provides  a  summary  of  the  total  costs  of  developing  and  constructing  a  5MW  solar  farm  in  2015  and   2017  respectively.    Engineering  Procurement  and  Construction  (EPC)  costs  are  based  on  the  construction  costs   for  a  similar  project  in  the  UK,  while  grid  connection  and  development  costs  reflect  the  higher  cost  base  in   Ireland.    A  development  margin  of  €100,000  per  Megawatt,  representing  less  than  10%  of  the  total  cost,  has   been  included.    This  is  a  reasonable  level  for  most  developers  given  the  higher  risks  involved  with  developing   solar  projects  in  Ireland  and  is  significantly  lower  than  the  margins  enjoyed  by  wind  developers  in  recent  years.    

Table  1.    Cost  summary  for  a  5MW  solar  farm.        

    2015   2017  

    Cost/MW   Total  (5MW)   Cost/MW   Total  (5MW)  

EPC  Costs    €    1,084,759      €                    5,423,797      €                          916,000      €        4,580,000.00     Grid  Connection  Costs    €                80,000      €                          400,000      €                                80,000      €              400,000.00     Development/Finance  Costs    €                91,600      €                          458,000      €                                91,600      €              458,000.00    

TOTAL  CONSTRUCTION  COSTS    €    1,256,359      €                    6,281,797      €                    1,087,600      €                    5,438,000    

Development  Margin    €            100,000      €                          500,000      €                          100,000      €              500,000.00    

TOTAL  PROJECT  COSTS    €    1,356,359      €              6,781,797      €                    1,187,600      €              5,948,000    

 

3.11  Utility-­‐scale  EPC  Costs  

 

Table  2  presents  a  detailed  breakdown  of  the  EPC  costs  in  2015  and  includes  projections  through  to  2018.    Key   points  are  as  follows:  

Modules:  The   cost   of   modules   is   being   kept   artificially   high   by   the   Minimum   Import   Price   and   the   Anti-­‐dumping  Duties  that  the  European  Commission  has  placed  on  solar  PV  products  imported  from   China,  an  action  that  lacks  the  support  from  18  of  the  28  EU  member  states  and  the  solar  industry  in   Europe.     As   of   September   2015,   the   Minimum   Import   Price   is   €0.56   per   watt,   approximately   20%   above   the   global   market   price.           Consequently,   the   majority   of   utility   scale   solar   farms   currently   being   constructed   use   non-­‐Chinese   modules,   for   which   the   costs   have   been   driven   up   by   a   limited   supply   and   the   weakening   euro.     The   Minimum   Import   Price   is   expected   to   extend   into   2016,   and   therefore  only  a  5%  drop  in  module  prices  is  expected  for  that  year.    In  2017  and  2018,  prices  are   anticipated  to  fall  by  20%  and  10%  respectively  as  the  Minimum  Import  Price  and  the  Anti-­‐dumping   Duties  are  removed  and  the  cost  of  modules  in  Europe  returns  to  global  norms,  thus  eliminating  the  

burden  on  European  energy  consumer.  

Balance  of  Systems  Costs:  Balance  of  Systems  costs  comprising  other  components,  labour  and  project   management  costs  are  expected  to  fall  by  approximately  2.5%  per  annum.    Improved  design  requiring   less  core  materials  and  the  arrivals  of  new  entrants  to  the  market  will  continue  to  drive  the  cost  of  

(15)

other   solar   specific   components   down,   while   increased   competition   and   improved   efficiency   will   reduce   the   cost   of   services.       Certain   costs   such   as   Civil   Works   and   security   will   track   the   overall  

construction  market  and  are  expected  to  increase  over  time.        

 

Table  2.    Utility  scale  EPC  cost  projections.  Cost  per  kilowatt  peak  (kwp)  of  installed  capacity.  

    2015   2016   2017   2018   Assumptions  

Modules      €                0.56      €                0.53      €                0.43      €                0.38    

-­‐5%  2016;  -­‐20%  2017;  -­‐10%   2018  

Balance  of  Systems    €                0.42      €                0.41      €                0.40      €                0.39     -­‐2.5%  per  annum   EPC  Margin    €                0.11      €                0.10      €                0.09      €                0.08     5%  reduction  per  annum  

                       

Total  EPC  (cost/wp)    €                1.08      €                1.04      €                0.91      €                0.85    

21%  decrease  over  three   years  

 

3.12  Funding  Costs  

 

The  valuation  of  Solar  projects  is  based  on  a  target  Internal  Rate  of  Return  (IRR)  for  the  end  buyer.    In  the  UK,   earlier  projects  were  valued  based  on  a  target  IRR  of  8.5%  -­‐  9.5%.     This  has  fallen,  with  the  valuation  basis   being   closer   to   7.5%   and   projected   to   fall   further.     A   reasonable   basis,   therefore,   for   the   valuation   for   Irish   solar   farms   in   2017   is   7%,   although   some   more   sophisticated   developers   may   be   able   to   secure   a   lower   blended  cost  of  funds  in  the  range  of  6%  -­‐  6.5%.  

 

3.13  Case  Study:  5  MW  Solar  Farm  in  Kildare  

 

Table   3   shows   the   breakdown   of   revenues   and   costs   for   a   5   Megawatt   solar   farm   in   Kildare,   with   solar  

radiation  levels  at  1,050  kilowatt  hours  per  kilowatt  peak  of  installed  capacity7.    Kildare,  rather  than  Wexford  

or  Cork,  was  chosen  as  the  case  study  to  provide  a  more  representative  view  of  the  viability  of  solar  projects   over  a  larger  portion  of  the  country.    Assuming  revenue  per  kilowatt  hour  of  €0.15,  the  solar  farm  will  generate   a  gross  revenue  of  €666,698  in  the  first  year.    This  gross  revenue  is  based  on  a  ‘Performance  Ratio’  of  83%,   which   is   the   percentage   of   electricity   exported   by   the   system   after   accounting   for   technical   losses.     The   resulting  annualised  load  factor  for  a  solar  PV  panel  is  of  the  order  of  11%  of  installed  capacity.      

                                                                                                                                                         

(16)

 

Table  3.    Net  revenues  for  a  5MW  solar  Farm  

 

 

3.14  Operating  Costs  

 

Operating  costs  are  €148,690  and  account  for  21%  of  the  gross  revenues.    This  is  a  higher  percentage  than  for   an  equivalent  project  in  the  UK  due  to  the  following  factors:  

Rent:  Rent  varies  across  the  country  and  is  approximately  €950  per  acre  in  the  areas  with  the  highest   solar  resource.    This  is  higher  than  the  original  estimates  due  to  competition  in  the  market  for  suitable  

solar  sites.  

Business   rates:  Business   rates   have   increased   significantly   for   wind   in   the   last   year   to   €21,000   per   MW.  This  will  be  reduced  once  it  has  been  taken  into  account  that  solar  yields  less  revenue  per  MW   than  wind.    Therefore  the  assumption  for  Ireland  is  €7,000  per  MW,  which  is  still  significantly  higher  

than  the  UK  

Distribution  and  grid  fees:  This  represents  1.5%  of  gross  revenue  and  is  a  cost  specific  to  Ireland.  Operations  &  Maintenance,  Insurance,  Other:  These  costs  are  assumed  to  be  similar  to  the  UK.  

 

3.15  Valuation  Model  

 

Solar  projects  are  valued  using  a  Discounted  Cashflow  model  which  assumes  that  revenue  will  be  generated   over  a  25  year  period.    The  key  variables  that  affect  the  valuation  are  the  revenue/kwh  and  the  discount  rate   used  (internal  rate  of  return,  IRR).    Table  4  shows  how  the  valuation  can  vary  based  on  different  combinations   of   the   revenue/kwh   and   the   discount   rate.     Based   on   the   example   of   the   5MW   project   described   above,   a   revenue/kwh  of  €0.15  and  a  discount  rate  of  6.5%  would  give  a  valuation  of  €5,571,065.  

 

YEAR 2017 2018 2019 2020 2021

Installed  capacity  (kwp)                              5,000                                                5,000                              5,000                                          5,000                              5,000 radiation  (source;  SolarGis;  optimised  angle) 1,050 1,050 1,050 1,050 1,050

Performance  Ratio 83.0% 82.7% 82.4% 82.1% 81.8% Unit  price  €/kwh                        0.1500                                                0.152                              0.155                                          0.157                              0.159 Gross  Revenue   €                653,625 €                                  661,107 €                668,675 €                            676,330 €                684,072 Distribution  Upside €                    13,073 €                                      13,222 €                    13,374 €                                  13,527 €                    13,681 Revenue Total  Revenue €                666,698 €                                  674,330 €                682,049 €                            689,857 €                697,754 Rent -­‐€                    26,145 -­‐€                                      26,537 -­‐€                    26,935 -­‐€                                  27,339 -­‐€                    27,749 O&M -­‐€                    60,000 -­‐€                                      60,900 -­‐€                    61,814 -­‐€                                  62,741 -­‐€                    63,682 Insurance -­‐€                    16,250 -­‐€                                      16,494 -­‐€                    16,741 -­‐€                                  16,992 -­‐€                    17,247 Business  Rates -­‐€                    35,000 -­‐€                                      35,525 -­‐€                    36,058 -­‐€                                  36,599 -­‐€                    37,148 Distribution  and  Grid  Fees -­‐€                    10,250 -­‐€                                      10,404 -­‐€                    10,560 -­‐€                                  10,718 -­‐€                    10,879 Other -­‐€                        7,800 -­‐€                                            7,917 -­‐€                        8,036 -­‐€                                      8,156 -­‐€                        8,279 Operating  Expenses

Total  OpEx -­‐€                155,445 -­‐€                                  157,777 -­‐€                160,143 -­‐€                            162,545 -­‐€                164,984 NET  PROFIT €                511,253 €                                  516,553 €                521,906 €                            527,311 €                532,770

(17)

 

Table  4.  Valuation  of  a  5MW  utility  scale  solar  project  

   

Assuming  the  project  was  constructed  in  2017  at  a  cost  of  €5,438,000,  as  outlined  in  table  1  above,  this  would   result   in   a   total   developer’s   profit   of   €133,000   representing   a   margin   of   2.5%,   while   a   tariff   of   €0.16/kwh,   would  generate  a  margin  of  €636,000.    Extending  this  analysis,  the  developer’s  margin/MW  can  be  calculated   based   on   the   different   valuation   scenarios   outlined   above.     These   are   summarised   in   table   5,   assuming   a   construction  date  of  2017  and  an  EPC  cost  of  €916,000/MW.        

Given  the  level  of  risk  involved  with  entering  a  new  solar  market  such  as  Ireland,  a  target  margin  per  MW  of   €100,000  is  appropriate.  With  discount  rates  for  solar  projects  at  7%,  then  the  minimum  viable  price  in  2017  is   €0.16/kwh,   with   €0.155   marginal.     Below   this   rate,   only   the   larger   developers,   with   access   to   lower   cost   of   funds  and  greater  economies  of  scale  –  scale  which  the  Irish  market  might  not  be  able  to  facilitate  –  would  be   able  to  participate  in  the  market.  

 

Table  5.    Margin/MW  for  5MW  plant  constructed  in  2017.      (EPC  Cost:      €916,000/MW)  

   

3.16  Forecast  of  Competitively  Outcome  from  Auction  

 

The   above   analysis   is   based   on   a   number   of   assumptions   in   relation   to   module   costs   and   the   lifting   of   the   Minimum  Import  Price,  discount  rates  and  the  USD/EUR  exchange  rate.    These  variables  may  change,  resulting   in  a  different  outcome.    To  address  these  uncertainties,  ISEA  recommends  an  auction  process  is  followed  to   determine  the  prevailing  tariff  for  a  particular  year.    Based  on  the  table  above,  a  tariff  cap  of  €0.16  -­‐  €0.17/kwh   should   be   set   for   2017   and   adjusted   for   future   years   based   on   the   outcome   of   the   first   auction.     This   will   ensure  that  the  rollout  of  utility-­‐scale  solar  is  successful,  while  ensuring  that  savings  realised  by  the  industry   are  passed  onto  consumers  in  the  form  of  lower  tariffs.        

Based  on  the  above,  and  the  assumption  that  EPC  costs  continue  to  fall  as  per  table  2,  a  tariff  of  €0.16/kwh   would  be  sufficient  for  projects  commissioned  in  2017,  decreasing  by  €0.01/kwh  for  projects  commissioned  in  

Rate/kwh 4.5% 5.0% 5.5% 6.0% 6.5% 7.0% 7.5% 8.0% 8.5% 9.0% €  0.175        8,069,957        7,727,154        7,407,295        7,108,409        6,828,724        6,566,645        6,320,736        6,089,700        5,872,366        5,667,671 €  0.170        7,767,637        7,439,001        7,132,266        6,845,559        6,577,192        6,325,650        6,089,565        5,867,702        5,658,945        5,462,283 €  0.165        7,465,316        7,150,847        6,857,238        6,582,708        6,325,661        6,084,655        5,858,394        5,645,704        5,445,525        5,256,896 €  0.160        7,162,996        6,862,694        6,582,209        6,319,858        6,074,129        5,843,660        5,627,223        5,423,706        5,232,105        5,051,508 €  0.155        6,860,676        6,574,541        6,307,180        6,057,007        5,822,597        5,602,665        5,396,052        5,201,708        5,018,685        4,846,120 €  0.150        6,558,355        6,286,388        6,032,151        5,794,156        5,571,065        5,361,670        5,164,881        4,979,710        4,805,264        4,640,733 €  0.145        6,256,035        5,998,235        5,757,122        5,531,306        5,319,534        5,120,675        4,933,709        4,757,712        4,591,844        4,435,345 €  0.140        5,953,715        5,710,082        5,482,093        5,268,455        5,068,002        4,879,680        4,702,538        4,535,714        4,378,424        4,229,958 €  0.135        5,651,394        5,421,929        5,207,064        5,005,605        4,816,470        4,638,685        4,471,367        4,313,715        4,165,003        4,024,570 €  0.130        5,349,074        5,133,776        4,932,036        4,742,754        4,564,938        4,397,690        4,240,196        4,091,717        3,951,583        3,819,183 €  0.125        5,046,754        4,845,623        4,657,007        4,479,904        4,313,407        4,156,695        4,009,025        3,869,719        3,738,163        3,613,795 €  0.120        4,744,434        4,557,470        4,381,978        4,217,053        4,061,875        3,915,700        3,777,854        3,647,721        3,524,743        3,408,408 Target  IRR Rate/kwh 4.5% 5.0% 5.5% 6.0% 6.5% 7.0% 7.5% 8.0% 8.5% 9.0% €  0.175 526,594 458,033 394,062 334,285 278,348 225,932 176,750 130,543 87,076 46,137 €  0.170 466,130 400,403 339,056 281,715 228,041 177,733 130,516 86,143 44,392 5,059 €  0.165 405,666 342,772 284,050 229,144 177,735 129,534 84,282 41,744 1,708 -­‐36,018 €  0.160 345,202 285,142 229,044 176,574 127,429 81,335 38,047 -­‐2,656 -­‐40,976 -­‐77,096 €  0.155 284,738 227,511 174,039 124,004 77,122 33,136 -­‐8,187 -­‐47,056 -­‐83,660 -­‐118,173 €  0.150 224,274 169,880 119,033 71,434 26,816 -­‐15,063 -­‐54,421 -­‐91,455 -­‐126,344 -­‐159,251 €  0.145 163,810 112,250 64,027 18,864 -­‐23,491 -­‐63,262 -­‐100,655 -­‐135,855 -­‐169,028 -­‐200,328 €  0.140 103,346 54,619 9,021 -­‐33,706 -­‐73,797 -­‐111,461 -­‐146,890 -­‐180,255 -­‐211,713 -­‐241,406 €  0.135 42,882 -­‐3,011 -­‐45,984 -­‐86,276 -­‐124,103 -­‐159,660 -­‐193,124 -­‐224,654 -­‐254,397 -­‐282,483 €  0.130 -­‐17,582 -­‐60,642 -­‐100,990 -­‐138,846 -­‐174,410 -­‐207,859 -­‐239,358 -­‐269,054 -­‐297,081 -­‐323,561 €  0.125 -­‐78,046 -­‐118,273 -­‐155,996 -­‐191,417 -­‐224,716 -­‐256,058 -­‐285,592 -­‐313,453 -­‐339,765 -­‐364,638 €  0.120 -­‐138,511 -­‐175,903 -­‐211,002 -­‐243,987 -­‐275,022 -­‐304,257 -­‐331,827 -­‐357,853 -­‐382,449 -­‐405,716

(18)

each  subsequent  year.    Lower  tariffs  of  €0.14-­‐€0.15  may  be  possible  for  projects  located  in  the  sunniers  parts   of  Ireland.    Following  these  assumptions,  solar  will  achieve  grid  parity  in  Ireland  by  2023  (see  next  section).     These  figures  differ  from  the  original  projections  put  forth  in  ISEA’s  submission  to  the  Green  Paper  on  Energy   Policy  in  Ireland  in  August  2014.    This  is  primarily  due  to  the  increased  strength  of  the  US  dollar  against  the   Euro,  driving  up  component  costs  and  the  increase  in  the  Minimum  Import  Price  for  solar  modules  made  in   China.  

 

3.2  Cost  summary  for  Domestic  and  Commercial  Rooftop  solar  PV  projects    

 

Commercial  rooftop  solar  projects  are  valued  using  a  discounted  cashflow  model  which  assumes  that  revenue   will   be   generated   over   a   20   year   period.     The   gross   revenue   variables   that   affect   the   valuation   are   the   generation   tariff/kWh   and   Power   Purchase   Agreement   (PPA)   between   the   developer   and   the   business   consuming  the  electricity  generated  on  their  roof.  The  other  key  variable  is  the  discount  rate  used  (internal   rate  of  return,  IRR).      

From  researching  the  UK,  German  and  US  markets,  the  longest  payback,  or  lowest  return  on  investment,  which   would  be  viable  for  commercial  rooftop  solar  is  where  projects  are  developed  on  behalf  of  an  infrastructure   fund  at  no  upfront  capital   cost   to  building   owners/occupiers.   In   return,  occupiers  receive  savings  through  a   discounted   PPA.     The   income   from   the   building   occupier   via   the   PPA   combined   with   the   generation   tariffs   proposed  herein  creates  a  20  year  gross  revenue  stream.    Deducting  the  operational  expenses  from  this  gross   revenue   stream   and   applying   the   discounted   cash   flow   methodology,   combined   with   the   addition   of   development  and  capital  costs  derives  an  internal  rate  of  return.    

In  the  case  of  commercial  rooftop  solar  projects,  valuation  is  based  on  a  target  Internal  Rate  of  Return  (IRR)  for   the  developer.    While  7%  is  a  reasonable  basis  for  the  valuation  for  utility  scale  solar  in  2017,  rooftop  projects   are  be  perceived  as  higher  risk  due  to  the  reliance  on  the  financial  covenant  strength  of  the  building  occupier   as  the  PPA  forms  a  substantial  element  of  the  revenue  stream.  It  is  suggested  an  IRR  of  7.5%  is  more  reflective   of  the  associated  expected  returns  for  commercial  rooftop  in  Ireland  in  2017  (0.5%  higher  than  what  has  been   proposed   for   utility   scale   solar).   Table   6   illustrates   the   minimum   level   of   tariff   required   for   varying   sizes   of   system  which  is  designed  to  give  a  7.5%  fixed  rate  of  return  to  investors  while  providing  a  reasonable  power   price  to  businesses  to  adopt  this  renewable  electricity  source.  Table  6  also  includes  the  level  of  support  for   proposed  for  domestic  rooftop  PV  which  is  provides  a  typical  homeowner  in  Dublin  a  7.5  year  payback  and   where  the  consumers  benefits  from  decentralised  generation.  

Table  6.    Cost  summary  for  rooftop  solar  

(19)

Based  on  the  example  of  the  1MWp  project,  a  generation  tariff/kwh  of  €0.095/kWh  and  an  IRR  of  7.5%  would   give  a  valuation  of  €1,306,390/MWp  which  covers  the  EPC  costs,  development  costs  and  developer  margin.   This   example   project   will   also   derive   €1.5m   in   electricity   savings   for   the   business   or   occupier   under   that   commercial  roof  over  the  lifetime  of  the  system.    This  figure  is  supported  by  the  calculations  and  assumptions   in   Table   7   and   it   points   towards   the   benefits   of   rooftop   solar   making   Irish   businesses   more   competitive   by   lowering   their   operational   expenses   through   cheaper   greener   energy   which   is   generated   where   it   is   being   consumed.  

 

3.21  Domestic  Rooftop  PV  Cost  Summary  

 

Financial  payback  is  a  key  determining  factor  associated  with  the  decision  to  invest  in  PV.  Market  consensus   strongly  suggests  that  anything  over  a  7.5  year  payback  would  not  be  considered  for  the  discerning  consumer.     The  financial  model  for  a  typical  domestic  home  in  Dublin  with  a  30  degree  pitch  roof  facing  25  degrees  from   south  is  illustrated  in  Table  7.  A  generation  tariff  of  15c/kWh  is  required  to  make  domestic  rooftop  solar  PV   viable.  Table  8  shows  the  cost  for  domestic.    

 

Table  7.    Benefit  to  business  of  a  developer  funded  commercial  rooftop  project  

(20)

 

 

Tables  8.    Costs  for  domestic  

   

3.22  Commercial  Rooftop  Scale  EPC  Costs  

 

Table  9  presents  a  detailed  breakdown  of  the  EPC  costs  in  2015  and  includes  projections  through  to  2018.    Key   points  are  as  follows:  

Modules:  The   cost   of   modules   is   being   kept   artificially   high   by   the   Minimum   Import   Price   and   the   anti-­‐dumping  duties  that  the

Figure

Figure	
  1.	
  Cumulative	
  installed	
  capacity	
  2017-­‐2022	
   	
   	
   	
     100	
   350	
   600	
   850	
   1100	
   1350	
  50	
  150	
  250	
  350	
  450	
  550	
  0	
  500	
  1000	
  1500	
  2000	
  2017	
  2018	
  2019	
  2020	
  2021	
  20
Figure	
  2.	
  	
  Annual	
  cost	
  per	
  job	
  created	
  
Figure	
  3.	
  Number	
  of	
  jobs	
  created	
  per	
  year 5 	
  
Figure	
  4.	
  Intraday	
  Solar	
  and	
  Wind	
  Generation	
  
+7

References

Related documents

Finally, small multifamily firms (defined as 101-500 units under management) saw a 4% gain in their online payment offerings, with 30% of firms this size confirming the existence

It is important to pay special attention to the problems of regulation of mass media and software market, because development of new services and products in this sector to a

Veterans and their friends and family members with information, resources, and solutions related to issues affecting their health, well-being, and relationships. • Aims to reduce

( right ) The K -band image (grey-scale) is overlayed with the optical g -band (contours) showing diffuse blue emission near to our source and a detection of the quasar itself, which

The effective strategy performance requires such assumptions whose adaptation to the changing company environment requires a criti- cal approach towards the targets and forecasts..

0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Vacancy Rate (%) Metro City Suburban.. MARKET OUTLOOK ROCHESTER

Total household labor income, TOTINCOME, is calculated by the sum of regular wage and floating wage income, contract income, all kinds of bonuses, above-quota wages, the sum of

My name is Kirsten Schlein and I am a graduate student in the Department of Nutrition at the University of Massachusetts, Amherst. I am conducting a research study to determine